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ABSTRACT In the traditional distributed control network, due to the difficulty in detection and the ambigu-
ous defense responsibility, it is not efficient and effective to detect Distributed Denial of Service (DDoS)
attacks in the network where they are launched, which is so-called source-based defense mechanism.
Moreover, with the development of cloud computing, Internet of Things (IoT), and mobile Internet, the
number of terminals and the communication bandwidth in a single autonomous domain have increased
significantly, providing much more easy conditions for organizing large-scale botnets to launch a threatening
DDoS attack. Therefore, there is an urgent need for source-based defense against DDoS attacks. The
emerging Software-Defined Networking (SDN) provides some new ideas and advantages to solve this
problem, such as centralized control and network programmability. In this paper, we proposed a defense
method based on sFlow and improved Self-Organizing Map (SOM) model in SDN. This method consists of
an sFlow-based macro-detection, which could cover the entire network to perceive DDoS attacks, a SOM-
based micro-detection, which is used to recognize the attack traffic, and a response strategy based on the
global view given by the controller. The experimental results under open data and simulated attack scenarios
have proved the effectiveness of the proposed method, and it also has better overall detection performance
than k-means and k-medoids.

INDEX TERMS DDoS attacks detection, network security, software-defined networking, self-organizing
map, source-based defense.

I. INTRODUCTION
Most of today’s DDoS attacks achieve the malicious pur-
pose through exhausting the limited resources to disrupt the
connection or service of normal users. Attackers usually use
Botnets to launch a DDoS attack through remotely control-
ling many malware-infected machines, which is called zom-
bies, and instructing them to continuously and concurrently
send a large number of service requests to the target [1].
DDoS attacks not only hinder normal users to get legiti-
mate service, but also affect the experience of other users
on the transmission path. Therefore, an ideal defense is to
detect and filter the attack traffic at the network as close
to the source as possible. According to the classification of
defense mechanisms based on their deployment locations,
this kind of defense is called source-based defense mecha-
nism and is deployed at the source to prevent the network
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from generating DDoS attacks. The other two mecha-
nisms are called network-based and destination-based respec-
tively [2]. However, it is not an efficient and effective way
to deploy source-based defense in the traditional distributed
control network. Firstly, as the zombies are usually spread
in multi-domains, the significance of attack hiding in the
huge background traffic in a single domain is too small to
be detected, and it is also very hard to trace the source of
all zombies. Secondly, traditional defense mechanisms are
deployed near the aggregation routers at the edge of the
network. The edge-based deployment only aims to detect the
attack that passes through the protection perimeter. It usually
only defends against external attacks, but can not perceive the
inner attack that targets intra-domain systems, which is sim-
ply ignored and passed to downstream autonomous domains.
Thirdly, the responsibility of defending DDoS attacks at the
source is ambiguous. The source-based defense mainly pre-
vents the attack traffic from spreading outside a domain. It is
unclear whether the source network or the target network
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should pay for the CAPEX andOPEX. This is themain reason
why network entities usually lack the motivation to deploy
source-based defense mechanisms.

With the development of cloud computing, IoT, andmobile
Internet in recent years, the situation of defense against DDoS
attacks at the source network has changed. The need for
source-based defense mechanisms has become increasingly
urgent. According to report [3], the cloud host accounts for
up to 89% of the masters of Botnets due to the accessibility,
reliability, and low cost of the cloud platform. Moreover, the
inherent characteristics of cloud computing have objectively
led to a continuous increase in the frequency of DDoS attacks
happening in the cloud environment [4]. The on-demand self-
service of cloud service allows attackers to create a Bot-
net very conveniently and treat the malware as a service to
gain illegal revenue. It is reported that a botnet composed
of 10,000 zombie nodes only costs 1,000 US dollars [5].
Besides, in the case of multi-tenant coexistence on the cloud
platform, some internal malicious tenants can attack other
legitimate tenants, which is inside the cloud network and
very hard to be detected on the physical perimeter. On the
other hand, more than billions of IoT and mobile devices
that lack security protection have become the new breeding
ground of zombie nodes after accessing the Internet [6], [7].
These devices are easily hacked by attackers to constitute
the most powerful Botnet. The numerous zombies and broad
bandwidth mean a Botnet in a single autonomous domain
can launch a sufficiently threatening DDoS attack. By the
way, with the enforcement of network security laws and
the increase of cybersecurity awareness, network entities
should avoid becoming the source of various network attacks
as much as possible. In summary, the situation that cur-
rent defense mechanisms do not pay much attention to the
source-based can no longer meet the demands in many
emerging scenarios. Researchers need to rethink the source-
based mechanism, and use new technologies, such as SDN,
to explore innovative solutions that could avoid the disadvan-
tages in traditional networks.

SDN is a new network architecture aiming to solve the
problem that the traditional network architecture is ill-suited
to meet today’s requirements. In this architecture, the control
plane is separated from the data plane, and it is divided
into three layers: infrastructure layer, control layer, and
application layer. SDN has characteristics such as logi-
cally centralized control, global view of the network, pro-
grammability of network, etc. More details about SDN could
see the introduction in [8]–[10]. The main advantages pro-
vided by SDN in designing source-based defense mecha-
nism are summarized as follows [11]–[13]. Firstly, logically
centralized control provides the global view of the domi-
nated network, and the controller can obtain traffic statis-
tics from any node of the entire network, which is
conducive to constructing a holistic defense to avoid the
incapacity of global sense in traditional edge-based defense.
Meanwhile, centralized control also provides the possibility
for organizing intra- or inter-domain collaborative defense.

Secondly, benefiting from the programmability of network
and the abstraction of underlying details, SDN enables the
source-based defense mechanism to be developed efficiently
and run as a lightweight software on the common platform,
which greatly reduces the cost and improves the willingness
of deployment. Thirdly, flow-based programming and for-
warding enable unprecedented precision and flexibility of the
response strategy, which could minimize the impact on the
normal users when filtering the attack traffic. Based on these
advantages, it is more feasible to implement the source-based
DDoS attack defense mechanism in SDN than traditional
network.

In order to monitor the traffic and collect the customized
flow information from the entire network, the sFlow tech-
nology is used instead of directly collecting traffic statis-
tics from the controller. The sFlow means sample flow,
and it was formally proposed in 2001. It is a packet sam-
pling technology embedded in routers and switches with a
centralized control architecture. It can concurrently monitor
the traffic in wire-speed mode on all interfaces across the
entire network. The distributed agents deployed in switches
monitor the traffic passed through them to get the sampled
statistical data and then send them to a central collector.
It is also an industry-standard supported by almost all SDN
switches, so it is feasible to combine with SDN. More details
about sFlow could be seen in RFC3176 [14]. In summary,
sFlow can not only provide customized collection cover-
ing the entire network, but also has some features, such
as high scalability and low deployment overhead, that can
meet the requirements of deploying the source-based defense
mechanism.

This work proposes a novel source-based defense method
based on SDN and sFlow. Themain contributions of this work
can be summarized as:

1). A novel source-based detection method based on sFlow
for detecting DDoS attacks in SDNs. This method defines a
metric to characterize the nature of DDoS attacks and makes
decisions based on statistical theory.

2). An improved SOM model to distinguish between nor-
mal and attack traffic in real time. The model strives to reduce
the false positive errors to separate the real normal flow from
the macro attack traffic as much as possible.

3). A simple response strategy for filtering the attack traffic
as close to the source as possible. Dropping or rate-limiting
rules are issued to near the attack source according to the
global view provided by the controller.

4). Validation of the proposed method under open data and
simulated attack scenarios. The results show that the pro-
posed method works well and performs better than k-means
and k-medoids algorithms.

