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ABSTRACT Nowadays, quantum-enhanced methods have been widely studied to solve machine learning
related problems. This article presents the application of a Variational Quantum Classifier (VQC) for binary
classification.We utilized three datasets: a synthetic dataset with randomly generated values between 0 and 1,
the publicly available University of California Intelligence Machine learning (UCI) sonar dataset consisting
of mining data, and a proprietary diabetes dataset related to diabetes with acute diseases and diabetes without
acute disease. To deal with the limitation of noisy intermediate-scale quantum systems (NISQ), we used a
pre-processing method to enhance the prediction rate when applying the VQCmethod. The process includes
feature selection and state preparation. Quantum state preparation is critical for obtaining a functioning
pipeline in a quantum machine learning (QML) model. Amplitude encoding is a state preparation approach
that enhances the performance of data encoding and the learning of quantum models. As a result, our
proposed methods achieved accuracies of 75%, 71.4%, and 68.73% by using VQCmodel and in contrast, the
amplitude encoding-based VQC achieved 98.40%, 67.3%, and 74.50% accuracies on the synthetic, sonar,
and diabetes dataset, respectively.

INDEX TERMS Quantum machine learning, state preparation, amplitude encoding, variational quantum
classifier and T2DM diabetes.

I. INTRODUCTION
Machine Learning (ML) is predominantly in the artificial
intelligence domain, such as computer vision, image recog-
nition, natural language processing, healthcare, and many
other applications [1], [2]. Quantum Computing (QC) related
research has expanded rapidly in recent years. Despite the
fact that, at the present QC is limited by Noise Intermediate-
Scale Quantum (NISQ) devices, it could potentially surpass
the performance of a classical computer in certain ML appli-
cations [3].

Quantum Machine Learning (QML) [4] is an emerg-
ing interdisciplinary research field that combines quantum
physics and ML [5]. The use of QML improves the perfor-
mance and speeds up the data processing on QC [6], [7].
However, the limits of the learning capacity of a modern-day
machine are solely determined by polynomial computing
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time [8]. Thus, it is essential to reduce the complexity
of quantum algorithms to obtain a reliable results. There
are four possible approaches in QML based on data and
the correspondent processing device, whether classical or
quantum [9].

MLmethods, such as Support VectorMachines (SVM) [10]
have been widely explored as a supervised learning task
on various datasets and have demonstrated better perfor-
mance with the kernel-based approaches [11]. The variational
quantum classifier (VQC) is widely used for classification
problems in the NISQ device [12]. There are several ways
to classify well-known supervised QML algorithms, such
as QSVM and VQC. Numerous efforts have been taken in
this domain based on quantum-inspired neural networks [13]
and have been related to the applications, such as hybridized
low-depth VQC classification methods with simple error-
mitigation [14] and pre-processing methodologies such as
Principle Component Analysis (PCA) [15], resulting in an
improvement in performance for categorization.
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In QML, state preparation is critical for pre-processing
and encoding the classical data into a Quantum state. This
process reduces experimental overhead in terms of resources
and assists in avoiding of non-linearities in data [5], [16],
allowing linear classifiers and kernel-based techniques to
perform better in terms of predictions [17], [18], as well as
the use of near-term Quantum processors with exponential
speedup in such methods like QSVM [19]. One literature
has presented the benefits of utilizing quantum algorithms in
the ML approach, for instance, being a quadratically reduced
query complexity in closest neighbour classification when
compared to traditional algorithms [20]. Data encoding is a
key component of state preparation, whereas the amplitude
encoding technique converts classical data into the amplitude
of the essential QC component, better known as a qubit.
The qubit is the quantum equivalent of the binary bit and
is denoted by |ψ〉. Amplitude encoding as an emerging data
encoding technique, which encodes and decodes data without
loss.

