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ABSTRACT It is important to effectively detect, mitigate, and defend against Android malware attacks,
because Android malware has long represented a major threat to Android app security. Characterizing and
classifying similar malicious apps into groups plays a particularly crucial role in building a secure Android
app ecosystem. The classification of malware families can efficiently enhance the malware detection process
and systematically elucidate malware patterns. In this paper, we propose a novel efficient deep learning
network with multi-streams for Android malware family classification. We first obtain the input data for
a convolutional neural network (CNN) in string format from some main files or sections contained in
each Android malicious app. We then classify malware families by applying a 1-dimensional convolution
filter-based network for the files or sections. Further, by using gradient analysis to visualize the important
files and sections in malicious apps, we attempt to intuitively grasp which files or sections are the most
significant for malware family classification. To validate the effectiveness of our approach, we conduct
extensive experiments with the well-known DREBIN and AMD malware datasets, and we compare our
approach with existing methods. Our experimental results show that the 1D CNN model is more accurate
than the 2D CNN model, and that the code_item part in the classes.dex is the most relevant feature for
malware classification, as it is more relevant than other parts such as AndroidManifest.xml and certificate.
The proposedmethod achieves the best accuracy of 93.2% by using 1D convolution filters withmulti-streams
for the main files and sections of the malware samples.

INDEX TERMS Android malware family, 1D convolution filter, multi-streams, explainable analysis, class
separability, gradient analysis.

I. INTRODUCTION
Android malware (malicious apps) can hack users’ smart-
phones without their knowledge, then steal sensitive personal
information stored in the smartphone, lock the user out from
important user data, or mine cryptocurrency. At present, the
number of Android malware samples (malicious Android
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apps) and their variants are continue to spread widely.
According to the McAfee mobile threat report issued in Q1
2020 [1], more than 35 million malware attacks in total
and nearly 800 thousand new malware attacks were detected
during the fourth quarter of 2019. One of these new attacks,
MalBus spyware, hides a targeted attack in a legitimate app
by hacking the original developer’s Google play account.
It phishes for the victim’s Google user ID and password
with a fake login page, scans the user’s device for sensitive
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military and political keywords, and can even run com-
mands. In addition, a new Android malware family called
LeifAccess has emerged that abuses accessibility features
to create accounts, download apps, and post fake reviews.
After LeifAccess, also known as Shopper, is installed,
it advertises click fraud without displaying an icon or a
shortcut.

Due to the increasing number of mobile malware instances
and the emergence of new malware families, malware has
become a serious threat to Android ecosystem security.
To defeat this threat and protect mobile users and sys-
tems, many studies have investigated the detection and
classification ofAndroidmalware samples [2]–[17].Malware
detection is a binary classification problem that involves
attempting to determine whether a suspicious app is mali-
cious or benign. On the other hand, malware family classifi-
cation is a multi-class classification problem, which involves
attempting to categorize detected malicious apps into one
of the known families or one of the new families based
on the characteristics of the samples. If malware samples
are classified into the correct family and accurately char-
acterized, then malware researchers can focus on highly
dangerous families rather than individual malware samples
or less risky families [2]. Therefore, an effective malware
family classification can help malware analysts identify more
malware samples by recognizing other malware samples in
that family and grasping their characteristics. Compared to
malware detection, malware family classification is more
challenging because it is a multi-class classification problem,
and because the number of malware samples varies across
families [2]–[4], [7].

A malware family is a group of malware samples that
shares the same or similar functionality, behavior, and pur-
pose. Because many Android malware variants belong to the
same malware family, identifying and categorizing malware
variants into their relevant family is very crucial for under-
standing their typical behavior patterns and conducting fur-
ther analysis [2], [3], [5]. Thus, Android malware researchers
and anti-malware vendors are currently struggling to classify
each malicious app into a family of related malware and then
provide the appropriate countermeasures [2]–[11].

Many malware classification studies have been conducted
on the Microsoft Windows platform [8], [15], [16], [18],
[19]. However, the executable file structure of the Windows
platform is very different from the executable file structure
of the Android platform, methods used to classify Windows
malware families cannot be directly applied to Android mal-
ware families [5], [6].Moreover, due to the rapid proliferation
of Android malware samples and their variants, Android mal-
ware family classification has recently attracted substantial
interest from researchers as well as the industrial world [2].

Another recent challenge in machine learning-based mal-
ware classifiers is the evolution of malware to change its
malicious behavior over time, thus leading to the deterio-
ration of the classifiers [20]–[22]. Several researchers have
attempted to address this sustainability problem by defining it

as deterioration [21], [23], or model aging [22], [24]. In [21],
[23], sustainability metrics were proposed and comparedwith
the latest five Android malware detectors. The classifier,
DroidSpan [23], used a new behavioral profile for apps and
outperformed the five detectors in sustainability. DroidE-
volver [24] performed a necessary update using a model
pool that contained five linear online learning algorithms and
delayed classifiers. APIGraph [22] enhanced the latest mal-
ware classifiers using API semantic similarity from a relation
graph of Android APIs among evolved malware samples.

Therefore, in this paper, we propose a novel 1D convo-
lution filter-based classification network with multi-streams
suitable for classifying Android malware families. Every
Android app is distributed in the form of an Android applica-
tion package (APK); an APK has several folders and files,
where a file consists of several sections (see Figure 1).
Among the files and sections of each malware sample,
we focus on the classes.dex file (CL) and its sections,
AndroidManifest.xml file (AM), and certificate files
(CR). Considering such sample properties, we used 1D con-
volution filters to extract features for malware family classifi-
cation. We also construct multi-streams that contain different
networks for each part (file or section) in a malware sam-
ple to account for the individual characteristics of different
parts. Further, we improve malware family classification per-
formance with efficient operations by extracting composite
features from only the selected streams based on an analysis
of the amount of discriminative information in each part of the
malware sample. We finally classify malware samples into
their proper families using the composite features.