The rest of this paper is organized as follows.
Section 2 reviews the related works in traditional and SDN
networks. Section 3 describes the details of our proposed
method. Section 4 describes the design of experiments and
the analysis of experimental results. At last, we conclude this
paper in section 5.
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II. RELATED WORKS
In traditional networks, source-based defense mechanisms
are usually deployed at the edge routers of the local net-
work or the access routers of adjacent autonomous sys-
tems [2]. A typical defense method is to filter the packets
with the forged IP address based on the valid IP address
range at the edge routers, such as the IP source address
spoofing filtering mechanism proposed in RFC2827 [15].
Protocols specified in RFC4301 [16] and RFC4302 [17]
also proposed authentication mechanisms to identify forged
IP source address packets, but they are not widely used
due to the excessive overhead of the authentication process.
Mirkovic and Reiher [18] proposed a source-based defense
system to monitor inbound or outbound traffic and detect
DDoS flooding attack traffic through filtering the flows that
do not match the predefined normal flow models. Paper [19]
proposed a method for detecting and filtering DoS bandwidth
attacks based on recognizing the abnormal flow imbalances
of the rate of traffic between one direction and the opposite
direction. Besides, the reverse firewall [20] is also an effec-
tive source-based defense method. Compared with traditional
firewalls, the reverse firewall is mainly used to prevent illegal
packets sent from inside to outside the network. In summary,
source-based defense mechanisms are usually based on hard
decisions to filter the packet that violates specific rules. Their
development level is lagging behind other types of defense
mechanisms as they are not very efficient and effective in
traditional networks. The main reasons also include source
network lacking deployment motivation and the difficulty in
recognizing small attack flows from the huge background
traffic. However, the source-based defense is the most ideal
countermeasure against DDoS attacks, because it can prevent
them from the beginning, which not only mitigates the attack
but also avoids wasting the bandwidth.

With the development and deployment of SDN in recent
years, researchers have proposed many SDN-based defense
methods against DDoS attacks. Braga et al. [21] proposed
a lightweight detection method based on SOM and SDN.
It periodically collects the flow entry information on Open-
Flow switches to construct six new features as inputs of
the detection model, and then detects the DDoS attack
according to the clustering result. Different from the edge-
based single-point detection in traditional networks, this
method uses SDN to obtain global traffic information.
But its defects include frequent calls to get flow table
statistics through the controller introducing new vulnerabil-
ity to the network, and only detecting the occurrence of
DDoS attacks without recognizing the specific attack flows.
Xu and Liu [22] and Nam et al. [23] also proposed defense
methods based on SOM and SDN. The former used flow
intensity and flow ration asymmetry as input features, and
the latter used entropy-based flow features. Both of them
aimed at destination-based defense and can only detect the
occurrence of DDoS attacks. Sahoo et al. [24] proposed a
method to detect DDoS attacks in SDN based on an improved
support vector machine (SVM) model using flow features

obtained from OpenFlow switches in a certain time interval.
The innovation of this work mainly includes the combi-
nation of genetic algorithm and an improved kernel func-
tion with SVM to improve detection accuracy, as well as
the application implementation and response strategy based
on SDN. Haider et al. [25] proposed a deep convolutional
neural network (CNN) ensemble framework based on SDN
to detect DDoS attacks. The framework can be deployed
on any commercial SDN controller as a northbound appli-
cation. Paper [26] proposed a modular architecture based
on SDN to integrate intrusion detection system (IDS) with
different machine learning models, including decision tree,
random tree, random forest, reduced-error pruning tree, MLP,
and SVM, to detect different low-rate DDoS attacks. The
experimental results showed that all of the above methods
reached an accuracy of more than 90%. In summary, combin-
ing various machine learning-based detection methods with
SDN is a hot research direction in the area of DDoS attack
defense. Benefiting from the centralized control of SDN, such
methods naturally can perceive the global attack situation.
That is, although some methods are designed or defaulted
to work as destination-based defense mechanisms, they can
still be applied to source-based or network-based scenarios
to a certain extent. Therefore, SDN is naturally suitable for
solving the source-based defense problem as it is different
from the traditional edge-based defense model.

In the area of SDN-based detection, many methods com-
pute features based on the flow statistics collected from
OpenFlow switches through directly and frequently sending
requests to the controller, such as [21]–[23], [27]–[30]. But
other methods choose to use sFlow to build a flow collec-
tion system independent of SDN. Giotis et al. [31] proposed
an entropy-based anomaly detection method and mitigation
mechanism based on combining sFlow with SDN. In this
method, sFlow agents are distributed in the entire network
to collect flow. DDoS attacks are detected according to the
abnormal entropy of the source (or destination) IP address and
port. Paper [32] used sFlow to propose an application called
FlowTrAPP in the SDN environment to defend against DDoS
attacks in the data center. This application uses flow rate
and flow duration as features to define five types of attacks
according to the upper and lower bounds, and then monitors
the traffic in the data center based on preset thresholds. When
some flows fall into the interval corresponding to an attack,
the application will block attack flows by issuing OpenFlow
rules. In summary, several reasons make sFlow-based flow
collection better than that with controller-based. Firstly, fre-
quently sending requests to the controller to obtain the flow
information from all switches will add too much additional
burden to the controller and switch, which brings a single
point failure vulnerability to the controller. The high-speed
traffic in the data plane may further form a DoS attack
against the controller [31]. Secondly, as the OpenFlow flow
entries are issued by multiple decision-making entities from
the control layer and application layer, a specific entry
format may not contain the necessary information
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in detection. Lastly, sFlow is supported by SDN switches,
provides a network-wide view, is scalable and low cost, and
could define customized monitoring metrics. Therefore, this
work chose sFlow to collect flow in the detection.

III. THE PROPOSED METHOD
This work can be divided into four aspects: 1. build a flow
collection system based on sFlow that could cover the entire
network; 2. design a macro detection that could detect the
occurrence of DDoS attacks; 3. design a micro detection that
could distinguish attack flows from normal flows; 4. design
a response strategy that could issue optimal and fine-grained
rules according to the global view.

A. OVERVIEW OF WORKFLOW
The overall framework of the proposed method is shown in
Fig. 1. OpenFlow switches in the data plane transmit and for-
ward traffic, and sFlow agents are deployed on every switch
to collect flow information according to the instruction of the
sFlow controller (called ‘‘Collector’’). The SDN controller
Floodlight and the collector software sFlow-RT (used to ana-
lyze the data returned by sFlow agents ) run in the control
plane. The controller provides functions such as obtaining
network topology, finding routing paths, and issuing rules.
The collector sends required traffic statistics to the defense
application. The source-based defense application works at
the application layer. It has four modules including data
collection, macro detection, micro detection, and response
strategy. The first module makes the data collection plan and
processes the raw data acquired from sFlow-RT. The second
module determines whether a DDoS attack has occurred in
the network using a hypothesis testing method, and ascertains
the attack target and intensity. The third module performs
clustering analysis for all flow objects in current traffic based
on an improved SOM model and distinguishes attack flows
from normal flows. The fourth module generates and issues
rules, and processes flash crowd [33].

The workflow is shown in Fig. 2. Firstly, the data collection
module monitors and collects raw traffic statistical data in
real-time through sFlow-RT. The raw data are preprocessed
including symbolic feature digitization, discretization, and
normalization. Then, the flows within a certain time inter-
val are sent to the macro detection module to compute a
‘‘collaboration’’ metric. When this metric is below a preset
threshold, no attack has occurred and the workflow continues
to monitor the traffic. When the metric exceeds the threshold,
the module determines that an attack has occurred, gets the
IP address of the attack target and the flow details, and passes
these information to the nextmodule. Subsequently, themicro
detection module gathers all flows in the time interval and
performs clustering analysis for them based on an improved
SOM model. This process is used to separate the normal
flow contained in the attack traffic as much as possible,
which minimizes the impact of false positive errors. At last,
normal flows unrelated to the attack target are forwarded
normally, and attack flows are processed by the response

FIGURE 1. Framework of the proposed method.

FIGURE 2. Workflow of the proposed method.

strategy module. Different flow table rules are generated
according to the clustering result and the global network
topology, and then issued to the optimal switches.