Quantum Computing methods have been applied on
well-known and real datasets. For instance,
D.Sierra-Sosa et al. [21] employed the state preparation
approach on synthetic data for different QML algorithms
such as Quantum Conventional Neural Network (QCNN),
Hybrid angle encoding, and hybrid amplitude encod-
ing to solve the binary classification problem by uti-
lizing the TensorFlow Quantum system. They compared
hybrid angle encoding to hybrid amplitude encoding. The
best accuracy of which is 97.4% has been achieved by
the utilization of the hybrid amplitude encoding model.
S. Chakraborty et al. [22] presented a hybrid quantum fea-
ture selection algorithm (HQFSA) model that uses quantum
parallel amplitude estimation and amplitude amplification
to solve the binary classification problem for the UCI
sonar dataset and compute the computing power, and
they achieved overall 74% accuracy on HQFSA model.
D.Sierra-Sosa et al. [23] have developed a pre-processing
pipeline technique that uses feature scaling, feature selection,
ellipsoidal coordinate map, and stoke parameters to use
VQC to determine whether diabetes is associated with acute
illnesses. In that article, they examined the normalized and
zero standard deviation, ellipsoidal transform, and Poincare
sphere in the domain of VQC by using the two features
and three features diabetes mellitus dataset. They obtained
72% accuracy using the Poincare sphere. H.Gupta et al. [24]
used the Exploratory data analysis (EDA) and pre-processing
approach which was utilized for data scaling, they applied it
to the VQC, root mean square propagation (RMSprop) and
Deep Learning (DL) models for binary classification with
the PIMA diabeties dataset. In that research, they evaluated
RMSprop by utilizing back-propagation and VQC model.
In terms of over accuracy, the DL model outperformed the
VQC model. D.Maheshwari et al. [25] employed the clas-
sical and quantum algorithms. To use ensemble methods
to build a voting model for the prediction of diabetes with
acute illnesses and compute the computational time using

DWave System’s QPU [26]. In that study, they contrasted
the traditional voting model to the hybrid New Model voting
method. They obtained approximately the same accuracy on
both models, but the hybrid new model was 55 times faster
than the classical voting model. Thus, there is a great need
to analyze real-world applications of QML, which motivates
future studies in this field to utilize quantum characteristics
in real-world applications. However, while exploring the
potential of QML algorithms, it must be considered that
these algorithms may not provide a competitive edge over
the classical equivalents. Moreover, knowing the research
gaps, this consideration is essential in the development of
contemporary quantum technology.

Considering the potential of QML, this article presents
binary classification based on the synthetic, sonar, and dia-
betes datasets. The diabetes dataset is the primary focus of
this study. Diabetes is the sixth most prominent cause of
death worldwide, but Type 2 diabetes mellitus is a severe
public health concern with a significantly growing problem
for the world [23], [25], [27]. Around 463 million people
have diabetes, 232 million have undiagnosed diabetes, and
4.2 million people died due to the symptoms that stemmed
from diabetes in 2019 [25], [28]. There have been various
studies conducted to effectively, detect and identify the exact
type of diabetes.

This paper aims to assess and compare the performance of
two QML methods analyzed using three datasets: a synthetic
dataset, a publicly available dataset, and a private dataset. 1)
We present a pre-processing approach for mapping data into
quantum states, in order to conduct quantum classification.
Specifically, this method is focuses on improving data encod-
ing methods outlined by [12], using the IBM Qiskit frame-
work [29]. 3) The amplitude encoding technique assisting to
enhance the performance of the VQC model. 4) Compared to
the work mentioned above, we perform several experiments
using the same features and parameters with VQC, including
basis encoding VQC and Amplitude encoding based VQC.

This paper is split into four sections. Section I covers the
basics of QC, QML, and VQC. Section II reports Materi-
als and methodology, Pre-processing and state preparation,
Section III has briefly described QSVM and VQC, while
Section IV discusses the reports and findings. Finally, the
conclusion is provided in the final section.

II. RELATED WORK
We present the materials in this subsection, including datasets
and the emphasised traditional ML pre-processing tech-
niques.

A. MATERIALS
This research is based on three datasets: a synthetic dataset,
a publicly available dataset, and a private dataset, namely the
Synthetic dataset, the (UCI) Sonar dataset, and the Diabetes
dataset. This research aims to effectively perform binary
classification using VQC models based on these datasets
mentioned in Table 1.
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TABLE 1. Datasets attributions.

The first benchmarking dataset used in this research, a syn-
thetic dataset, is employed to evaluate the performance of
the models. The eVIDA research group created the synthetic
dataset. The primary motivation for creating a dataset was to
have high properties of separable data points, following the
probability density function of a Gauss distribution with a
variance of 1 and a different mean for every feature. A bal-
anced dataset with 500 samples and 25 attributes, 250 sam-
ples of 0 and 250 samples of 1 are use to determine the binary
classification.