We conduct extensive experiments for the DREBIN and
AMD datasets [4], [25], which are well-known in malware
family classification. We compare our approach with the
existing methods, which are six 2D convolution filter-based
models (SARVOTAM, Ef- ficientNetB0, Vgg16, ResNet50,
Inception-V3, LeNet), and two types of proposed models
(Basic-1D-CNN with single stream and multi-streams). The
experimental results show that the proposed 1D convolu-
tion filter-based network with multi-streams achieves the
highest accuracy and F1-score. To handle the sustainability
challenge, we have also conducted intra-, and inter-dataset
experiments on the AMDdataset [25] as well as the DREBIN.
The AMD dataset was another well-known Android Mal-
ware Dataset, which was collected over longer years than
the DREBIN dataset. The AMD dataset is more suitable
for longitudinal and evolutionary studies than the DREBIN
dataset in the inter-dataset experiment. The generalization
performance is improved when the variation information of
malware samples of the AMD dataset is learned.

The main contributions of this paper are as follows:
• We propose an effective 1D convolution filter-based
classification network for automatically classifying
Android malware families from raw malware samples
without any data preprocessing.

• We investigate which parts (files or sections) in the
malware sample are more effective for the classification
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of Android malware families through an expandable
analysis for 1D convolution filter-based networks.

• We extract composite features by designing a network
with multiple streams specialized for each part of the
malware sample. In particular, by selectively using
only streams corresponding to parts containing a large
amount of discriminant information, the separability of
the composite feature is increased, and efficient opera-
tion is performed. We achieve the highest accuracy and
F1-score when applying the 1D CNN model with six
streams.

• Our approach does not necessitate extraction of
specific features such as application programming inter-
face (API) calls, strings, opcodes, permissions, compo-
nents, intents, or system calls from the APKs. Further,
it is not necessary to decrypt, de-obfuscate or execute
the code in the CL file.

The rest of this paper is organized as follows. Section II
offers background knowledge and some related work.
Section III explains our model. Section IV interprets the
experimental results and presents the performance evaluation.
In Section V, we discuss limitations and future directions.
Finally, we provide a conclusion in Section VI.

II. BACKGROUND AND RELATED WORK
A. STRUCTURE OF APK FILES
An APK file is a zip file that contains all the contents of an
Android app, as depicted in Figure 1. An APK comprises of
the executable code (classes.dexs file), manifest (Android-
Manifest.xml file), meta information (META-INF folder),
resources (resources.arsc file and res folder), assets (assets
folder), and library(lib folder) [26]–[29].

FIGURE 1. Structure of APK files.

AndroidManifest.xml (AM) contains the package
name and version of the app, components, permissions, and
referenced library files for the app.META-INF is a folder that
contains MANIFEST.MF, CERT.RSA, and CERT.SF files.
MANIFEST.MF is a manifest file that contains a list of all
files in the APK along with their SHA-1 digests. CERT.SF
is a signature file that consists of a list of all files in the APK
along with their SHA-1 digests again; however, each digest

of the CERT.SF is the digest of the three-line entry of that
file. CERT.RSA is the real signature file of the APK which
contains the certificate of the public key for the app to verify
the signature [27]. In this paper, a certificate (CR) represents
the combination of the CERT.RSA and CERT.SF files of
each app.

The resources.arsc file contains precompiled
resources such as strings, colors, or styles in binary XML.
The res folder contains all resources not compiled into
resources.arsc. The assets folder is an optional
folder that contains the app’s assets, such as media files.
The lib folder, which holds the native code libraries,
may contain several sub-folders, each of which will have
platform dependent-compiled code for specific hardware
architectures.

FIGURE 2. Layout of a DEX file inside an APK.

A DEX file, classes.dex (CL), contains all of the app
bytecode compiled in the dex file format. The DEX file struc-
ture is described on the official Dalvik Executable format
page [30]. As illustrated in Figure 2, a DEX file may consist
of several sections: a header; lists for strings, types, method
prototypes, fields, methods identifiers (ids), class definitions,
call site identifiers, and method handles; a data section; and
the link_data used in statically linked files [30], [31].

On the right-hand side of Figure 2, we show amore detailed
representation of the data section. The map_list is a list
of the entire contents of a file. The string_ids section and
string_data_item contain all the data about strings includ-
ing the string length, where the ‘string’ refers to the parts
of operations and definitions represented by string labels
(e.g., string constants as well as type and class names).
The call_site_item is an encoded_array_itemwhose elements
correspond to the arguments provided to a bootstrap linker
method. The type_list contains the size and elements of the
list. The code_item contains all code instructions including
the array indicating where in the code exceptions are caught
and how to handle them, the bytes representing a list of lists of
catch types and associated handler addresses, the number of
registers, words, try_items, and the size of list of instructions.
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B. RELATED WORK
Althoughmalware detection [12], [16], [32] is one of themost
important topics for strengthening the security and stability of
the mobile app ecosystem, malware detection is beyond the
scope of this paper. To date, there have been many studies
on malware family classification [2]–[11], [13]–[15], [17].
According to a survey paper [2], some studies have used
image classification methods to classify Android malware
families. In these methods, the features of Android apps are
represented in the form of grayscale or color images, and
Android malware samples are then classified based on these
image features.

Fang et al. [5] classified Android malicious apps into their
corresponding families using the DEX file section features.
They first transformed the DEX file into a Red/Green/Blue
(RGB) image and plain text based on the section features.
Then, they extracted three features: color, texture, and text.
The texture and text features were extracted by using the
GIST algorithm and the Simhash algorithm, respectively.
The features were fed into a feature fusion algorithm using
multiple kernel learning (MKL) to classify malware families.
Their dataset consisted of fifteen malware families from the
Android Malware Dataset (AMD) [25]. They used three clas-
sifiers: Support Vector Machine (SVM), k-Nearest Neighbor
(kNN), and Random Forest (RF). The feature fusion method
achieved better classification performance than the cascade
of all features directly.