B. DATA COLLECTION BASED ON sFlow
The sFlow monitoring system is a centralized control archi-
tecture composed of multiple distributed sFlow agents and
one sFlow collector. The agent is configured according to
the instruction of the infrastructure device. In the experiment,
the virtual switch software OpenvSwitch (OVS) is used to
deploy agents. The sFlow-RT is selected as the collector to
provide APIs to the upper application. It provides abundant
RESTful APIs, which is called RESTflow API, to configure
customized measurements and retrieve metrics. Through the
RESTflow API, we can ignore the underlying details and
easily implement the data collection module.

In the proposed method, we used common five tuples of
IP packet fields, namely source or destination address, pro-
tocol type, and source or destination address, to define an
IP flow as the detection object. The sFlow-RT is configured to
collect the required flow data. Here only gives an example to
illustrate the collection process, more details of configuring
and using sFlow-RT could refer to its API documentation.

2100 VOLUME 10, 2022



M. Wang et al.: Source-Based Defense Against DDoS Attacks in SDN Based on sFlow and SOM

The RESTflow API is invoked by using HTTP methods to
visit the uniform resource identifier (URI). For example, the
URI ‘‘/flow/name/json’’ is used to manage flow definition.
If we want to monitor the TCP flow and establish a cache
to completely record all TCP flows, this RESTflow API
is invoked through HTTP PUT method, and the arguments
are set in JSON format as follows: ’{‘‘keys’’ : ‘‘ipsource,
ipdestination, tcpsourceport, tcpdestinationport’’, ‘‘value’’ :
‘‘bytes’’, ‘‘log’’ : ‘‘true’’}’. After this flow monitoring mea-
surement is issued, the HTTP GET method is used to get
real-time flow data. In the implementation, the flow data are
harvested every second and maintained on the application
side.

C. MACRO DETECTION BASED ON DCD
Macro detection for DDoS attacks refers to detecting the
overall traffic and judging whether an attack has occurred,
rather than identifying the attack traffic on more fine-grained
metrics like flow or packet. The macro detection usually can
be implemented based on simple volume measurement. For
example, the target server can detect a DDoS flooding attack
according to the deviation between the real-time input traffic
load and the average value per unit time [34]. However, it is
very difficult to macro-detect DDoS attacks in the source
network. Because the attack flow covers up in the huge
background traffic when it has not converged to a certain
strength. Although researchers have proposed many macro
detection methods based on metrics such as the entropy of
IP source address [35]–[38], attackers can bypass such detec-
tion by imitating the distribution of normal traffic. In this
work, two indispensable features are defined to characterize
DDoS attacks, namely distributed collaboration and saturated
attack strength. The metric used to quantify the number of
concurrent flows to a same target is called distributed collab-
oration degree (DCD), and the total volume of these flows is
called intensity.
Definition 1: Supposing IP flows in the network are

expressed as set F = {f1, . . . , fn}, and all nodes represented
by the IP destination address of all flows are expressed as set
D = {d1, . . . , dm}, a destination flow (Dflow) is defined as
set dfk :

dfk = {fi|fi ∈ F and fi(dstIP) = dk}, k = 1, 2, . . . ,m. (1)

In equation (1), the fi(dstIP) is expressed as the IP desti-
nation address of flow fi, i.e. dk , so a Dflow is a set of flows
with the same IP destination address.
Definition 2: Supposing all Dflows in the network are

expressed as set DF = {df1, . . . , dfl}, then for any Dflow
dfi, its DCD is expressed as ϕ(dfi):

ϕ(dfi) = |dfi| =
n∑

k=1

J (fk (dstIP)),

where

J (fk (dstIP)) =

{
1, if fk (dstIP) = di
0, if fk (dstIP)6=di

(2)

Definition 3: Supposing all Dflows in the network are
expressed as set DF = {df1, . . . , dfl}, and the rate of flow fi
is expressed as vi,then for any Dflow dfi, its intensity is
expressed as φ(dfi):

φ(dfi) =
∑
fk∈dfi

vk (3)

According to equations (2) and (3), the DCD is used to
measure the number of flows that concurrently access to
the same target, and the intensity is used to measure the
total rate of all flows in a Dflow set. The two features were
proposed in our early work of an easy defense method [39].
In terms of probability, assuming the probability of a node
to access a certain target at a certain time is p and this
probability for all nodes obeys independent and identical
distribution. For a network having n nodes, the number of
nodes that concurrently access the target at time t , i.e. DCD,
can be regarded as a random variable X . There is P{X =
k} = Ck

n p
k (1 − p)n−k , namely, the random variable X fol-

lows a binomial distribution. According to Poisson theorem,
when n is large, X approximately obeys the Poisson distri-
bution π (λ), which has only one unknown parameter, and
λ can be estimated as the sample mean through maximum
likelihood estimation. Therefore, in theory, theX that exceeds
the estimated samplemean to a certain degree can be regarded
as a small probability event, which means an abnormal value
related to an attack. Generally speaking, high-concurrency
access will only occur when a large number of nodes are
organized, such as Botnet-based DDoS attacks and flash
crowds. Accordingly, it is feasible to detect DDoS attacks
based on the DCD feature. When the DCD of a Dflow shows
an abnormal value, this Dflow can be determined as a possible
DDoS attack. How to process flash crowds will be discussed
in the response strategy. However, in actual situations, the
assumption is unrealistic, and the user visit behavior does
not ideally obey the binomial distribution or approximate
the Poisson distribution. It is infeasible to figure out what
kind of distribution the DCD obeys. As a result, we resort
to Chebyshev’s inequality theorem. It is simple and feasible
to estimate the probability distribution based on this theorem.
Theorem 1: Supposing that the random variable X has

mathematical expectation E(X ) = µ and variance D(X ) =
σ 2, then ∀ε > 0, there is Chebyshev’s inequality as follows:

P{|X − µ| > ε} 6
σ 2

ε2
(4)

Let ε = kσ , we can get another representation of (4):

P{|X − µ| > kσ } 6
1
k2

(5)

According to equation (5), we can get:

P{X > µ+ kσ or X 6 µ− kσ } 6
1
k2

(6)

As the random variable ϕ is positive, only abnormally
large values of ϕ are worth of attention. Hence, the detection
threshold is computed only based on the upper bound of
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equation (6). For example, when the confidence level is set to
1− α = 0.8, there is 1/k2 = α, and k = 2.24, so the thresh-
old θ = dµ+ kσe = dµ+ 2.24σe. It means that, when
current DCD exceeds the normal expectation of 2.24 times
normal standard deviations, there is an 80% certainty that the
corresponding Dflow can be determined as an attack. In the
experiment, all Dflows in time interval T under the normal
situation are used as observation samples, and the normal µ
and σ are estimated based on the sample mean and sample
variance of these samples.

Supposing that the number of Dflows with the DCD ϕ

being i is ni, then P{ϕ = i} = pi =
ni
N =

ni∑
k nk

, thus:

µ̂ = ϕ =
∑
i

i·pi (7)

σ̂ =

√
N

N − 1
·

∑
i

(i− µ̂)2pi (8)

According to equations (7) and (8), the threshold θ can
be set as θ = dµ̂+ kσ̂e. The macro detection algorithm
is described in algorithm 1. The flowchart of this algorithm
is shown in Fig. 3. According to the algorithm, the macro
detection is periodically executed every T1 seconds, but the
collection is executed every second, so the detection targets
all Dflows in the time window T1. When a Dflow is judged
as an attack, the information of all flows in this time window,
i.e. set F , will be sent to the next module. The attack inten-
sity φ will also be used as an important decision basis in the
response strategy. The threshold θ is computed and updated
based on normal traffic. The time window parameter T1 is set
according to the experience.

