
Received September 3, 2021, accepted November 23, 2021, date of publication December 30, 2021,
date of current version January 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3139438

Reconfigurable and Agile Legged-Wheeled Robot
Navigation in Cluttered Environments
With Movable Obstacles
VIGNESH SUSHRUTHA RAGHAVAN 1,2, DIMITRIOS KANOULAS3, (Member, IEEE),
DARWIN G. CALDWELL 4, (Fellow, IEEE),
AND NIKOS G. TSAGARAKIS 1, (Member, IEEE)
1Humanoids and Human-Centered Mechatronics (HHCM) Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
2Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
3Department of Computer Science, University College London (UCL), London WC1E 6BT, U.K.
4Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy

Corresponding author: Vignesh Sushrutha Raghavan (v.raghavan@studenti.unipi.it)

This work was supported in part by the CENTAURO H2020 European Union (EU) Project under Grant 644839, and in part by the
Italian/Singapore MoD Project PHOLUS.

ABSTRACT Legged and wheeled locomotion are two standard methods used by robots to perform
navigation. Combining them to create a hybrid legged-wheeled locomotion results in increased speed, agility,
and reconfigurability for the robot, allowing it to traverse a multitude of environments. The CENTAURO
robot has these advantages, but they are accompanied by a higher-dimensional search space for formulating
autonomous economical motion plans, especially in cluttered environments. In this article, we first review
our previously presented legged-wheeled footprint reconfiguring global planner. We describe the two
incremental prototypes, where the primary goal of the algorithms is to reduce the search space of possible
footprints such that plans that expand the robot over the low-lying wide obstacles or narrow into passages
can be computed with speed and efficiency. The planner also considers the cost of avoiding obstacles versus
negotiating them by expanding over them. The second part of this article presents our new work on local
obstacle pushing, which further increases the number of tight scenarios the planner can solve. The goal of the
new local push-planner is to place anymovable obstacle of unknownmass and inertial properties, obstructing
the previously planned trajectory from our global planner, to a location devoid of obstruction. This is done
while minimising the distance traveled by the robot, the distance the object is pushed, and its rotation caused
by the push. Together, the local and global planners form a major part of the agile reconfigurable navigation
suite for the legged-wheeled hybrid CENTAURO robot.

INDEX TERMS Hybrid legged-wheeled navigation, legged-wheeled robotics, navigation among movable
objects, path planning, quadrupedal robot, reconfigurable navigation planning.

I. INTRODUCTION
Mobile robots often need the speed of wheeled rolling motion
and the agility of legged locomotion. Especially in envi-
ronments cluttered by obstacles as well as in unstructured
or uncertain environments, hybrid robots that comprise legs
and wheels have the advantage of dealing with most of the
challenges during navigation. Although, rapid sensing and
planning accurately paths, are required for stable, safe, and
efficient mobility in such environments.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuhuan Wen .

In environments that lack free space for navigation, as is
the case in cluttered spaces, planning paths for rolling robotic
platforms is a very challenging task. Sometimes, the motion
is insufficient or infeasible due to collisions or computa-
tionally heavy due to a large number of obstacles in the
surrounding environment. The shape and size of obsta-
cles are also major factors to be considered. This is the
main limitation of robotic platforms that have only fixed
wheels on the robot’s main body. The difficulty for wheeled
robots in navigating continuously increases considerably in
such tight spaces cluttered with obstacles of different sizes
and shapes. On the contrary, legged robots are gaining
more attention lately given their ability to use their high

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 2429

https://orcid.org/0000-0003-1221-9504
https://orcid.org/0000-0002-6233-9961
https://orcid.org/0000-0002-9877-8237
https://orcid.org/0000-0002-7646-4958

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

FIGURE 1. The CENTAURO robot, with its hybrid legged-wheeled mobility modules.