The second dataset used the publicly available UCI Sonar
dataset, introduced by P.R Gorman et al. [30] for the binary
classification task. The UCI Sonar data was obtained from
208 different rock andmetal cylinder shapes and the bouncing
sonar frequency at different angles, which are under various
conditions. It is a balanced dataset containing 208 samples
and has 60 attributes. It carries 111 metal cylinder samples
and 97 rock samples used to determine rock and metal.

We have made use of Osakidetza electronic health
records (EHRs) of the Diabetes dataset as a significant focus
of this study. In addition, the PRESTDatabase (DB) is used to
get information on analytical and clinical data for this study.

In the diabetes dataset, classes are separated using the
International Classification of Diseases (ICD-9-CM), and the
drug encoding scheme is the anatomical, therapeutic, and
chemical classification system. The PREST (the Stratifica-
tion Program’s Database) was created in 2010 to categorize
Basque citizens using the Johns Hopkins Adjusted Clinical
Groups case-mix approach [31]. The preceding bibliography
provides a more comprehensive insight [32]. Although type
2 diabetes can develop at any age, it is more common in
those over the age of 40. Therefore, individuals under the age
of 35 were excluded. There were 12 months of successful
periods formed and accomplished (year 1: from September
2007 to August 2008; year 2: from September 2008 to August
2009; year 3: from September 2009 to August 2010; and year
4: from September 2010 to August 2011). A patient was con-
sidered to have Type 2 diabetes mellitus (T2DM) throughout
the illness on a specific date before the chosen end-point
(i.e., prior to 01–09–2007, or preceding 01–09–2008, and so
on). Furthermore, the patient was expected to have public
insurance at the start of the calendar year but was not required
to have it for the entire calendar year. As a result, many
individuals have been diagnosed with T2DM. There were
116,295 people in year one, 123,991 in year two, 130,554
in year three, and 134,421 in year four. The total number of
T2DM samples investigated was 149,015 [25], [27].

The diabetes dataset contains variables such as the patients’
age, hemoglobin, retinopathy, and John Hopkin Aggregated
Diagnosis Groups (ADGs). It may be noted that the rela-
tionship of these parameters with T2DM is not reflected.
To demonstrate the prevalence of complications, a mini-
mum primary dataset and hospital records were used. These
variables are included in the diabetes database. Hospital
admissions due to acute myocardial infarction (MI), major
amputation, or unnecessary hospitalizations, also known as
ambulatory care sensitive conditions (ACSC) which were
identified independently for each observation period. A list
of 52 medical problems was created to evaluate the acute
diseases, and precise criteria were set to consider those
active diseases between the dates of September 2010 and
August 2011, using a methodology previously described by
the authors [25], [27].

Diabetes mellitus was not one of the 52 stated health
conditions. Furthermore, this set of data was divided into
two parts: a) related acute comorbidities, which include seven
diseases such as ischemic heart disease, renal failure, stroke,
heart failure, peripheral neuropathy, foot ulcers, and diabetic
retinopathy, and b) unrelated acute diseases, which follow the
other 44 health problems listed. Thus, the raw DB was made
up of 321 variables.

B. METHODS
The limitations of existing NISQ devices create constraints
on QML techniques. For example, several proposed QML
applications have recently been dependent on exploiting pub-
licly well-known datasets, despite the relatively standard pre-
processing methods. These methods are not always appropri-
ate for sufficient data to be prepared by Quantum Classifiers
when working with real datasets. In this research, a pre-
processing method is proposed, as illustrated in Figure 1,
which encodes the data before implementing it into QML
algorithms.

1) PRE-PROCESSING
The Feature Selection (FS) technique is extensively used in
ML and DL [33] to select the best features from the set of fea-
tures that allows effective prediction of the outputs. Thus, the
FS method helps to enhance the performance of the model.
The feature realm has increased from a few to several features
used in ML applications. There are several methods designed
to tackle the problem of reducing irrelevant and excessive
features. A reduction of features assists in perceiving themost
relevant data and overcoming the excessive feature problem
that affects the model’s performance [34].

In this manuscript, three ML classifiers are employed:
1) Random forest (entropy-based)
2) Logistic regression (on a logit basis)
3) Support vector machine (Linear Kernel-based)
These three classifiers are widely used in various appli-

cations. However, working with different classifiers always
problems of posed entropy. To avoid the entropy problem,
we use entropy-based classifiers [35]. These classifiers select
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FIGURE 1. Feature Selection Flow diagram.

the best features from an individual classifier’s training and
extract the features.