Algorithm 1Macro Detection
Input: F ← ∅,D← ∅,DF ← ∅
for every seconds do

read flow statistics and add all IP flows fi to F
end for
for every T1 seconds do

for every fi in F do
di = fi(srcIP)
if di /∈D then

add di to D
add dfdi = ∅ to DF

end if
add fi to dfdi

end for
for every dfdi∈DF do

if ϕ(dfdi ) > θ then
Dflow dfdi is attack

else
Dflow dfdi is normal

end if
end for

end for

FIGURE 3. Flowchart of macro detection.

From the perspective of the principle of DDoS attacks
based on Botnets, it is very hard to achieve the ideal attack
effect when there are too few zombie nodes or the total attack
intensity is too small. Therefore, the DCD and intensity are
themost essential characteristics of DDoS attacks. There is an
almost unbridgeable gap between normal and attack behavior
on the characteristics. A simpler and ruder approach is to
directly filter the flows whose DCD and intensity are both
abnormal. When there are only a small number of zombies
in a source work, the proposed method may not be able to
effectively detect the attack. In this situation, it requires a
more fine-grained and deeper detection mechanism to deal
with, such as deep packet inspection (DPI), but resorting to
destination-based or network-based mechanisms is a much
more economical and effective way.

D. MICRO DETECTION BASED ON DGSOM
When the macro detection alarms, it is necessary to further
analyze all flows in the attack Dflow to distinguish the real
attack flow from the false alarmed normal flow. If only simply
filtering all flows in a suspect Dflow without making any
distinction, there will be a high possibility to affect some nor-
mal users. Harming user experience inside the domain while
protecting targets outside the domain will greatly reduce the
willingness of deploying source-based defense mechanisms.
Therefore, for the source-defending scenario, the trade-off
between low false alarm rate and high detection rate (also
called recall or sensitivity) will tend to give higher priority
to the former, and be more tolerant to the latter.

The complexity and variability of network traffic makes
it difficult to simply regard DDoS attack detection as a
classification problem, because not only is there a lack of
effective labeled data for training the detection model, but it
is also very difficult to get a detection model with enough
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generalization performance to cope with changing traffic.
Therefore, the proposed method conducts traffic analysis
based on a clustering algorithm called SOM, which is an
effective and feasible unsupervisedmachine learningmethod.
More details about SOM and how it is used in DDoS flooding
attack detection can be seen in [21].

The orderly topology of SOM can better reflect the orderly
distribution of the inherent attributes in data than other clus-
tering algorithms, such as k-means. As the different traffic
in each attack event will cause the clustering result to be
quite different, a static SOM model tuned based on fixed
training data cannot be competent to continuously analyze
the traffic in different attack events. Therefore, it is necessary
to perform real-time clustering, or clustering based on the
model tuned by the most recent historical traffic. To solve this
problem, an improved algorithm called dynamic generative
SOM (DGSOM) is proposed based on the basic SOM. The
algorithm does not need to preset the arrangement and size
of the topology. It dynamically adjusts the topology and
weights according to the data representation effect quantified
by some metrics, which will be introduced later. Meanwhile,
the algorithm can continuously update the detection model,
when it is needed, through a pre-train process based on the
latest historical samples.

For clustering the flows, ten features are defined as inputs
of the DGSOM model, which is shown in Table 1. As num-
bered in the table, each flow is expressed as a vector fi =
[x1, x2, . . . , x10]. The first four features are directly extracted
from the packet header filed, and the last six features are
calculated based on the number of bytes and the number
of packets in a flow. When calculating the last six features,
the concept of pair flow is involved in the formula, which
represents the communication flows between two nodes.

TABLE 1. Flow-based features: description and calculation.

Firstly, we define the indicator that is used to quantitatively
evaluate the clustering effect [40], [41].
Definition 4: Supposing that the weight vector corre-

sponding to neuron i in SOM is wi, and all input vectors fj
mapped to neuron i constitute a cluster set Ci, then mean
quantization error (mqe) used to quantitatively evaluate the
clustering effect of neuron i is expressed as:

mqei =
1
ni

∑
fj∈Ci

‖wi − fj‖, ni = |Ci|, Ci 6= ∅. (9)

According to equation (9), the quantitative indicator of the
global clustering effect of SOM for all data can be expressed
as:

MQE =
∑
Ci 6=∅

mqei. (10)

The smaller the MQE, the tighter the distribution of data
points in their respective clusters. Expanding the size of SOM
topology can reduce theMQE, but the unlimited expansion of
the topology violates the goal of clustering, and also increases
the complexity of the model, which is not conducive to the
rapid generation of the detection model. Therefore, there is a
trade-off between MQE and topology size, that is, a regular-
ization term needs to be introduced to control the complexity
of the model. Before constructing the regularization term,
in order to map the dense area of data points in the input space
to a larger topological space, quantization error (qe) is used
instead ofmqe as the indicator to evaluate the clustering effect
in the process of generating and training SOM. The qe and the
corresponding global quantitative indicatorQE are expressed
as:

qei =
∑
fj∈Ci

‖wi − fj‖, Ci 6= ∅. (11)

QE =
∑
Ci 6=∅

qei. (12)

According to equation (11), when the qe of a certain neuron
is high, the clustering effect of the model is poor. This kind of
poor is reflected in two aspects or both: either a non-uniform
part of the input space corresponding to the neuron has a large
number of different points, or the neuron represents at least a
considerable number of points in a certain uniform part of the
input space. When using qe or mqe to control the generation
of SOM, the former pays more attention to the finer-grained
characterization of the particle-intensive areas of the data,
while the latter emphasizes on characterizing the overall
uniformity of the data. This is the reason why quantitative
indicator qe is used to construct the loss function. Choosing
the L2 norm of the weight vector as the regularization term
to control the model complexity, the loss function can be
expressed as:

L(W ) =
∑
Ci 6=∅

qei + λ(n)
∑
i

ni‖wi‖ (13)

Then, the problem of how to train a SOM model is trans-
formed into an optimization problem, i.e. minimizing the loss
function L(W ). In equation (13),W is the matrix of all weight
vectors, parameter λ(n) = λ0

√
n is used to adjust the trade-off

between the two terms on the right side of the equation, where
n is the total number of neurons and λ0 is the scale factor. The
loss function in (13) makes up for the disadvantage of the
lack of objective loss function of the basic SOM algorithm.
Since it is difficult to solve the minimization problem through
gradient optimization, a heuristic algorithm is designed to
find the optimal model. The DGSOM algorithm is described
in algorithm 2.
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Algorithm 2 DGSOM
Input: F = {f1, . . . , fn}
set initial size of SOM modelM0 to be 2×2 units
set initial weight vectors W 0

= {w0
1,w

0
2,w

0
3,w

0
4} to ran-

dom values
train the model M0 according to basic SOM learning
algorithm
Q = ∅,L = +∞, ter = 0,Can = ∅
compute qe0 for every unit
compute loss function L0

Q = {qe0k |k is all units},L = L0

for i = 1 : ITE do
s = argmaxkqe

i−1
k

N = {wi−1j |unit j is the neighbor of unit s}
d = argmaxk‖w

i−1
k − w

i−1
s ‖ subject to k ∈ N

insert a row or column units between unit s and d
with the weight vector of every unit being the mean of its
respective neighbors

retrain generated model M i using basic SOM learning
algorithm

compute qei for every unit
compute cost function L i

if L i>L i−1 then
ter = ter + 1
if i>2 and L i−2 < L i−1 < L then

add (L i−1,M i−1) to Can
end if
if ter>TER then

add (L i−TER,M i−TER) to Can
break

end if
else

ter = 0
end if
Q = {qeik |k is all units},L = L i

end for
M = argminM jL j subject to (L j,M j)∈Can
returnM

The simplified flowchart of DGSOM is shown in Fig. 4.
The details of the basic SOM learning algorithm can be
seen in [42]. According to the algorithm, the process of
dynamically generating SOM starts with a 2×2 topology, and
then trains the initial model using the basic SOM learning
algorithm. After this, the qe of every neuron is computed and
the neuron with the largest qe is labeled as s. The neighbor
neuron that is most dissimilar to neuron s is also selected
according to the distance between s and its neighbor neurons,
which is labeled as d . After determining the positions of neu-
ron s and d , a row or column of neurons are inserted between
s and d , and the weight vector of the newly added neurons is
set to the mean of the weight vector of the old neighbor neu-
rons [40]. After getting the expanded SOMmodel, its weight
vectors are regarded as the new initialization, the parameters