Singh et al. [6] proposed a system called Summing
of neurAl aRchitecture and VisualizatiOn Technology for
Android Malware identification (SARVOTAM). This system
first converts malicious Android apps into fingerprint images,
then uses a fine-tuned CNN to extract features from the
grayscale images, along with a total of fifteen different com-
binations of the malware image sections for malware clas-
sification. The flatten layer in the CNN architecture flattens
the output from the previous layer into a one-dimensional
tensor. The softmax layer of CNN is replaced by tradi-
tional classifiers such as kNN, SVM, and RF to classify
the images. In the SARVOTAM system, the CNN-SVM
model achieved better performance than the original CNN,
CNN-kNN, and CNN-RF. The SARVOTAM system was
evaluated with twenty families in the DREBIN dataset. The
CNN-SVM model achieved the highest accuracy of 92.59%
when using the malware images generated from the com-
bination of the certificates (CR) and manifest (AM), and it
achieved 90.57% accuracy when using the malware images
generated from only the classes.dex (CL).

Sun et al. [7] also used the grayscale malware images
converted from the bytecodes of malicious apps’ bytecode.
The malware code-images were given to the input of a pre-
trained CNN. They chose GoogLeNet Inception-v3
as the deep learning network architecture and used
2048-dimensional feature vectors of the images. They set
the optimizer and learning rate of the neural network to
AdamOptimizer and 0.0005 respectively. They performed
some experiments with fourteen families as well as twenty

families of varying sizes in the DREBIN dataset. The average
F1-scores for the fourteen families and the twenty families
were 95.2% and 90.5%, respectively. They mentioned that
the malware image-based classification method is resilient to
code obfuscation techniques.

Kang et al. [11] used two types of grayscale images for
Android malware family classification. The first image was
converted from the entire DEX file, while the second image
was converted from only the data section inside the DEX file.
They chose 64 × 64 as the normalized size of images, and
they used a CNNmodel with LeNet to classify the two types
of images. The top 20 families in the DREBIN dataset were
used for the experiments. Their method obtained an accuracy
of around 91% for both types, but the size of the data section
images was reduced by an average of 18% compared to the
size of the DEX images.

Zhao and Qian [33] decompiled each APK; extracted the
opcodes, sensitive API packages and risky API functions; and
mapped the three different extracted features to the R channel,
G channel, and B channel of an RGB image, respectively.
They then detected the feature images of malware families
by using a CNNmodified from LeNet5. They also conducted
several experiments with the 14 representative families from
the DREBIN dataset. Their classification achieved up to
96.91% accuracy.

Darwaish and Naït-Abdesselam [34] converted several ele-
ments inside an APK file into an RGB image, and they
fixed the image using the nearest neighbour interpolation.
They extracted permissions, intents, activities and services
from the manifest, then mapped the extracted information
to the green channel. They also extracted opcodes and API
calls from the DEX, and mapped them to the red channel.
Lastly, they mapped all the malicious components gathered
from the manifest and DEX files on the blue channel. They
transformed large APK file (typically consisting of multiple
MBs) into small RGB image of 3-4KB. Finally, conducted
experiments on the top 10 families in the AndroZoo dataset
[35], where each family had more than 5K samples, and they
classified the malware samples with an accuracy of 99.37%.

Chen et al. [36] converted the DEX files into grayscale
images, and they extracted image texture feature using the
GIST algorithm. They used XGBoost as the classifier, and
they conducted experiments on the 10 families containing
anywhere from 208 to 1824 samples. They achieved up to
99.14% accuracy.

While some research groups have used visualization and
image processing methods to classify Microsoft Windows
malware families [8], [15], [16], [18], [19], they have not
examined Android malware families.

For Android malware family classification, many stud-
ies have used features other than malware images. For
example, Alswaina and Elleithy [3] used the permissions
declared in malicious Android apps as the static fea-
tures. Arp et al. [4] used requested permissions, suspicious
or restricted API calls, filtered intents, hardware com-
ponents, network addresses, etc. Taheri et al. [9] extracted
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permissions and intents as static features, and API calls and
network traffic as dynamic features. The dynamic features
were used for malware family classification while the static
features were used for malware detection.

Suarez-Tangil et al. [10] developed a static malware clas-
sification system called DroidSieve which relies on
API calls, permissions, code structure, invoked components,
native code, obfuscation artifacts, and obfuscation-invariant
features. Its performance was evaluated on the datasets from
the DREBIN and MalGenome. The authors showed only
the results for the DREBIN dataset because it included all
MalGenome samples and was larger and more recent. Droid-
Sieve achieved a high accuracy with resilience against reflec-
tion by reducing code analysis and using resource-centered
features.

Xu et al. [13] used control-flow graphs and data-flow
graphs as static features on the instruction level of malware.
They also used the n-gram sequences extracted from the
graphs. Qiu et al. [14] proposed a multi-label classification
model to annotate the malicious capabilities of suspicious
malware samples. The model used API calls, permissions
and network addresses extracted from APKs as the features.
Massarelli et al. [17] employed resource consumption met-
rics from theprocfile system through dynamic analysis, and
they extracted the features by processing themwith detrended
fluctuation analysis and Pearson’s correlation.

Chakraborty et al. [37] classified malicious apps into large
and small families by using the combined features obtained
through static and dynamic analyses. They collected author
information, app components, and permissions as the static
features, as well as n-gram representation from generated
dynamic logs. The significant features they considered were
the re-use of signatures, requesting permissions, and the use
of encryption. They also evaluated the performance of super-
vised classification and unsupervised clustering.

Atzeni et al. [38] clustered malware samples in families
and developed rules of family signatures to allow for the
accurate identification of samples. They used both static
and dynamic features. The static features contained per-
missions, activities, receivers and filters extracted from the
AndroidManifest.xml of each app as well as suspi-
ciousAPI calls extracted from the code. The dynamic features
contained the characteristics of the app that interacted with
the operating system along with the network information
generated during the app’s execution.

Garcia et al. [39] proposed a method called
RevealDroid for malware family identification which was
shown to be accurate, efficient and obfuscation resilient. They
employed static features such as API calls, reflective calls,
and invocations in native binaries. They then evaluated the
method by comparing it with the state-of-the-art methods.