The Recursive Feature Elimination (RFE) selection tech-
nique is fundamentally a recursive/cursive method that sorts
the features according to their importance [36]. RFE provides
an external estimator that assigns weights to the features.
A random forest classifier with RFE is used to classifier and
tune some parameters, including the number of estimators
and maximum depth. Logistic regression with RFE uses the
Broyden Fletcher Goldfarb Shannon (LBFGS) solver as an
estimator and tunes the number of steps and volume. Sup-
port Vector Regression with RFE, uses a linear kernel and
a gamma parameter. These classifiers are trained individu-
ally and they create a set of features. We have employed
the intersection technique, which includes standard features
in the individual classifiers provided, these three classi-
fiers extracted the eight important features from all datasets,
including the synthetic dataset, the sonar dataset, and the
diabetes dataset, as illustrated in Figure 1.

Following the FS method, which transforms the raw data
into a practical and straightforward format in subsequent
steps, in the next step, the data is normalized using the min-
max technique. As a result, the data will be in the range of
0 and 1, which reduces the training time of models. Here, 0
and 1 represent the maximum and minimum values of each
feature, respectively [12], [22].

Xnorm =
X − Xmin

Xmax − Xmin
(1)

2) STATE PREPARATION
State preparation is a need in QML to prepare data for pro-
cessing. For example, a typical classification of the function
in supervised learning calculates the function f to map the
input data x and the output labels y to become y = f (x).
The fundamental goal of classification is to improve the

accuracy of prediction models. The binary classification B =
{c1, c2, . . . , cn}, where B is the target label and a collection
of data in the training phase such that it may be represented
in the traditional ML domain as [37].

D = {(x1, y1), . . (xi yi), . . (xn, yn)} (2)

In above xi is some of the features (n) on the properties of the
order of data point i and yi is the corresponding data point.
In the case of binary classification yi ∈ {c1, c2}, where xi ∈
Rd and d is real-valued features. To illustrate the framework
to analyze in the QML domain, we first should transform
classical data to quantum data, represented in training data
[37].

Fn = {( |ψ1〉, y1), . . . ( |ψi〉, yi), . . . , ( |ψn〉, yn)} (3)

where |ψi〉 represents the quantum state of Fn, |ψi〉 ∈ C2d

and yi ∈ {c1, c2} in the case of data stratification. There are
several techniques to embed the classical data into quantum
data into high dimensions. There are two ways to implement
this viz -a -viz Basis encoding and Amplitude encoding.

a: BASIS ENCODING
Basis encoding is the most common technique to embed
classical data into a quantum state. This technique has a
relationship between n-bit classical datapoints and the com-
putational basis of n-qubit datapoints, such as the classical
data (1001) encipher to four qubits |1001〉 quantum data, via
following equation [38].

|D〉 =
1
√
M

M∑
m=1

|xm〉 (4)

whereas, D is classical data, D = {x1, x2, . . . .., xM }
that creates binary vector, xm = {bm1 , b

m
2 , . . . b

m
N }, b

m
i ∈

{0, 1}, i ∈ { 1, 2, . . . .,M} andM is the number of attributes.

b: AMPLITUDE ENCODING
The fundamental concept of amplitude encoding is the cou-
pling of classical data with quantum state amplitudes. A nor-
malized classical vector is shown in the following equa-
tion to encode classical data string to quantum amplitude
string [38], [39].

x =


x1
x2
.

.

xnn

 (5)

whereas, x is a normalized classical string, x ∈ 6C2n , C is
complex numbers. Generally, quantum state amplitudes can
be encoded by the following equation [38], [39].

|ψx〉 =

2n∑
i=1

xi|i〉 (6)

where |ψ〉 ∈ Hilbert space (H) and
∑

i |xi|
2
= 1.
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FIGURE 2. Amplitude Encoding VQC Circuit.