FIGURE 4. Flowchart of DGSOM.

such as learning rate and neighborhood width are reset, and
then the new map is retrained again. As the retraining process
inherits the data representation of the old SOM and performs
a more in-depth analysis on the clusters with the worst clus-
tering effect, the newly generated SOM model can depict the
distribution characteristics of the data in more detail. The pro-
cess of expanding and retraining is repeated iteratively until
the target loss function L(W ) does not continuously decrease
for TER times or reaches the maximum iteration ITE. The
parameters TER and ITE control the algorithm termination,
and TER is the early stopping criterion. In the experiment,
TER is set to a suitable small positive integer, for example,
TER = 3, and ITE is set according to the upper limit of the
preset SOM topology size. Finally, the optimal SOM model
is selected from the candidate set generated in the iterative
process.

Since the DGSOM algorithm needs to iteratively train
the SOM model many times, in order to avoid the training
process taking too much time and causing detection delay, the
algorithm is divided into two parts on the time axis in actual
operation, namely pre-generation process P1 and generation
process P2, which is shown in Fig. 5. Process P1 periodically
executes DGSOM based on the historical flow data Fhistory
in the sliding time window T2 to generate the latest SOM
model. For example, when the macro detection alarms that
an attack has occurred at t1, process P2 uses the SOM model
generated by process P1 as the initial state, and continues to
train it based on current flow data Fcurrent in window T1 to
get the final model. The response strategy module will make
decisions based on the final model. Since the process P2 is
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FIGURE 5. The diagram of pre-generation and generation on time axis.

trained based on the pre-generated model in P1, the optimal
topology has been determined and all weight vectors have
been preliminarily tuned, the time spent on training process in
detection will be saved a lot. When the traffic is small and the
amount of flows is not very large, the pre-generation process
can be omitted, and the training process is directly performed
based on the current flow.

When the macro detection determines a Dflow as an attack,
denoted as dfatt , the attack target IP address, denoted as datt ,
is the destination address of this Dflow. Supposing Fcurrent =
{f1, f2, . . . , fN }, and the clustering result given by DGSOM is
expressed as set {Ci|Ci = {f1, . . . , fni}}, where N =

∑
i ni.

The flow whose destination IP is datt in cluster Ci is called
attack flow that hits neuron ui, and is gathered as hitting set
Hi = {fj|fj(dstIP) = datt and fj∈Ci}. The number of flows
hi = |H | is called hitting number of neuron ui. After calcu-
lating the hitting number of all neurons and sorting them, the
set Hi with the largest hi is regarded as the most suspicious
attack set, and the corresponding neuron and hitting set are
denoted as ur0 andHr0 , whichmeans all attack flows in setHr0
will be executed with a response strategy of level 0. For other
neurons whose hitting number is not zero, after calculating
the neighborhood distance with neuron ur0 , which is defined
as d = ‖w− wr0‖, the maximum distance is selected and
divided into K equal intervals, and the corresponding hitting
sets in each interval are merged to determine the final hitting
sets Hr1 ,Hr2 , . . . ,HrK , as illustrated in Fig. 6. The subscript
of each hitting set indicates the respective response level.
Response strategy module will generate and issue rules based
on the level.

FIGURE 6. The illustration of dividing and merging hitting set.

E. RESPONSE STRATEGY BASED ON SDN
The response strategy module issues rules to the designated
switch according to the detection result and the network
global topology. Specifically, this module deals with three
problems: how to make differentiated rules based on response
levels; how to merge rules and determine their deployment
location; how to cope with normal flash crowds.

For the first problem, according to the response level
divided by the micro detection module, it needs to form K+1
different rules with different severity to handle the attack
flows. The most severe rule directly filters the attack flow

with response level 0, which is implemented by issuing flow
entries with drop action. For the attack flows with other
response levels, rules with different quantified queues are
used to perform different QoS through issuing flow entries
with queue action. The size of every queue changes gradually
according to the response level. For example, if the response
level of a flow is k and its attack intensity is φ, the queue
bandwidth is k/K · φ.

For the second problem, merging rules and determining the
deployment location are two sub-problems that affect each
other. The purpose is to minimize the number of issued flow
entries without conflicts and issue flow entries as close to the
attack source as possible. The former aims to save valuable
switch flow table resources, as some commercial OpenFlow
switches can only support no more than 4K flow entries. The
latter aims to avoid the waste of bandwidth caused by attack
traffic.

When it comes to rules, a rule is usually expressed in
the format of ‘‘match/mask’’. A mask field of 1 means the
corresponding bit of the match field must be accurately equal
to the related header field. A 0 mask is a wildcard, which
means the corresponding match bit can match any value. For
example, 0010/0011 means the first two bits of the match
field can match any value, but the last two bits must exactly
match 10.

Based on the wildcard, a rule merging method is proposed
through iterative tree search. The steps are as follows and an
illustration is shown in Fig. 7. Suppose the flows with the
same flow entry action and deployment location are gathered
as set Hi = {fi1, fi2, . . .}, i = 0, 1, 2, . . . .
Step 1: generate initial rules in the format of ‘‘full match/all

1 mask’’ for all flows in every set H according to their IP
5-tuples header (other header fields are not discussed here),
denoted as rui = {rui1, rui2, . . .}.
Step 2: sort all sets ru in descending order according to

the number of rules, i.e. |ru|. For every set rui, respectively
generate a rule that can include all initial rules in it and has the
mask with the heaviest Hamming weight, denoted as RUi1.
Such rules are called candidate merged rules (CMR), denoted
as set RUi1,RUi2, . . . . The final merged rules (FMR) set for
every rui is denoted as RUi. In this step, all initial FMR sets
are marked as empty.

Step 3: start from the first ru, match its CMR rules with
the rules in the other FMR sets in sequence (match with the
corresponding initial rule set if an FMR set is empty).

Step 4: if there is a rule matching successfully, split this
RUij at the match bit corresponding to the first 0 mask bit to
two new sub-rules, the bit corresponding to the first old 0 bit
is changed to 1 in both of new sub-rules.

Step 5: judge the two split rules respectively, if one inter-
sects with the corresponding initial rule set (ensure rule inclu-
sion) and does not intersect with any other CMR or FMR set
(avoid rule conflict), add it to the corresponding FMR set.
Delete the rule if it does not intersect with the corresponding
initial rule set. For any other cases, go to step 3 and continues
to split the rule until it can not be split.
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FIGURE 7. An illustration of rule merging algorithm.

Step 6: for every rule in the FMR set, generate the heaviest
mask instead of the old mask according to its intersection
with the corresponding initial rule set. This step is used to
minimize the impact of the rule with too many wildcards on
unknown flows.

Step 7: get the FMR set for the first ru, start from the next
ru and repeat step 3 to 7 until getting all FMR sets for every
set Hi.
It can be seen from Fig. 7 that 7 rules before merging are

reduced to only 4 rules after merging.When preferring to save
bandwidth, the default deployment location of every rule is
the access switch corresponding to the source node. For the
rules at the same location, they are first gathered to set H
according to the response level before being merged. When
preferring to save flow table resources, the ruleswith the same
response level are firstly merged before deciding the location.
The final rules are deployed on the switch that is effective
and the closest to the attack source. Taking the simple tree
topology in Fig. 8 as an example, and supposing the attack
target is a node outside the domain, when the source IP match
field of a ruleRU includes nodes {n1, n2, n5, n8}, this rule will
be deployed on s1 switch. But, when the source IP match filed
includes {n1, n2, n12, n16}, the rule needs to be deployed on
s3 switch to cover the related nodes and close to the attack
source.