DroidCat [40] detected and classified Android malware
using dynamic features based on a behavioral app profile
consisting of method calls and inter-component commu-
nication(ICC) intents. It achieved 97% F1-score accuracy
for classifying apps evolving over the nine years. It was

robust to attacks targeting system calls or specific sensitive
APIs and malware samples adopting obfuscation schemes.
It achieved higher performance compared with the two state-
of-the-art techniques with the datasets from the AndroZoo,
VirusShare [41], DREBIN, and MalGenome [42]. Droid-
Cat adopted several learning algorithms, including Random
Forest(RF), Support Vector Machine(SVM), Naive Bayes,
etc. The RF with 128 trees performed better than all the
alternatives.

Ficco [43] proposed a dynamicmalware analysis technique
resilient to specific evasion methods by combining generic
and specialized detectors during the analysis process. The
proposed technique dealt with the evolution of malware
and employed an alpha-count mechanism that explored how
the length of the observation time window during run-
time could affect detectors’ accuracy and speed. He eval-
uated the technique with 27 families from the DREBIN
dataset. He also used another validation dataset down-
loaded from the VirusShare dataset from June 2013 to
March 2014.

The previous studies [3], [4], [9], [10], [13], [14], [17],
[37]–[40], [43] require domain expert knowledge and fea-
ture engineering such as binary disassembling, assembly lan-
guage, and runtime information, while our approach does not
require any of these factors.

Recently, researchers have presented evolution-based
approaches for long-span malware classifiers [20]–[24].
Suares-Tangil and Stringhini [20] found that the type of
activity performed by malware and the level of obfuscation
used by malware has remarkably changed. Malicious pay-
loads changed their behavior significantly over time. These
findings mean that a sustainable approach is necessary for
malware classifiers.

Cai [21], [23] proposed sustainability metrics and com-
pared them among the latest five Android malware detectors.
The malware classifier, DroidSpan [23], tried to find sophis-
ticated and distinguishable features in behavioral evolution
patterns of three ecosystem elements (the mobile platform,
apps, and users) and information flow and then build sustain-
able models. He showed that DroidSpan outperformed the
five detectors in sustainability. In [23], the authors focused
on malware detection and did not address malware family
classification.

DroidEvolver [24] an Android malware detector, updated
itself and delayed classifier aging through online learning
based on the majority voting of five linear learning models.
It utilized API occurrence information for static features and
updated its feature set incrementally by including new API
calls used in the unknown apps. DroidEvoler showed a good
performance and was robust against typical code obfuscation
techniques.

APIGraph [22] enhanced the sustainability of the latest
malware classifiers using API semantic similarity from a
relation graph of Android APIs among evolved malware sam-
ples. It captured semantic similarity among evolved malware
samples in an Android malware family.

5522 VOLUME 10, 2022



H.-I. Kim et al.: Efficient Deep Learning Network With Multi-Streams for Android Malware Family Classification

III. DEEP LEARNING NETWORK BASED ON EXPLAINABLE
ANALYSIS
The proposed method consists of a feature extractor with
multi-streams and a classifier that receives the extracted fea-
tures as input and finally determines the malware family.
We first construct Basic-1D-CNN with whole malware data
samples (Figure 4). Then, from the classification result of this
network, the class separability of 15 sections composing the
malware data sample was evaluated using Grad-CAM. The
heatmap, the result of Grad-CAM, reflects the class separa-
bility information of each section. Each stream of the classi-
fication network with multi-streams corresponds to a section
composing amalware sample. The individual stream contains
Basic-1D-CNN that can effectively extract features suitable
for the properties of malware data. Based on the heatmaps,
we select the sections in which helpful information to classify
malware families were concentrated and then constructed the
feature extractor only with six streams corresponding to those
sections (Figure 7).

A. 1-DIMENSIONAL CONVOLUTION FILTERS FOR
MALWARE FAMILY CLASSIFICATION
Since the introduction of CNN-based deep learning net-
works [44]–[48], which perform very well in image classi-
fication, several studies [49] have also used CNNs to solve
various classification problems involving items other than
images. These methods converted a domain data into a
2D array in image form to apply the CNN-based network
structure for image classification to problems in that same
domain. Similar attempts have been made in malware family
classification [5]–[7], [11], [33], [34], [36]. They convert a
malware sample in string form into a 2D array form and
apply 2D convolution filters to it. Most of these 2D convo-
lution filter-based networks involve the fine-tuning of pre-
trained models with large image databases such as ImageNet
[50]. However, when utilizing these models in domains other
than image data, there are several constraints caused by the
differences in attributes between image data and domain
data.

For example, for string-type data converted from mal-
ware samples, the correlation between adjacent data ele-
ments can be arbitrarily distorted in a 2D array. Moreover,
considering the size of the data used when the network
was pre-trained, it is necessary to resize the malware data
to be used as the input data, and this resizing can also
lead to distortion of the data. Figure 3 shows the classifi-
cation performance depending on the interpolation method
used in the resizing process when Inception-V3 [45], a rep-
resentative 2D convolution filter-based classification net-
work, was used for classification of DREBIN dataset [4].
In Figure 3, it can be seen that the classification perfor-
mance was dependent on the process used to convert malware
data to a 2D array data, which means that the 2D convolu-
tion filter-based network is not reliable in this classification
problem.

FIGURE 3. Classification performance of Inception-V3 according to the
interpolation method used.

Therefore, rather than using a 2D convolution filter,
we design Basic-1D-CNN, which is a 1D convolution
filter-based classification network that can exploit the spatial
relationships between data elements without distortion by
retaining the original structure of the data. The proposed
network was designed simply for the efficient computation of
high-dimensional malware data. Considering the characteris-
tics of malware data, where each data sample is of a different
size, we use Global Average Pooling(GAP) [51] to enable
the use of the original data samples as inputs to the network
without the need for resizing processing. Further, by design-
ing the network to have a small size, it can be learned using
only malware data samples without pre-training, and it can
therefore be specialized in malware family classification.