For this approach, prior to creating the amplitude encoded
states, the data is transformed to their angle depictions using
multi-controlled rotations executed. Where the angle θ is
created, the dataset vector xi can be used to denote the ith

attribute, and β is the angle based on the arcsin of the set of
parameters in the probability distribution. As a result, there
is a correlation between the number of dimensions in the
specimen and the angles used to communicate the sample’s
characteristics [21], [38].

|ψ〉 = R (xi, β) |q1 . . . qs−1〉 |qs〉 (7)

The state |ψ〉 is configured in a parallel circuit. The Ry
gates rotations are implemented so that nRy operations gates
are performed, where n is the binary influence for encoding a
feature vector xi [21]. The primary benefit of this encoding is
that it requires only n qubits for an array of p = 2n elements.
This indicates that if a quantum method is polynomial of n
dimensions and its latency will be polylogarithmic in relation
to data dimension. Mottonen et al. [39] presented a potential
approach for amplitude encoding, which is employed for
studies in this research. The objective of this method is to
map any state |x〉 to the ground |0 . . . 0〉 [40]. After obtaining
the circuit, all procedures are flipped and executed in reverse
order, as shown in Figure 2.

III. QUANTUM MACHINE LEARNING ALGORITHMS
The quantum support vector machine and the variational
quantum classifier are the two most commonly used super-
vised QML algorithms. In this work, we are considering both
of these QML algorithms, which are briefly discussed below.

A. QUANTUM SUPPORT VECTOR MACHINE
The Support Vector Machine (SVM)[11], [41] is a supervised
ML technique that can perform binary or multiclass classi-
fication. SVM separates the two data groups by drawing a
line between them and separating the data as accordingly.
In some cases, complexity can occur. Sometimes, a line can-
not distinguish the data effectively when the line is highly
non-linear. SVM aims to discover the relevant variablesw and
b, which precisely fit the data points with tags y = 1 and
assured wx + b > 1 and the datapoints y = −1 assured
wx+b < 1. Additionally, the margin between the hyperplane
2
||W || is maximized as shown in Figure 3.
A technique called the kernel method [19], [20] is used,

which comprehends using a feature map to plot the data into
a higher space, where a separable hyperplane can be drawn.

FIGURE 3. Support Vector Machine.

The numerical form of the optimization plight looks
identical to the quadratic equation with linear restrictions,
minw,b ||w||2 such that yi(wxi + b) ≥ 1, i = 1 . . . ..N .
The minimizing of the optimization problem is the same as
the minimization of its dual issues. The dual problem has the
form with constraints 0 ≤ αi ≤ C and

∑
i αiyi = 0.

The most significant advantage of this formulation we
will seen shortly, when its quantum counterpart will be
introduced [11], [19].

max
αi

∑
i

−
1
2

∑
j, k

αi αkyjyk
(
xTk xk

)
(8)

Although data points are not linearly divisible, we imple-
ment the kernel method to distinguish the data. First, the
data points are deep-seated in 2-dimensional space with the
map φ : x → (x, x2), which guides a simple linear
segregation problem in this technique. Then, enumerating the
scalar product xTk xk is all that is required in this framework.
Furthermore, we encoded the data points that followed the
pattern φ

(
xTk ) φ(xk

)
and elaborated on the advantages of the

dual configuration.
The QSVM is another approach that is known as a

quantum-enhanced technique [11], [20] because the quantum
algorithm is classical, mainly with some operations executed
by a quantum processor. However, QSVM works in the same
way as SVM does.

The QC converts the classical sample points Ex into quan-
tum variables |φ(Ex)〉. A unitary gate is appropriate for the job
since it spins the qubit to a specific value Uφ(Ex)|0〉, where
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FIGURE 4. Variational Quantum Classifier.

φ(Ex) is an arbitrary classical function applied to the classical
data x. In order to obtain a classical value of 1 or -1 for each
classical input, we perform measurement operation, which
depends on generalized quantum circuit W (θ ). As a result,
we can confidently assert that these test datasets are associ-
ated with the relevant labelled data. Such procedures define
W (θ )Uφ(Ex)|0〉 as an ansatz for this type of classification.

B. VARIATIONAL QUANTUM CLASSIFIER
The Variational Quantum Classifier (VQC) is a key QML
algorithm to classify physics events of interest from back-
ground events. It is a supervised QML algorithm that is
widely used for classification problems in the NISQ device.
Havlicek et al. [12] proposed the VQC model, which enables
us to get exploratory findings on NISQ devices without the
need for extra error-correction approaches. The cost func-
tion is calculated using iterative device measurements, which
helps to mitigate errors by integrating noisy data in the opti-
mization computations [21], [23]. This quantum method uses
the mapping of classical input data to an increasingly ample
quantum feature space, which is based on quantum circuits
that are difficult to mimic conventionally.