For the last problem, as flash crowds and DDoS attacks
have the same effect and both appear as high concurrent
access to the same target within a certain period, it is very
difficult to distinguish between them based on the macro
detection. This work used a simple feedback method to deal
with flash crowds. The basic hypothesis is: although flash
crowds and DDoS attacks have the same effect, the feedback
after implementing the response strategy is very different.
Normal users in flash crowds usually do not maliciously and

FIGURE 8. A simple tree topology network.

continuously send a large number of service requests, and
they will respond by low-frequency refreshing or just wait-
ing when perceiving the inaccessibility or QoS degradation.
However, malicious nodes, i.e. zombies controlled by the
attacker, will always continuously send a large number of
requests to the target to achieve the attack purpose. Therefore,
after deploying flow entries, the DCDmetrics perceived from
the access switch of the two phenomena will have a signifi-
cant difference. The DCD of flash crowds will decrease to a
normal level, while the DCD of DDoS attacks will remain at
a high level. If the zombie program also imitates the normal
behavior to bypass this method, the botnet must inevitably
reduce the number of requests, which mitigates the threat of
DDoS attacks and still achieves the defense purpose to some
extent.

Supposing the default priority is to save flow table
resources and the K sets received from micro detection are
expressed as Hri = {fi1, fi2, . . . , fini ,}, i = 0, 1, . . . ,K , net-
work topology is expressed as graph G(V,E), where V repre-
sents all switches/nodes and E represent all links, the response
strategy is described in algorithm 3.
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Algorithm 3 Response Strategy
Input: Hr0 ,Hr1 , . . . ,HrK ,G(V ,E)
{merge rules for every set}
for every set Hri do

merge rules in set Hri to get FMR sets RUi =
{RUi1, . . . ,RUini}
end for
{add actions to every FMR}
for for every FMR RUij do

if i = 0 then
add drop action to rule RU0j

else
add queue action with the size as i

K

∑
ruik∈RUij φ to

rule RUij
end if

end for
{find the optimal location to issue rules}
for every rule RUij do

node IP set
IPset = {IP|IP∈V and IP∈(src IP match field ofRUij}

path set
P = {every path from every IP to IPattack |IP∈IPset}

find switch node set s = {∀path∈P ∃ s∈path}
find optimal switch node

sop = {∀sop∈s @path(IP→sop) = path(IP→s′→sop)}
issue rule RUij to optimal switch sop

end for
{feedback judgement}
if ϕ(IPattack ) returns to normal threshold in T3 seconds
then

abandon all issued rules
add IPattack to whitelist for T4 seconds

else if ϕ(IPattack ) returns to normal threshold then
abandon all issued rules

end if

The simplified flowchart is shown in Fig. 9. After rules
are issued, the response strategy will calculate the DCD of
the attack Dflow based on the information fed back from
the access switch. When the DCD falls within the normal
threshold in T3, the corresponding Dflow will be treated as a
flash crowd, the issued rules will be discarded, and the target
IP will be added to a whitelist for time T4. Time parameter
T3 is set according to the experience. Parameter T4 is used to
prevent the real attack target from being wrongly put in the
whitelist when bots imitating the flash crowd, and it can be
set as the average duration of a connection. In the case DCD
returns to normal caused by the stop of the attack, the strategy
only discards the issued flow entries.

IV. EXPERIMENTS AND RESULTS
In this section, the proposed method will be validated in a
simulation environment. The traffic data used in the experi-
ment includes two parts: the traffic captured from our campus

FIGURE 9. Flowchart of response strategy.

network and the ISCX-IDS2012 traffic data [43], which are
labeled as D1 and D2 respectively. The ISCX-IDS2012 is
an open intrusion detection evaluation dataset published by
the University of New Brunswick. It provides real network
traffic samples and has been well labeled. This data cap-
tures the traffic in a week and is divided into seven datasets
by day. However, as only the dataset on Thursday contains
normal traffic and IRC-based DDoS attack traffic, we only
used the Thursday traffic in this paper. The campus network
traffic is captured from our university, and it is regarded as
normal traffic. The composition of datasets D1 and D2 is
shown in Table 2. The experiment is implemented on a server
with 8 CPUs and 32 GB RAM, mininet is used to simulate
SDN, the controller software is Floodlight, the virtual switch
software is OVS, and the traffic replay software is tcpreplay.

A. VALIDATION OF MACRO DETECTION
In order to validate the effectiveness of the macro detection,
dataset D1 is replayed on the simulation network to observe
the change of Dflow DCD in a real source network. The
simulation network is implemented by mininet. Its topology
is shown in Fig. 10. For the facilitation of replaying the traffic
on each simulation node, every access switch in Fig. 10 only
has one node, but the actual number of nodes can be seen
on the visual topology (as shown in Fig. 11) provided by
Floodlight.

FIGURE 10. Topology of simulation network.

Setting the parameter T1 = 60s, the change of DCD on D1
is shown in Fig. 12. In the figure, the x-axis represents the
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FIGURE 11. Visual topology provided by Floodlight.

TABLE 2. The composition of dataset D1 and D2.

value of DCD, the y-axis is the time axis and has a total of
60 time units, and the z-axis represents the number of Dflows
with a certain DCD. For example, for the first detection
period, there are 28 Dflows with DCD being 1, 2 Dflows with
DCD being 2, and 0 Dflows with DCD being more than 2.
It can be seen from the distribution in Fig. 12 that most nodes
in this period are accessing different targets, and there is no
large-scale concurrent access to the same target. Among the
36 active nodes in the network, the highest DCD is 5, which
indicates that an abnormal large DCD is indeed an event with
small probability. Using the traffic data in this period as a
baseline, and setting the confidence level to be 1−α = 0.99,
the threshold is calculated to θ = 7. Therefore, it has 99%
confidence to judge the Dflow with the DCD bigger than 7 as
an attack.

FIGURE 12. DCD on D1 in one hour.

Continuing to observe the change of DCD for eight hours
and using them as the baseline data, and setting the confi-
dence level to 0.8, 0.9, 0.95, 0.99, 0.995, the change of the
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FIGURE 13. Threshold change in eight hours.

threshold is shown in Fig. 13. From the figure, the largest
threshold is 10 at the confidence level of 0.995, and is 3 at 0.8.
This further indicates that the normal DCD in a source net-
work, at least in this observation network, being abnormal
large is a very rare event. Therefore, using the metric DCD
to implement an abnormal detection can detect the DDoS
attack. As most Dflows in D1 only have 1 DCD, the threshold
calculated according to the baseline data is very small, and the
detection is a little sensitive. For most Botnet-based DDoS
attacks, the DCD is much larger. Hence, for this simple
network, the threshold can be manually set to a larger value
to avoid some false positive errors.

B. VALIDATION OF MICRO DETECTION
To validate the effectiveness of the micro detection, it is
necessary to evaluate the effect of distinguishing the false
alarmed normal flow from the real attack flow, and quanti-
tatively evaluate the impact of response actions on normal
flows. According to the response level and the corresponding
response action, the flow with response level 0 (drop action)
can be regarded as predicated attack flow, and the flow with
non-zero level can be regarded as predicted normal flow.
In this way, a customized confusion matrix can be defined
as shown in Table 3. It should be noted that this confusion
matrix is different from the standard confusion matrix. The
customized confusion matrix is used to evaluate the detection
performance of the micro detection on reclassifying the sus-
pected attack flow, but the standard one is used to evaluate
the overall detection performance. According to the confu-
sion matrix, four commonly used evaluation metrics can be
calculated, namely accuracy (Acc), precision (Pre), detection
rate (DR), and false alarm rate (FAR). The calculation can
refer to our another work in [44].