Degrees-of-Freedom (DoF) legs to negotiate uneven terrains
and obstacles via locomotion. Unfortunately, planning such
high-DoF trajectories might be computationally expensive,
while constraints in the stability and safety of the robot need
to be considered at all times. In this work, we use a hybrid
quadruped robot (CENTAURO [1] in Fig. 1) that has wheels
at the end of each foot. In this way, the robot can roll, but
at the same time, it can alter its height and the configuration
and orientation of its legs (i.e., its footprint polygon) to walk
in narrow passages, over obstacles, or even push objects away
in order to create free space. The control of such hybrid
systems might be challenging, given that it might require
switching between rolling and stepping control, with heavy
path planning computations.

Path planning and navigation for wheeled robots have been
extensively studied in the past [2]. The majority of those
works were focused on 2D costmaps or occupancy grids,
in order to allowmobile robots to transit among obstacles [3].
These maps/grids were a result of fast and robust Simultane-
ous Localization and Mapping (SLAM) methods, that were
used to produce autonomous path planning for such robots.
Even though these methods are used efficiently enough for a
robot whose wheels form a fixed footprint polygon, there is
still a research gap for hybrid wheeled-legged robots that can
continuously modify their footprint polygon while navigat-
ing an environment with real-time computations (we review
those in the next section). This is especially true, given that
heuristic graph-based methods, e.g., A*-based [4], that pro-
duce the required paths by treating obstacles and objects as
non-traversable areas in the map. In this way, interactions
with obstacles (e.g., pushing) or transition via other actions
(e.g., stepping-over) are not considered. The ideal scenario
for a hybrid wheeled-legged robot is to roll quickly among
obstacles (either with fixed footprint polygon or a recon-
figurable by expanding for wide and narrowing for narrow
pathways), in order to reduce transit time, and only use the

legs for stepping when it needs to push or bypass an obstacle
via stepping.

This paper is split into two parts. Firstly, we describe our
previously introduced work on a novel global path planner
for hybrid wheeled-legged navigation [5], [6]. The goal of
the method is to reconfigure the footprint polygon of the
robot, by tweaking the leg configuration and the height of the
base from the ground, in order to navigate through obstacles
that cannot be avoided. Those obstacles might be of height
lower than the robot’s pelvis (such that the robot can pass
over them), wider than the robot’s current footprint polygon
(such that the robot can expand its feet to pass over them),
or form spaces shorter than the robot’s current footprint
polygon (such that the robot can narrow its feet to pass via
them). Allowing the robot to navigate like that in the envi-
ronment allows it to find the shortest paths to the destination,
without the need to take large detours around them. Our
proposedmethods are based on the A* [4] and Theat* [7] path
planners and the robot’s capability to dynamically change
its footprint polygon. The introduced shortest path heuristics
consider the trade-off between reconfiguring the footprint
polygon and taking a detour around obstacles. In particular,
two variations of the algorithm are presented. In the first one,
an A* based planner using simple symmetric reconfig-
urable rectangle footprints is introduced. This simple method
allowed the hybrid wheeled-legged robot to navigate among
wide and low-height obstacles and in narrow spaces, using
the rectangular footprint polygon symmetry reconfiguration.
In the second one, we introduce a method to deal with spaces,
where keeping the symmetry of a rectangular footprint poly-
gon is not possible, e.g., when there is not much free space
between a narrow passage and a subsequent wide obstacle.
Keeping the symmetric solution would have resulted in a
collision as the robot would not have had sufficient space to
reconfigure. Thus, a version with improved computationally
efficiency is presented, where the front and back wheel pairs

2430 VOLUME 10, 2022

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

may follow independent control, additionally also using the
functionality of the robot that allows for omnidirectional
motion of its legged-wheels. The result is that the robot is
able to plan paths in tight passages and be agile enough to
navigate via multiple obstacles.