VQC starts with the initial state preparation of QML prob-
lems, in which various feature mapping techniques embed
classical data into quantum computing. The variational circuit
or ansatz, equal to the number of measurements and dimen-
sions. Finally, the measured value is transmitted to a circuit as
feedback to improve the variational circuit’s trainable param-
eters, as shown in Figure 4.While optimization is not a part of
Quantum circuit, classical optimizer is a part of it. The VQC
algorithm has a training stage and a testing stage.

1) FEATURE MAP
The key concept behind quantum feature mappings [12], [13]
is derived from the conventional machine learning kernel
technique, in which a dataset is non-linearly mapped into a
higher-dimensional space in order to find a hyperplane that

classifies non-linear data [12], [23].

U8(x) =
∏
d

U8(x)H⊗n U8(x)H⊗n (9)

For Instance, a quantum feature map φ (Ex) is a map from
the classical feature vector |φ (Ex)〉 〈φ (Ex)| the quantum states,
a vector in Hilbert space [12]. By applying the unitary opera-
tion on the initial state, we have now blown up the dimension
of our feature space (Zi), and the task of our classifier is to
find a separating hyperplane in this new space.Which contain
the layer of Hadamard gates (H ) interleaved with entangling
blocks encoding the classical data and depth (d) of the circuit
by the following equation [12], [23].

U8(x) = exp

i ∑
S⊆[n]

φS (x)
∏
k∈S

Zi

 (10)

The number of qubits required is proportional to the dimen-
sion of the data. The data is encoded through the unitary gates
U8(x) by varying the angle to a particular values. We used
several feature maps in this classification, such as FirstOrder-
Expansion, SecondOrderExpansion, and SecondOrderPauli-
Expanssion.

Encoding methods for various feature maps are as fol-
lows [12], [17], [19].

FirstOrderExpansion

φS x 7−→ xi (11)

SecondOrderExpansion

φS : x 7−→ (π − xi) (π − xi) (12)

SecondOrderPauliExpanssion

φS : x 7−→ sin (π − xi) sin (π − xi) (13)

The quantum advantage comes into the picture when we
use non-classically simulated quantum feature maps over
feature maps that can be simulated on classical computers.

2) VARIATIONAL CIRCUIT
The main idea in this approach is to optimize the parameters
using an objective function as a guide. The quantum and clas-
sical phases are the two distinct phases of variational quantum
circuits, as shown in Figure 6. That process comprises state
preparation, the variational quantum circuit parameterized
input x based on the number of parameters θ and measure-
ment [12]. The output of the circuit, the objective function,
and the learning algorithm are all part of the classical phase.
The optimization techniques such as constrained optimiza-
tion by linear approximations [42] estimates the VQC as
shown in Figure 5. In addition, the variational circuit is
utilized to solve complex optimization issues [12], [23]

|ψ(x : θ )〉 = U (θ ) |φ(x)〉 (14)

For parameterized variational circuit with interlinking
parameters Ry, Rz gates and entangles with CNOT gate.
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FIGURE 5. A typical VQC full circuit with feature map and variational form.

FIGURE 6. An encoding circuit with CNOT, RY and RZ gates.

3) MEASUREMENT
The next phase is the measurement stage, which assesses the
class possibilities by carrying out a decisive measurement.
It is the same as taking many samples from a distribution
of potential computational base states and calculating the
average value. Then, for an elaboration of the final purpose
circuit, we have PauliFeatureMap and a variational circuit,
EfficientSU2, with the depth of circuit is 2. Finally, to design
a simple schematic diagram of the entire model, as shown in
Figure 5.

The goal of training is to determine the values of parame-
ters that will optimize a particular loss function. We can opti-
mize a quantum model similarly to optimize a conventional
neural network [43]. In both situations, we run the model
forward and determine the loss function. Since a quantum
circuit’s gradient [21] can be computed, we may update our
trainable parameters using gradient-based optimizationmeth-
ods as a loss function during training. Using this method,
we can determine the distance between our predictions and
the truth, expressed by a loss function value.

4) OPTIMIZATION
The parameters of the quantum variational circuit are updated
using a optimization routine once the measurements are
ready. The classical loop trains our parameters until the cost
function’s value decreases.

a: CONSTRAINED OPTIMIZATION BY LINEAR
APPROXIMATIONS
The Constrained Optimization by Linear Approxima-
tions (COBYLA) optimizer [42] generates sequential linear
assumptions of the cost function and impediments using
an n + 1 fundamental (n is the number of features) and
improves these assumptions in a trusted region at each stage.
In addition, the COBYLA scaffolds balance impediments by
converting them into two different impediment variations.