As the purpose of micro detection is to separate the false
alarmed normal flow from the real attack flow asmuch as pos-
sible, the detection performance should first consider lower
FAR and then consider higher DR. Only these two metrics
are given in the experiment. The DR is the ratio of real attack

TABLE 3. Customized confusion matrix.

flows with level 0 to all real attack flows, and the FAR is the
ratio of real normal flows with level 0 to all real normal flows.
For the quantitative evaluation of response level division, only
the impact on real normal flows is considered, which means
the optimal division should assign the highest response level
to real normal flows. The higher the level, the lower the
impact on normal flows. The impact of not filtering attack
flows is ignored by default. Because in a source network, not
filtering some real attack flows but only rate-limiting them
will not affect the local network and still mitigate the attack.
Therefore, the quantitative evaluationmetric of response level
division is defined as false alarm impact (FAI) as follows:
Definition 5: Supposing the impact of assigning a normal

flow f with response level K is unit 1, and the impact of
assigning level k is computed as 2K−k , the FAI is computed
as:

FAI =
∑

f ∈normal

frk ·2
K−k , (14)

where frk is the number of real normal flows with response
level k .
The smaller the FAI, the better the response level division.

In the ideal case, all real normal flows that are falsely judged
as the attack in macro detection are assigned to the highest
response level, which means they can maintain the original
communication rate and continue to access the target.

D1 and D2 are taken as the experimental data. The preset
scenario conditions include: 1. the upper limit of the number
of active nodes in the network is 2,000; 2. do not consider
the case of using forged source IP, which can be regarded as
increasing the number of active nodes; 3. the average number
of real normal flows is 3,000 and the proportion of a suspected
attack Dflow containing the real normal flow is fixed at 20%.
Since all DDoS attack flows in D2 are HTTP Web traffic
targeted to ‘‘192.168.5.122:80’’, the target IP of the attack
Dflow is ‘‘192.168.5.122’’. The threshold is set to 49, the
experiment starts from an attack with DCD being 50, and then
the DCD is gradually increased from 100 to the upper bound
2,000 in 100 steps. Accordingly, 21 groups of experiments
can be carried out. The dataset of each experiment is gener-
ated as follows: randomly sample 3,000 normal flows from
D1 and label them as normal; randomly sample a specified
number of normal and attack flows from D2 according to
the proportion and corresponding DCD, and label them as
attack; randomly mix all samples to get the experimental
dataset. The composition of these 21 groups of data is shown
in Table 4. In this table, i = 0.5, 1, 2, 3, . . . , 20. The topology
limitation of SOM is set to 15×15, and themaximum iteration
parameter ITE should be 27. Set the early stopping parameter
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TABLE 4. Composition of the synthetic experimental data.

TER= 3, parameter λ0 = 0.008, and the maximum response
level K = 4.
The experiment with i = 20 is chosen as an illustration

to observe the changes of related indicators of DGSOM algo-
rithm during the training iteration process, and compare them
with k-means and k-medoids algorithms. In this experiment,
TER is set to an integer bigger than ITE to observe the entire
iteration. In the comparison, the number of clusters of the
two k-algorithms is equal to the number of corresponding
neurons.

Fig. 14 shows the loss function during the entire iteration
when λ0 = 0.008. It can be seen that the loss function of
the DGSOM and the k-algorithms firstly decreases and then
increases with the increasing of model complexity. All of
them have the global minimum during the entire iteration,
which means the regularized loss function in (13) can guide
the DGSOM algorithm to generate the optimal model. If the
early stopping strategy is executed, i.e. TER = 3, according
to Fig. 14, the DGSOM algorithm will stop at the 10th itera-
tion, and the optimal SOM topology is 4×6 generated in the
7th iteration. The number of clusters of the k-algorithms used
for comparison is 24. To observe the change of QE during
the iteration, Fig. 15 shows the loss function when λ0 = 0,
which means ignoring the second part on the right side of
equation (13). It can be seen that the QE of all algorithms
is gradually converging, which means expanding the SOM
topology or increasing the number of clusters will not signif-
icantly improve the clustering effect when the model com-
plexity increases to a certain degree. Combing the results in
Fig. 14 and Fig. 15, it can be seen that, in the case of the same
model complexity, the loss function of DGSOM is overall
slightly lower than the k-medoids, and it is lower than the
k-means only when the SOM topology is large.

Fig. 16 and Fig. 17 show the changes of FAR and FAI
during the entire iteration. Firstly, horizontally comparing the
FAR and FAI of the DGSOM algorithm, both FAR and FAI
firstly gradually decline and then fluctuate in a small range
with the SOM topology expanding, which means a larger
SOM topology is beneficial to strip the false alarmed normal
flows and reduce the impact on them. But unlimited expan-
sion of the SOM topology will not continue to significantly
reduce the FAR and FAI. When TER = 3, the optimal SOM
model is generated in the 7th iteration, and both FAR and FAI
are in a small value range, which means the model achieves
the expected effect. Secondly, according to the longitudinal
comparison of the three algorithms during the entire iteration,
the DGSOM algorithm is better than the k-algorithms. It not
only maintains lower FAR and FAI duringmost iterations, but
also shows better stability after the algorithm converges.

FIGURE 14. Loss function with λ0 = 0.008 during iteration.

FIGURE 15. Loss function with λ0 = 0 during iteration.

FIGURE 16. FAR during iteration.

Fig. 18 shows the change of DR during the entire iteration.
Although the DR of DGSOM is not the best, it still main-
tains a stable and high level. The DR corresponding to the
optimal model is the best performance 95.41%, which means
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FIGURE 17. FAI during iteration.

FIGURE 18. DR during iteration.

the response strategy will perform filtering action on more
than 95% of real attack flows.

Fig. 19 and Fig. 20 show the time cost of each iteration
and cumulative iteration of the DGSOM algorithm during the
entire iteration process. In the comparison of each iteration,
the time cost in every iteration of k-means and k-medoids
is computed based on the clustering time of executing the
algorithms for once with the number of clusters being equal
to the number of neurons. But in the comparison of cumu-
lative iteration, it defaults to compute the total time cost
of multiple clustering processes starting from 4 clusters to
the corresponding number of neurons one by one. According
to the longitudinal comparison in the two figures, it can be
seen that, with the expansion of SOM topology, the time
consumed by each iteration of DGSOM is much higher than
the k-algorithms, but the cumulative time is higher than
k-means and lower than k-medoids. This is because when
comparing the cumulative time cost, it defaults to find the
optimal number of cluster center of k-means and k-medoids
through ergodic search. Assuming that the upper limit of
SOM topology is n×n, the complexity of ergodic search
is O(n2), but the greedy search strategy used in the DGSOM
algorithm reduces the complexity to O(n), which greatly

FIGURE 19. Time cost of each iteration during iteration.

FIGURE 20. Time cost of cumulative iteration during iteration.

reduce the time of repeatedly training the model. Meanwhile,
choosing appropriate early stopping parameter can further
reduce training time. The training process taking too long will
delay the model generation and affect the response agility.
This is the reason why taking the pre-generation process.
Although there is no guarantee that the SOM topology
generated by the pre-generation process is always optimal
for the current traffic, the sub-optimal topology and timely
getting the clustering result are the most important things
and should be considered first. When TER = 3, according
to Fig. 19, the time cost of micro detection for 5,000 flows,
including 3,000 normal flows and 2,000 attack flows, is
2.77 seconds (7th iteration). The cumulative time of
stopping at the 10th iteration, according to Fig. 20, is
25.53 seconds. In other words, it takes about 28 seconds to
get the clustering result without the pre-generation, but only
about 3 seconds with pre-generation. Therefore, the time cost
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TABLE 5. Optimal topology and iteration in each experiment.

of cumulative iteration is the basis to consider whether to use
the pre-generation and how to configure parameter T2.
In order to validate the detection effect under different

numbers of attack flows without losing generality, the results
of all 21 groups of experiments are given as follows, including
FAR, FAI, DR, and time cost. Table 5 lists the topology
structure of the optimal SOM model and the corresponding
iteration number in each experiment, and also indicates the
number of clusters of the k-algorithms used for compari-
son. Taking the first line in this table as an example, in the
experiment with 50 attack flows, i.e. i = 0.5, the optimal
SOM topology generated by DGSOM is 5×5, the algorithm
stops at the 10th iteration, the optimal model is generated in
7th iteration, and the number of clusters used for compar-
ison is 25. According to the difference between ‘‘optimal
iteration’’ and ‘‘stop iteration’’, all experiments meet the
early stopping criterion TER = 3. Actually, the results of
configuring TER bigger than ITE in all experiments show that
all the minimum loss functions obtained by the early stopping
strategy are the global minimum.