In the second part of the paper, we introduce a new method
to further increase the number of tight scenarios the robot can
solve. A local push planner is designed to allow the robot to
move any small movable obstacle outside the path planned
by the global planners described above. The method uses
line equations and rectangular free-space partitions, object
and contact surface parameterization, as well as pixel coor-
dinate geometry. In this way, it can be determined where
in a rectangular free space partition devoid of any other
obstacles, can the movable object be placed, such that there is
no more obstruction. Thus after the push, the robot can either
go around or negotiate the movable object so as to rejoin
the original plan. The introduced local planner generates
a sequence of pushes that try to achieve three objectives,
namely 1) the robot travels the minimum distance to per-
form the push and rejoin the disturbed pre-planned trajectory,
2) the overall distance the object is pushed is minimum, and
3) the rotation of the object is kept to a minimum. The planner
attempts to keep the rotation to a minimum given that it is not
using the mass or inertial properties. To create the push plan,
the algorithm uses the obstacle centroid, the locations of push
contact points from the centroid, and standard kinematics to
determine the pushes and the effects of the pushes.

The performance of our global planner is tested in simu-
lation and on the real CENTAURO robot for different obsta-
cle scenarios. Furthermore, various image-based simulations
and Gazebo1 simulations of the CENTAURO robot using
the newly proposed local push planner to clear obstructing
obstacles are demonstrated and discussed. The remainder
of the paper is organized as follows. First, in Sec. I-A,
we present related work on reconfigurable planning and nav-
igation among movable objects. In Sec. I-B, we introduce
the CENTAURO robot. In Sec. II, we present our obstacle
negotiating A*-based path planner algorithm and its next
iteration namely Trapezium Line Theta* planner. Following
this, the newly developed local planner prototype algorithm is
explained in detail in Sec. III. This is followed by simulation
and experimental results in Sec. IV and finally, in Sec. V we
conclude with a discussion and future directions.

A. RELATED WORK
Navigation planning is one of the most well-studied areas
in robotics. Shortest path planners, such as Dijkstra algo-
rithm [8], are nowadays outperformed by more advanced
ones, such as the A* [4], where optimal and efficient planning
is plausible. This class of planners discretize the space into
grids and use heuristics to calculate travelling cost distances
between grid points towards a goal. Improvements of A*
have been presented too, such as ThetaStar [7], which allows

1http://gazebosim.org/

continuous angle space exploration. Another class ofmethods
compute costs backwards from the goal grid point. Such
methods are the ARA* [9], D* [10], and D*lite [11].

The Probabilistic Road Map (PRM) [12] is a popular class
of planning algorithms that are typically used for manipula-
tors with many degrees of freedom, while Random Rapidly
Exploring Trees (RRT) [13] operate by incrementally build-
ing a tree and connecting a randomly sampled point to the
closest point on the tree in case a collision-free path exists.
Many future studies like those in [14] and [15], presented
variations that improved upon the original RRT. While PRM
and RRT ensure completeness of the solution, when the
search space dimension is high, the number of computations
is also very high. Furthermore, additional post-smoothing is
needed to make the path found by RRT suitable for robot
traversal. While A* finds the path quicker, in higher dimen-
sions, the graph construction and heuristic cost calculation
can be very complicated. For our current problem of legged
wheeledmotion in a cluttered space but flat ground, wewould
need a multi-dimensional search to take into consideration
the ability to change the base height and footprint polygon
configuration.

All the aforementioned planning methods have been used
extensively to generate navigation paths for robots that are
reconfigurable. For instance, in [16], [17] used reconfigura-
tion for tracked robots but only in order to avoid or climb
on objects. In [18], a tracked robot with an arm is used with
an A* planner to modify its center of mass (but not the
robot’s footprint polygon) in order to safely deal with uneven
terrains. More recently, in [19] a robot that changes its shape
is presented in order to clean ground surfaces. A modified
A* method produces plans in order to increase the covered
cleaning surface at each instance. Compared to our work, and
given the reconfiguration changes the footprint polygon, this
only considers obstacles avoidance, bypassing them. Snake
robots have been also used, given the natural reconfigurability
of their body. In [20], a wheeled snake robot was used with
an RRT* planner, to climb stairs and move around objects
or narrow passages by changing its configuration. The used
following-a-leader approach did not allow for radical polygon
shape changes with 12 s planning times. Multi-modal PRM
is used in [21] to plan simulated paths for the ATHLETE
and HRP2 robots. The ATHLETE is a hybrid wheeled-legged
robot, on which flat terrain and stair negotiation was studied
in simulation. Planning times were around 90 s, but dealing
with obstacles was not studied.