Figure 4 and Table 1 respectively present the structure
of Basic-1D-CNN and the information on the filters used.
Basic-1D-CNN consists of a feature extractor containing four
convolution blocks and a classifier that uses these extracted
features as input. Each convolution block consist of 1D
convolution filters with a kernel size of 5 to extract features,
an activation function (ReLU) [52], and a max-pooling layer
to reduce computation. The feature extractor extracts the
features that are useful for classifying malware families from
the parts corresponding to the AM, CR, and CL file in
malware data samples. The i-th feature map, which is the
output value of the i-th convolution block yi of the feature
extractor, is as follows.

y1 = f1(x|W1)

yi = fi(y1|Wi−1), for i = 2, 3, 4 (1)

x refers to a string corresponding to the AM, CR, and CL files
in a malware data sample, which is an input to the network.
Each sample of malware data has a different size, so the
size of the feature map yi from the convolution block can
also vary depending on the size of the input value x. fi is
the i-th convolution block, and Wi is the parameter of the
i-th convolution block. The number of filters used for each
convolution block is {c0, 2 ∗ c0, 4 ∗ c0, 8 ∗ c0}, respectively,
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FIGURE 4. Configuration of the proposed Basic-1D-CNN. The proposed network uses malware sample in string form as input data for classifying malware
families.

TABLE 1. Configuration of the proposed Basic-1D-CNN structure.

where c0 is set to 64 by default.

G(y4) = −
1
N

N∑
d=1

yd4

yout = D(G(y4)|WD) (2)

where yd4 is the d-th feature map of y4. Since the size of yd4
depends on the size of x, we adjust it to a fixed size (512 in this
experiment) using GAP (G) prior to D. The size of G(y4) is
equal to the number of channels in y4, and its elements are the
average value for each channel, which reflects how activated
the channel is. Classifier D consists of a Fully Connected
layer(FC) and an output layer. Wd is a parameter set for FC
that constructsD, and the number of parameters in each layer
is set to 512 and 20, respectively. yout is the predictedmalware
family for x as the final output of D. The structure of Basic-
1D-CNN is summarized in Table 1.

B. ANALYSIS OF CLASS SEPARABILITY FOR FILES AND
SECTIONS IN MALWARE DATA
As previously mentioned in Subsection II-A, each malware
sample has AM, CR, and CL files, each of which can be
divided into multiple sections (or subsections). Each part (file
or section) of the malware sample is connected in series, and
the convolution filter moves all parts sequentially to extract
features. However, not all parts of the sample contain useful

information for malware family classification, and filtering
the entire malware sample of around one million dimensions
on average is not efficient for computational dimensions.
Therefore, we used Grad-CAM(Gradient Weighted Class
Activation Map) [53] to analyze how discriminative infor-
mation is distributed for family classification in each part
of a malware sample. Grad-CAM is an explainable analysis
method used in the interpretation of predictive results for each
class in Table 1 summarizes the structure of Basic-1D-CNN
a convolution filter-based network. Grad-CAM generates a
heatmap of the same size as the input data for each class (fam-
ily) to be classified. Each element of a heatmap is the
degree to which the corresponding element in the data sample
affects the classification result, which is represented by a
normalized value between 0 and 1. We obtain heatmaps (Hc)
of Grad-CAM for C classes with validation data samples
({xvi , c}, i = 1, ..,N ; c = 1, ..,C) to investigate which parts
of malware data samples have useful information for family
classification.

Figure 5 shows examples of Hc for the three classes.
For visualization, we transform each heatmap into a
two-dimensional form and display it with pseudo colors.

The closer the value of the heatmap element was to 1, the
more red it was, and the closer it was to 0, the more blue
it was. As shown in Figure 5, the information that is useful
for classification within a malware sample is concentrated
on the particular sections instead of being evenly distributed
across the entire region. Based on the heatmaps for the vali-
dation samples, we plot the size of the values of the heatmap
elements in each part to determine how the discriminant
information is distributed in the malware sample.

Figure 6 is a boxplot for the heatmap elements
values for two sections of AM, CR (Cert.RSA,
Cert.SF), and twelve sections (subsections) of CL
(header, string_ids, type_ids, proto_ids,
field_ids, method_ids, class_defs, map_list,
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FIGURE 5. Grad-Cam results Hc from Basic-1D-CNN for the three classes
(lkonsys, Geinimi, FakeInstaller) of the DREBIN dataset.

FIGURE 6. Heatmap element values for each part.

string_data_item, class_data_item, type_
list, code_item). In Figure 6, the orange bar represents
the median of the max values of the heatmap elements of the
parts in N v validation samples, while the height of the box
represents the standard deviation.

As shown in Figure 6, discriminant information is con-
centrated on the AM file and the subsection code_item
of the CL file, whereas there is little distribution in
the class_data_item subsection and the type_ids
section of the CL file.

C. DESIGN OF DEEP LEARNING NETWORK WITH
MULTI-STREAMS
Based on the results in Figure 6, we chose six parts
AM, Cert.RSA, proto_ids, class_defs, string_
data_item and code_item with a large amount of dis-
criminative information to build an efficient deep learning
network for malware family classification. This allows us
to focus more on critical information while reducing the
computation volume by eliminating parts that are unneces-
sary for classification. Figure 7 shows the configuration of
the proposed classification network with multi-streams. The
network largely consist of feature extractors and classifiers.

Since each part has different dimensions (lengths) of data
as well as different informational properties, we construct a
different feature extractor for each individual part to extract
features specific to each part. The composite feature, which is
created by combining feature maps generated from individual
streams, is used as an input to a classifier consisting of two
dense layers to obtain final classification results.

1) FEATURE EXTRACTOR
The feature extractor of the proposed model has a separate
stream for each part of the malware data. Individual streams
are designed with four convolution blocks, consisting of a
1D convolution filter with a kernel size of 5 to extract fea-
ture information, a ReLU function for activating nodes, and
maxpooling to reduce computation. In total, 24 convolution
blocks for six streams included in the feature extractor were
trained to extract different feature information for each part
by initializing them with different parameters. The feature
map ys, s = 1, .., 6 extracted from the s-th stream is as
follows.

ys1 = f s1 (x
s
|W s

1 )

ysi = f si (x
s
|W s

i−1), for i = 2, 3, 4 (3)

xs means the part of the data sample corresponding to the s-th
stream. f si is the i-th convolution block for the s-th stream, and
W s
i is the parameters of f si . The numbers of filters used for f s1

through f s4 were set to {cs0, 2 ∗ c
s
0, 4 ∗ c

s
0, 8 ∗ c

s
0}, respectively,

where cs0 is set to 64 by default. We apply a ReLU activation
function after passing the convolution layer to learn non-
linearities, then use max-pooling with a kernel size and stride
of 2 to exclude less important feature information for efficient
computation.