Fig. 21 and Fig. 22 show the FAR and FAI respectively
when the number of attack flows changes. According to the
longitudinal comparison in both two figures, there are only
8 times that the FAR and FAI of DGSOM are not the lowest,
which indicates DGSOM performs better than the other two
algorithms overall. According to the horizontal comparison
of FAR in Fig. 21, the DGSOM can always maintain the FAR
at the lowest level when the number of attack flows is large,
which is more stable than the other two algorithms. But when
the number of attack flows is small, the FAR is maintained at
about 40%, which means about 40% of false alarmed normal
flows are filtered, while the remaining 60% are rate-limited.
Fig. 23 shows the DR in each experiment. Although the DR
of DGSOM is not always the best, its worst performance still

FIGURE 21. FAR of each experiment.

FIGURE 22. FAI of each experiment.

FIGURE 23. DR of each experiment.

reaches 74.15%, which means there are only nearly 26% of
real attack flows being rate-limited, while the other real attack
flows are filtered.

Fig. 24 shows the distribution of the response level divi-
sion. It can be seen that the false alarmed normal flow with
level 1 occupies the main component in every distribution,
which does not achieve the desired ideal effect. According to
the strategy of dividing response levels, the reason is that the
difference between real attack flows and false alarmed normal
flows is small, which causes the normal flow that is similar
to the real attack flow having a lower response level. In this
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TABLE 6. Details of the simulation attack scenario.

FIGURE 24. Distribution of response level division in each experiment.

FIGURE 25. Cumulative time cost in each experiment.

case, reducing the response level K could effectively reduce
FAI, but this will responsively relax the restriction on the real
attack flow that is ‘‘false negative’’. There is a trade-off when
the distinction between normal and attack flows is small.

Fig. 25 shows the cumulative time consumed by the
DGSOM algorithm during training with and without the pre-
generation process. According to the figure, the time cost of
generating optimal SOM model through DGSOM is reduced
from tens of seconds to less than a few seconds after using
the pre-generation process.

In summary, the proposed DGSOM algorithm can dynami-
cally generate an optimal SOMmodel with a good clustering
effect and low model complexity under the guidance of the
loss function in an acceptable time. The experimental results

validate that the DGSOM has a low FAR and a high DR in
distinguishing the normal flow from the attack flow. It indi-
cates that the response strategy will filter most real attack
flows and apply loose rate-limiting to the most false alarmed
normal flows. The micro detection has achieved the desired
effect. Although the FAI is not ideal enough, the rate-limiting
strategy at least ensures the accessibility of normal users.

C. VALIDATION OF RESPONSE STRATEGY
The experiment of validating the response strategy is based
on the detection result corresponding to the experiment with
50 attack flows in the previous subsection. The simple net-
work shown in Fig. 10 is used as the simulation network.
The source IP addresses of all flows are first mapped to the
IP address of the simulation nodes. And then, the specific
response strategy is implemented. Finally, the effect of the
response strategy is evaluated by observing the flow table
information to see whether rules are generated, merged, and
issued correctly. According to the detection result, there are
35, 1, 9, 4, 1 attack flows in each level from 0 to 4, and
the number of false alarmed normal flows in each level is 3,
0, 5, 1, 1 respectively. The details of simulating the attack
scenario are shown in Table 6. As the DDoS attack is aimed at
‘‘192.168.5.122:80’’, the destination IP addresses of all attack
flows are mapped to 10.0.1.1 in the simulation experiment,
while the source and destination port remaining unchanged.
In addition, all flows are replayed by tcpreplay in zero-delay
loop mode, and the replay rate is fixed at 1 Mbps.

The final flow rules generated by the response strategy
module are shown in Table 7. According to the table, there
are only 14 rules after the initial 50 rules being merged.
These rules are issued to switch s0 (corresponding to s6 in the
mininet simulation network), s4, and s5 respectively. As the
destination IP address and port are fixed at ‘‘10.0.1.1:80’’, the
related fields are ignored in the table.

Fig. 26 shows the flow table information on related
switches viewed through OVS commands. It can be seen that
all rules are correctly sent to the designated switch. The flow
entry that can exactly match a flow is set with the highest
priority 65535. In the experiment, implementing the queue
rate limit strategy is based on the function provided by OVS.
Multiple queues with fixed size are preset according to the
replay rate. When generating the queue action of a flow
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FIGURE 26. Screenshot of switch flow table.

TABLE 7. Flow rules provided by response strategy.

entry, the queue size is computed according to the response
level and the total attack intensity of the corresponding attack
flows. The queue with the closest size is selected and config-
ured, which is the reason why some actions in Table 7 are
the same. In addition to using the QoS provided by OVS, the
OpenFlow-1.3 also provides a newly added Meter function
to implement a simple OpenFlow-based QoS strategy. The
rate-limiting strategy can be implemented by configuring the
Rate filed in theMeter Bands. Besides, stopping replaying the
traffic to simulate the end of the attack, or stopping replaying
part of the traffic to simulate the feedback of flash crowds, the
response strategymodule will abandon the issued flow entries
according to the feedback mechanism. As this process only
involves the execution of commands, the experimental result
will not be repeated here.

V. CONCLUSION
In this paper, we make full use of the advantages of
SDN, including centralized control, programmability, global
view, flexible response, and easy deployment, to propose a
lightweight source-based defense method based on sFlow
and SOM.

Compared with the traditional edge-based defense model,
which lacks effective inner protection, the proposed method
in this paper establishes a detection that can cover the entire
network to perceive the DDoS attack. Benefiting from the
characteristics of SDN, the proposedmethod ismuch easier to

develop and deploy compared with traditional methods based
on dedicated devices and closed systems. As it has very low
CAPEX and OPEX, the network administrator has a higher
willingness to deploy a source-based defense mechanism.
Meanwhile, this work combines macro and micro detection
to take into account detecting the occurrence of DDoS attacks
as well as recognizing attack and normal flows. On one hand,
a metric called DCD is proposed to characterize the intrinsic
features of DDoS attacks. As collaboration and distribution is
prerequisite for a DDoS attack, the detection based onDCD is
much harder to be bypassed than the detection based on other
features, such as entropy. On the other hand, an improved
clustering algorithm called DGSOM is proposed based on
the standard SOM. It can dynamically generate the optimal
model under the guidance of loss function. It is effective
to distinguish the attack flow from the normal flow. This
unsupervised method does not require careful preparation of
perfect and labeled data. The improved clustering algorithm
is also overall better than the k-means and k-medoids. In addi-
tion, a flexible response strategy is designed to handle attack
flows.

The defect of this work mainly includes two aspects.
Firstly, it is necessary to conduct a more rigorous and com-
prehensive verification experiment in the real network to
test its detection performance. Secondly, in the case that
normal flows are very similar to attack flows, the response
strategy will impose strict restrictions on more false alarmed
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normal flows, which will affect the experience of normal
users. How to distinguish between attack and normal with
high similarity is a difficulty in the field of DDoS attack
detection.

As people pay more and more attention to the cyber secu-
rity, addressing the cyber security issues at the source will
become increasingly important. Source-based defense mech-
anisms should have the same importance as the mechanisms
based on other deployment locations. In the future work, it is
very promising to study cross-domain collaborative defense
mechanisms based on SDN.
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