C. EVALUATION OF CLASSIFIERS
The performance of our models is evaluated using conven-
tional evaluation matrices such as gradients mean and vari-
ance, precision, recall, accuracy, and f1-score, which are
provided in eq [15]–[19].

θt+1 = θt −
η√
v̂t + ε

m̂t (15)

The optimizer utilized the COBYLA optimizer, with a
learning rate of η = 0.0001. Whereas, the previous gra-
dient θt , the current gradient θt+1 of the optimizer. For the
loss function, Whereas, mt weight and vt momentum being
approximations of the gradients mean and variance.

Precision =
TP

TP + FP
(16)

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

f 1−Score = 2 ∗
TP

2TP + FP + FN
(18)

Recall =
TP

TP + FN
(19)

In the above equations, true positive is represented by TP,
false positive by FP, true negative by TN , and false negative
by FN [21], [44], [45].

IV. RESULTS & DISCUSSION
The training data are used to develop each classifier, and
the test examples are used to compare the classification
model’s predicted labels to known test tags. For example, the
labels ‘‘0’’ and ‘‘1’’ represent negative and positive values,
respectively. To distribute our testing and training samples,
we divided our complete database into 80% for training and
20% for testing, preserving the same subcategory percentage
in each subgroup (50 percent of 0 and 50 percent of 1). In the
study, ML and QML methods such as SVM, QSVM, and
VQC are utilized to solve a binary classification problems on
three distinct datasets.

A. SYNTHETIC DATASET
The performance of our proposed models, including SVM,
QSVM, VQC and amplitude encoding VQC on the synthetic
dataset, are depicted in Tables 2 and 3.

The classical SVM achieved 100% accuracy in the syn-
thetic dataset, and quantum algorithms such as QSVM and
VQC reached 94% and 75% accuracies, respectively.
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TABLE 2. Performance of SVM, QSVM and VQC for all datasets.

TABLE 3. The accuracy of the proposed model against the selected
number of epochs.

The VQC Model is implemented using the amplitude
encoding method on the synthetic dataset which achieved
98.40% testing accuracy with a depth of 5 layers and
100 epochs, as depicted in Figure 7.

We compared the outcomes of synthetic dataset to previous
studies with complicated designs. D.Sierra-Sosa et al. [21]
used the Amplitude-Hybrid model to predict negative and
positive classes on a synthetic dataset and achieved a max-
imum accuracy 97.4%, respectively. Even though this study
used the TensorFlow Quantum Amplitude Hybrid model on
the Google Cirq quantum system, the results were positive.
However, in contrast to our technique, the VQC method
achieved 75% accuracy, whereas the amplitude encoding
based VQC method achieved 98.40% accuracy.

In favourably compares SVM, QSVM, VQC and ampli-
tude encoding VQC in terms of accuracy, recall, precision,
and F1-score. However, the overall accuracy of SVM is out-
shined by the QSVM, VQC, and amplitude encoding VQC.
The SVM achieved 1.6% more accuracy than amplitude
encoding based VQC model. Eventually, amplitude encod-
ing VQC achieved almost the same accuracy as a classical
algorithm (SVM).

In conclusion, our Amplitude encoding model produced
substantial results on the synthetic dataset and was competi-
tive with recently published research, as shown in table 4.

TABLE 4. Comparative study of Synthetic dataset.

FIGURE 7. The accuracy of the proposed model against the selected
number of epochs.

B. SONAR DATASET
The performance of the employed models, including SVM,
QSVM, VQC and amplitude encoding VQC are summarized
in Tables 2 and 3.

In the Sonar dataset, the conventional SVM had an accu-
racy of 85.71 percent. In contrast, quantum techniques like
QSVM and VQC had accuracies of 76.19 percent and
71.4 percent, respectively

The VQCModel is implemented on the sonar dataset using
the amplitude encoding approach, with a depth of 5 layers and
100 epochs. As a result, the testing accuracy is achieved as
67.30%, as shown in Figure 7.
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TABLE 5. Comparative study of Sonar dataset.