While research on path planning for footholds of humanoid
robots was studied heavily in the past [22], [23], the devel-
opment of hybrid robots with wheels and legs increased
the interest for real-time path planners that can reconfigure
footprint polygon. Closer to our work, in [24], [25], driv-
ing and stepping motions for two, hybrid wheeled-legged
robots (CENTAURO and MOMARO), were studied. Using
ARA* [9], the robots were alternating between rolling and
stepping, without changing the width of the footprint poly-
gon, but rather using rolling-stepping actions in parallel to

VOLUME 10, 2022 2431

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

optimize traversability efficiency. Although, this work, com-
pared to ours, does not address the problem of changing
the footprint polygon in any direction to deal with wide
obstacles or narrow spaces. In [26], an interesting approach
of modelling the robot as a deformable bounding box was
presented. The robots (hexapod and quadruped) were able to
modify their height and width, using a CHOMP planner [27],
to plan collision avoidance in narrow passages and ceil-
ings, as well as to plan going over obstacles. Their newer
work [28] improved upon this by using sampled poses, pose
optimization and trajectory smoothing in a hierarchical man-
ner, to give their legged robots like ANYMal the agility to
accommodate themselves through small gaps, and traverse
cluttered spaces like collapsed structures safely. The primary
difference beyond the obvious difference in the robots used
in the research and our work is that the above mentioned
two works focus on optimising for safe obstacle collision
avoidance to allow for agile and safe traversing. Whereas our
algorithms focus on the distance costs involved in avoiding
the obstacles versus negotiating the obstacles by changing
the robot footprint configuration. Furthermore, while the
algorithms in [26], [28] involve whole-body planning with
a much more complex search space, in our algorithms we
plan primarily for the lower body of the CENTAURO and
attempt to reduce the search space to make the algorithms
computationally moderate and efficient.

In this paper, we aim at novel methods that use the recon-
figurable legs capability of a hybrid wheeled-legged robot,
namely the quadruped CENTAURO. Our goal is to mini-
mize planning times, through flexible cost functions (thus,
not using PRM and RRT). For this reason, we use both
A* and Theta* planners for low-dimensional search space
path searching. In such a way, we are able to narrow or
extend the footprint polygon in order to deal with various
passages and obstacles in the environment. This is done by
utilizing costmaps, Octomap filtering [29], and simple 2D
obstacle segmentation, in order to find safe robot polygons.
The search space is then reduced either using rectangular
footprint polygon-based search in an A* framework [5] or
a more flexible trapezium-like footprint search in the more
versatile Theta* planner framework [6] to allow any-angle
motion as well as independent motions for the front and back
wheel pairs. We use Lidar point cloud data in order to create
costmaps and segmentations in the 2D projections of the
3D point clouds. We would like to note that these methods
have been previously used to plan paths over low-lying rough
surfaces, using the CENTAURO robot [30].