2) CLASSIFIER
Aside from the output layer, the fully connected layer of the
classifier was composed of two layers. A composite feature
vector (F) combined with feature maps from six streams in
the feature extractor is used as an input to the classifier’s
first FC. Before passing values to the output layer, we apply
a dropout method that learns with only the left node, while
excluding nodes randomly, to avoid overfitting and improve
generalization performance (in this paper, we experiment by
changing the dropout rate from 25% to 50%). The output
layer consists of as many nodes as the classes to be classified.
Each node in the output layer computes the final output value
by applying the weighted sum of nodes in the previous layer
to the softmax function.

IV. EXPERIMENTAL RESULTS
A. DATASET AND IMPLEMENTATION DETAILS
The DREBIN dataset used in this experiment is one of the
representative datasets used in malware family classification
studies [2]. The DREBIN dataset was collected in the period
from August 2010 to October 2012 and includes popular
Androidmalware families such as Fake Installer, GoldDream,
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FIGURE 7. Overall structure of the proposed classification network with multi-streams.

TABLE 2. Comparison of publication counts for various malware datasets.

GingerMaster, DroidKungFu, etc. Most of the research lit-
erature from the years 2014–2020 has used the DREBIN
dataset as the standard dataset for malware related experi-
ments. Table 2 presents a summary of the various malware
datasets used by the research community to date [2].

The DREBIN dataset contains 5,560 files from 179 dif-
ferent malware families. Among them, we experiment only
on the top 20 malware families (SendPay, BaseBridge,
ExploitLinuxLotoor, Geinimi, Gappusin, Kmin, SMSreg,
FakeRun, DroidKungFu, DroidDream, FakeInstaller, Adrd,
FakeDoc, Opfake, MobileTx, GinMaster, Plankton, Imlog,
Iconosys, Glodream) with the largest number of samples.
In total, 4,659 malware samples for 20 families were sepa-
rated into training, validation, and test datasets at a respective
ratio of 6:2:2.

For experiments, the libraries of Keras (v2.2.0) and
PyTorch (v1.7.0) were used on a computer with
NVIDIA-V100 32GB GPU and an Intel Xeon Silver
4210 processor. Learning of the classification network
was carried out for 500 epochs, and ‘early stopping’ [54]
was used to limit the epochs to 20 to prevent overtrain-
ing. For effective learning, we set the learning rate l as

0.1 ∗ b/256 depending on the size of the batch while, using
the linear scaling learning rate method [55] (in this experi-
ment, l = 0.0007 and 0.0125 for the 1D and 2D convolution
filter-basedmodels, respectively). Since the proposedmethod
uses high-dimensional data as it does not involve the resizing
process, we set the batch size to 2 so that the computational
burden is not too large. In 2D convolution filter-based meth-
ods [5]–[7], [11], [33], [34], [36] for performance comparison
with the proposed method, we set the batch size to 32 because
they reduce the size of the data sample in the process of con-
verting input data into 2D array form. For learning stability,
Radam [56] was used as the optimizer, and categorical cross
entropy [57] was used as the loss function.

B. PERFORMANCE EVALUATION FOR MALWARE FAMILY
CLASSIFICATION
The main metrics for performance evaluation are as follows:
(1) accuracy: the ratio of the number of correctly predicted
observations to the total number of observations; (2) recall:
the ratio of the number of correctly predicted positive obser-
vations to the total number of observations actually belonging
to the positive class; (3) precision: the ratio of the number of
correctly predicted positive observations to the total number
of predicted positive observations; (4) F1-score: the weighted
average of precision and recall, i.e., F1-score = 2 * (recall *
precision)/(recall + precision).
To verify the effectiveness of the proposed Basic-1D-CNN,

we compare the performance of malware family classifica-
tion using deep learning networks such as SARVOTAM [6],
Inception-V3 [45], LeNet [11], ResNet50 [46], and Effi-
cientNetB0 [47]. Since data resizing is required to clas-
sify malware data samples using 2D convolution filter-based
methods, we performed down sampling using Opencv and
Fill library, which are widely used in the Python library.
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TABLE 3. Comparison of classification performance by each model for
DREBIN dataset.

The downsampling option uses ‘bilinear’, which is the
best performance in the results previously presented in
Subsection III-A (Figure 3). For SARVOTAM, we present
the results of the image combination (CL+AM), which
shows the best performance among various kinds of ‘image
combinations’ [6].

Table 3 lists the classification results obtained using vari-
ous methods examining 20 families in the DREBIN dataset.
In Table 3, the number in parenthesis next to the name of
each method is the size of the data sample when the malware
data sample is resized to the 2D array form. To evaluate
the performance of the Basic-1D-CNN itself, we present the
classification results of Basic-1D-CNNwhen using the entire
malware data sample without separating the data sample
according to the part (file or subsection). In many studies
on image classification, Inception-v3, ResNet50, and Effi-
cientNetB0 have shown higher classification performance
than LeNet, but the malware family classification results
presented in Table 3 show that LeNet’s performance is higher
than those of Inception-v3, ResNet50, and EfficientNetB0.
In particular, LeNet showed the highest performance when
the size of the data sample was reduced to 64× 64, which is
also different from the results of several image classification
studies. This suggests that even the same network can vary in
performance depending on the domain, and it demonstrates
the limitations of transfer learning for the use of pre-trained
networks in different domains. The results of in Table 3, show
that Basic-1D-CNN, which is designed for malware family
classification, has the best classification performance among
all the methods considered.

Table 4 demonstrates the effectiveness of a network with
multi-stream and the performance of a network using only
useful streams based on explainable analysis. In Table 4, the
classification rates of networks configured multi-stream for
all 15 parts of the data sample (Basic-1D-CNN(15-streams))
were 0.8% and 0.7, respectively, which were higher in accu-
racy and f1-score than in networks configured with a single
stream (Basic-1D-CNN(single)) for the whole malware data
sample. This is because in a network with multi-stream, the
different characteristics of each part are effectively learned in
each stream.