We compared the competitiveness of our research
work conducted on the sonar data to some recent
published work using advanced designs. For example,
S. Chakraborty et al. [22] utilized a hybrid quantum fea-
ture selection algorithm (HQFSA) to forecast metal and
rocks, achieving an accuracy of 74% on a sonar dataset
containing 60 features. Although, using quantum parallel
amplitude estimation and amplitude amplification. While our
VQC approach obtained 71.43% accuracy and the amplitude
encoding VQC technique achieved 67.3% accuracy.

The comparison between SVM, QSVM, VQC and ampli-
tude encoding VQC is favourable and effective in perfor-
mance evaluation. SVMoutperformed the efficacy of QSVM,
VQC, and amplitude encoding VQC in terms of precision,
recall, F1-score, and overall accuracy. As a result, the SVM
was 18.41% more accurate than VQC model based on ampli-
tude encoding.

In conclusion, our Amplitude encoding model produced
substantial results on the Sonar dataset and was competitive
with recently published research, as shown in Table 5.

C. DIABETES DATASET
Performance metrics of our models of SVM, QSVM, VQC
and amplitude encoding VQC performance metrics are pre-
sented in Tables 2 and 3.

Using the diabetes dataset, the classical SVM obtained
75.32% accuracy, while the quantum models, QSVM and
VQC recorded 74.19% and 68.73% accuracies, respectively.

The amplitude encoding technique is implemented on
VQC using Diabetes dataset, which has depth of 5 layers
and 100 epochs, the validation accuracy achieved 74.5% is
depicted in Figure 7.

We evaluated the competitiveness of diabetes outcomes
to previously presented studies with advanced designs.
D.Sierra-Sosa et al. [23] utilized the VQC model to predict
diabetes with acute disease and reached a maximum accuracy
of 72% on the Diabetes dataset with three variables. Despite
the use of three separate attention processes in conjunction
with the VQC model, the results of this investigation were
satisfactory.
H. Gupta et al. [24] employed the VQC model to predict

related to diabetic disease using the Diabetes dataset, and
they obtained a maximum accuracy of 74%. Regardless, the
study employed PIMAdiabetes data, which only includes one
type of pregnancy diabetes. On the other hand, our diabetic
dataset covers T2DM along with a variety of acute illnesses,
demonstrates its robustness of the data.
D.Maheshwari et al. [25] predicted Acute diabetic mor-

bidity on a diabetic dataset using the QBoost and Voting
model, with a maximum accuracy of 68.3%. Despite the fact

TABLE 6. Comparative study of Diabetes dataset.

that the DWave system was utilized to merge two different
attention processes with the QBoost and voting models in this
investigation, the findings were promising. On the other hand,
our VQC approach achieved 68.73% accuracy and amplitude
encoding based on VQC technique reached 74.50% accuracy.

In order to compares SVM, QSVM, VQC and amplitude
encoding VQC in terms of accuracy, recall, precision, and F1-
score. SVM has performed slightly better than QSVM, VQC,
and amplitude encoding VQC in terms of overall accuracy.
The SVM achieved 0.82% more accuracy than amplitude
encoding based VQCmodel. Eventually, amplitude encoding
VQC achieved almost the similar accuracy as a classical
algorithm (SVM).

In summary, as shown in Table 6, our Amplitude encoding
model produced substantial results on a diabetic dataset and
was competitive with recently published studies.

V. CONCLUSION
In this article, we implemented the VQC model using basis
and amplitude encoding techniques. We used amplitude
encoding, therefore which should not be the only evalua-
tion optimization, we used to improve a quantum frame-
work. Furthermore, state preparation is simply one aspect of
QML algorithms to benefit from, whether implemented into
a quantum system. We suggested a pre-processing approach
for improving the quantum state preparation for VQC. Our
results showed VQC achieved 75%, 71.4%, and 68.73%
efficiencies, Similarly amplitude encoding VQC performed
98.4%, 67.30% and 74.50% accuracies on the synthetic,
Sonar, and Diabetes datasets, respectively. As a consequence,
all the databases perform in conformity well with basis and
amplitude encoding based VQC. The use of amplitude encod-
ing VQC improved prediction rates for synthetic and diabetic
datasets but has little influence performance on sonar dataset.
The outcomes obtained using the optimal QML model were
compared to state-of-the-art models. The comparative study
revealed that the generated QMLmodel beat all other studies.

The future direction will be to use different data encod-
ing techniques such as repeated amplitude encoding, angle
encoding, or other encoding methods to enhance the QML
models and increase the number of features to enhancing
performance relative to the established models and cutting-
edge techniques.
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