TABLE 4. Comparison of performance according to the number of
streams of the proposed model.

TABLE 5. Classification performance for each family in the proposed
model.

Moreover, since the network with multi-stream divides the
data samples into several parts and processes them in parallel,
the data classification time is reduced. Moreover, the model
consisting of only the six selected streams, which are based
on the analysis of discriminant information distribution using
Grad-Cam heatmaps, showed the best performance. This
shows that by eliminating unnecessary data and selectively
using only data useful for classification, it is effective to
extract better features while also reducing the overall running
time. Tables 5 and 6 respectively present family-specific
classification results and confusion matrix for 20 malware
family classifications. As shown in Figure 8, the proposed
model achieved the best performance with both accuracy and
f1-scores exceeding those of other methods that considered
all families.

We conducted experiments on the AMD dataset to evalu-
ate the generalization performance of the proposed method.
The AMD dataset is another representative dataset used for
malware family classification research. The AMD data set
contains 24,650 labeled Android malware samples classi-
fied into 135 varieties within 71 product families, dated
from 2010 to 2016.

We performed intra-dataset experiments and inter-dataset
experiments on the DREBIN and AMD datasets, respec-
tively. In the intra-dataset experiment, samples from the
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TABLE 6. Confusion matrix for the top 20 malware families in the proposed model.

FIGURE 8. Comparison of classification performance for each family.

same dataset were separated into training, validation, and test
datasets at a respective ratio of 6:2:2. In the inter-dataset
experiment, we learned and evaluated the classifier using a

dataset different from the dataset used to train the feature
extraction model. In the inter-dataset experiment, we used
30 malware families, which do not overlap with the families
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of the DREBIN dataset and have many samples per family,
among a total of 71 malware families included in the AMD
dataset to evaluate generalization performance.

Table 7 shows the experimental results of intra-dataset and
inter-dataset. In Table 7, AMD(4570) randomly selected a
total of 4,570 malware samples as much as the total number
of samples in the DREBIN dataset, and AMD(23755) used
all malware samples from the AMD dataset for 30 families.
As shown in Table 7, in the intra-dataset, the accuracy for
the DREBIN dataset was higher than for the AMD dataset.
This is because the number of families in the DREBIN dataset
is smaller than that of the AMD dataset and the variation of
samples in the AMD dataset collected over a more extended
period is greater than that of the DREBIN dataset. In the inter-
dataset experiment, the feature extraction model learned with
the AMD dataset performed better than the model learned
with the DREBIN dataset. This shows that the generalization
performance is improved when the variation information of
malware samples of the AMD dataset is learned. In particular,
the experimental results for AMD(23755)-DREBIN datasets
show that when learning the proposed model with sufficient
training data, we can expect that the accuracy performance of
inter-dataset is comparable to that of intra-dataset.

V. DISCUSSION
The advantage of using deep learning networks for malware
family classification is that they can be used to classify
data without the need for separate processes such as reverse
engineering, decryption, de-obfuscation, or code execution.
To use existing deep learning-based classification networks
to classify malware samples with an average of one mil-
lion dimensions, the size of the malware samples should be
reduced when learning the network due to computational
limitations. However, we experimentally confirm that the
downsampling process is not only prone to unintended loss
of information, but also unstable network classification per-
formance according to the interpolation option (see Figure 3).
Further, when classifying malware families using the widely
used 2D convolution filter-based network in image classifi-
cation problems, the results tended to be different from those
of image classification problems (see Table 3), which only
show the limitations of transfer learning and the need for
networks designed suitably for the specific properties of the
data. In this paper, we designed a 1D convolution filter-based
network for malware family classification and identified the
distribution of discriminant information in malware samples
through gradient analysis using Grad-CAM. Based on our
analysis of the distribution of the discriminant information,
we built a network with multi-stream for each part that
constructs the sample. As a result, we extracted composite
features that were effective for malware family classification,
thus achieving better performance in terms of accuracy and
f1-score than conventional 2D convolution filter-based net-
works. Furthermore, by using the malware sample as it is
without preprocessing, we prevented unexpected information

distortion and performed effective classification over simple
networks.

In this paper, we have found that the malware samples in
the DREBIN dataset possess two important properties that
are not typically observed in the image domain. As the first
property, because the DEX files of malicious apps come in
a very wide range of sizes, an image-based malware family
classification loses local features through resizing and the
model’s performance is sensitively changed depending on
the type of interpolation. Secondary, the models that worked
well in the image domain performed worse than the simplest
model in the Android malware family domain. Thus, the 1D
convolution filters achieves better performance than the 2D
convolution filters.

To classify Android malware families, many existing stud-
ies [9], [17], [37], [38], [40], [43] have adopted dynamic
features to represent the malicious app behaviors. Droid-
Cat [40] a dynamic malware family classifier, achieved a
high F1-score for the datasets from AndroZoo, VirusShare,
DREBIN, and MalGenome. Ficco [43] proposed a dynamic
analysis-based ensemble detector resilient to the malware
evolution, and evaluated the detector with the datasets
from DREBIN and VirusShare. However, these dynamic
approaches are not scalable due to the difficulty and overhead
of tracing many malicious apps. They can suffer from a high
false-positive rate [58].

Unlike the dynamic approaches, the static methods, includ-
ing our approach and DroidSieve [10] do not incur runtime
tracing costs and are scalable. Our approach incurs a low
overhead on testing (that is, 35 milli seconds was taken
for testing on average per app), while DroidCat [40] took
0.01 seconds for testing on average per app. In addition, our
approach does not need in-depth analysis, such as parsing the
AndroidManifiest.xml and DEX files, while DroidSieve did.

Several studies have extracted the features from the exe-
cutable code of apps [4], [9], [10], [13], [14], [37], [38]. Those
code based-features may introduce excessively detailed infor-
mation [37]. If malware writers adopt encryption or reflection
to evade static analysis, this may introduce substantial noise
into the code.

On the other hand, our approach requires only the raw byte
data of the classes.dex, Manifest.xml and certifi-
cate in each malicious app, without the need for further anal-
ysis. Therefore, even when unknown malware samples newly
appear, there is no need to convert the app to 2D array forms
of images. In particular, our approach can be used to identify
new Android malware families such as LeifAccess.

The key idea of our approach can be applied to other plat-
forms such as Microsoft Windows, even though the package
structure (APK) and executable file (DEX) format of Android
apps are different from the package structure (MSIX) and
executable file (PE) format of Microsoft Windows apps. The
reason for this is that our string-based approach only uses
the data obtained in the form of strings from specific parts of
each malicious app. That is, we can expand our approach to
other platforms only if the internal structure of each malware
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TABLE 7. Classification performance of intra- and inter-dataset experiments for the DREBIN and AMD datasets (recall/precision/accuracy) (%).

sample on the target platform is understood. However, the
part of eachmalware sample that contains themost significant
features may vary depending on the specific platform.

Another issue in classifying Android malware families
is to handle the malicious apps written with cross-platform
mobile app development tools such as Xamarin, Unity,
Cocos2D, PhoneGap, etc [59], [60]. In these cases, mali-
cious code may be located in the javascript(js) file, or asset
or lib folders of an APK, as opposed to the DEX file.
To address this problem, we plan to additionally consider the
js file, the DLL in the asset folder, and the so files in the lib
folder of malicious apps.

To classify malware samples into families based on mal-
ware images, some studies have used grayscale images [6],
[7], [11], [18] while others have used color images [5],
[8], [15]. For Microsoft malware family classification, [18]
used grayscale images while [8] and [15] used color images.
Fu et al. [15] expanded grayscale images to color images, and
they discovered that the visualization results of their samples
were slightly different from the results of [18]. According
to the existing study [8] that classified Microsoft malware
families based on color images, malware images in color
achieved better accuracy than grayscale malware images.

Kumar et al. [61] presented an Android malware detection
method that transformed APK files into grayscale, RGB,
CMYK and HSL images, and they extracted GIST feature
from the four types of images respectively. They classi-
fied suspicious apps as benign or malicious using the three
classifiers of RF, kNN, and decision tree (DT). Among the
four image formats and the three classifiers, RF achieved
the best performance with the grayscale images. Meanwhile,
Fang et al. [5] classified Android malware families by con-
verting DEX files into RGB images as well as obtaining plain
text from the DEX files. They reported that the grayscale
image has single characteristics while the RGB image have
more features than the grayscale image [5].

When considering all the above studies, it is not clear
which kinds of images are the most effective for Android
malware analysis.

However, in our experiments using Grad-Cam, we found
that among the various parts constituting the APK,
there is a greater amount of identification informa-
tion in AM, Cert.RSA, proto_ids, class_defs,
string_data_item and code_item. We also found
that by using only the parts with a lot of discriminant infor-
mation, we could simultaneously increase the classification
performance and reduce the inference time

Table 7 presents a comparison of our work with the state-
of-the-art Android malware family classification studies.

TABLE 8. Comparison of our method with previous studies.

In our work, the 1D convolution filter-basedmodel performed
well on comparison to various 2D convolution filter-based
models.

Meanwhile, the CR+AM image-based CNN-SVM model
performed well compared to a generic CNN model. Our
findings differ from those of the study with SARVOTAM [6]
where the CR+AM image-based CNN-SVM model showed
better performance than othermodels such as CNN,CNN-RF,
and CNN-kNN.

If malware writers simultaneously distribute each mal-
ware instance in a simple form as well as an obfuscated
form, then the images between the simple and obfuscated
versions can differ. In this case, the malware image-only
approach may not be effective. One solution to this is to
introduce another features which is resilient against obfus-
cation/packing/encryption attacks, then combine the features
with the malware images. Examples of obfuscation-resilient
features are the use of security-sensitive API including
reflection-based features as well as the use of code features
extracted from native binaries of apps [39].

We dealt with the sustainability problem by conducting
intra- and inter-dataset experiments on both DREBIN and
AMD datasets. The AMD dataset was collected over more
extended periods than the DREBIN dataset. In the inter-
dataset experiment, we have found that the feature extraction
model learned with the AMD dataset performed better than
the model learned with the DREBIN dataset. This shows that
the AMD dataset is more suitable for longitudinal and evolu-
tionary studies than the DREBIN dataset. The generalization
performance is improved when the variation information of
malware samples of the AMD dataset is learned.

VI. CONCLUSION
This paper has adopted a 1D convolution filters for the goal of
classifying Android malware families. Our approach receives
input data in the form of strings from each part of the manifest
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file (AM), certificate file (CR), and the sections of executable
code (CL) in every malicious app, then connects the data in
series and builds a 1D convolution filter-based deep learning
model, at which point it can finally classify malicious apps
into related families.

We have observed that the Basic-1D-CNN with a low net-
work depth and small parameters show higher performance
than 2D CNN based models (SARVOTAM, EfficientNetB0,
Vgg16, ResNet50, Inception-V3, and LeNet).

We created a model with 24-convolution layers and
2-dense layers for a total of 26 layers.

According to the experimental results, the 1D convolu-
tion filter-based classification network with multi-streams
achieved the highest accuracy with 93.2%. In particular, the
1D convolution filter-based model takes over 23 times more
inference time than the 2D convolution filter-based model,
but its performance is better than those of other models.
Specific parts in an app, such ascode_item andAM, contain
the most effective features for classifying malware families.

Finally, we have compared our approach with state-of-
the-art approaches to Android malware family classification.
Our approach does not require domain expert knowledge and
feature engineering such as disassembling, de-obfuscating,
and decrypting of executable code of Android apps. Further,
our approach uses static analysis that, incurs less overhead,
compared to dynamic analysis which needs direct execution
and as well as expensive computation.

In the future, we intend to consider a case which even
includes malware families of very small sizes (e.g., the num-
ber of samples in a family < 10), and to explore a data
augmentation technique to augment minor class to overcome
imbalanced data.
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