A key aspect of the second part of this paper is that it
is closely related to the popular Navigation Among Mov-
able Objects (NAMO) problem, introduced originally in
[31], [32]. The problem is NP-hard, even in its sim-
ple form, thus, graph-based optimizations were introduced.
After his thesis [33], Stilman, focused on this problem
through a series of interesting papers, e.g. [34]–[36], that
consider unknown environments or locally optimal paths.
The methods have been used on humanoid robots and

wheeled ones, up to an extent (either with known environ-
ments or via open-loop controllers), as well as for robot
arm manipulation [37]. Recently they have been extended
for socially-aware navigation [38], [39], navigation using
scene affordances [40], or even sim2real navigation [41].
In our paper, we are utilizing an object pushing action
planner, based on the NAMO algorithm, introduced in
[35], [38], and perform the pushes using the legs of the hybrid
robot. We use similar region partitioning and setting up of
the push sequences. Furthermore, we adapt it for our hybrid
legged-wheeled robot by clearly defining the types of pushes
the robot can execute and using these actions, each of which
is a clearly defined push type, as principal components of the
push sequence. Our algorithm is not as exploratory or optimal
as those in [35], [38], as we use conservative region parti-
tioning, and simple object parametrization and line geometry
to merely move the object from a pre-planned trajectory,
or to a position it can be avoided/negotiated. This makes the
algorithm computationally moderate and fast. It is to be noted
unlike most NAMO algorithms, we have no knowledge of
the obstacle mass and inertial properties. These planned push
sequences are integrated parallelly into the navigation suite
consisting of the global Trapezium Line Theta* planner that
changes the configuration of the footprint polygon, resulting
in a unified re-configurable path planner.

B. THE CENTAURO ROBOT
Given that the hybrid wheeled-legged robot CENTAURO,
will be used in this paper, we firstly introduce it. It is a
42 Degrees-of-Freedom (DoF) robot. Each leg has 7 motors
and actuated wheels. We assume after experimental justifi-
cation that the maximum footprint polygon width for which
the robot is stable is 1.1m, while the minimum is 0.44m.
Similarly, the maximum height of the robot’s main body is
1m from the ground. The robot includes a VLP-16 Velodyne
Lidar on its head, which also rotates, to provide dense point
cloud data at 40Hz. It also has three realsense D435 cameras,
two of which are attached close to the hind legs looking
towards the front legs and one looking down in the front
center of the robot on the pelvis. The robot and all its sensors
are calibrated, while an odometry-based system provides the
position of the robot in the world.

II. GLOBAL RECONFIGURABLE PATH PLANNER
In this section, we introduce the global path planner that
allows the hybrid robot to reconfigure its legs while rolling,
to facilitate navigation through challenging obstacles and pas-
sages. The incremental development of the re-configurable
local planner was done in two steps. The first prototype
named Obstacle Negotiating A* allowed for the robot to
always assume only rectangular footprints. The length and
breadths of the footprints were varied according to the naviga-
tion plan to perform collision-free navigation. The robot plans
involved expanding over low-lying obstacles, narrowing into
tight spaces and total obstacle avoidance. The second pro-
totype named Trapezium Line Theta*, used trapezium-like

2432 VOLUME 10, 2022

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

footprints to further improve the manoeuvrability of the robot
in tighter scenarios when compared to the first prototype,
therebymaking the robot capable of traversingmore cluttered
environments. For ease of presentation, the two algorithms
will be named Prototype 1 and Prototype 2.

In this section, we will outline step planner algorithms
developed for both prototypes. In both cases, the methods
used for mapping and creation of the navigation search map
were common. The prototype algorithms differed in the base
planner algorithm that was used and in the footprint search
method. While in the first prototype, a rectangular footprint
based search was combined with an A* planner [4], in the
second prototype a trapezium like footprint based search was
combined with a Theta* planner [7] to plan for valid robot
footprints.

A. SEGMENTED MAP CREATION
The creation of the map for performing planner search
is common for both the prototype algorithms. Using the
Octomap [29] and move_bases2 software packages, point-
clouds from the VLP velodyne laser are processed into two
2D image costmaps as follows. The first costmap consists of
all obstacle points, whereas the second costmap consists of
only points at a height higher than a threshold hobs. For most
of our experiments and simulations hobs is set to be 0.4m to
allow for comfortable safe clearance by the base of the robot
if it is to go above a low lying obstacle. The two 3D costmaps
are then converted to grayscale images – Ia and Ib. In these
two images, the white pixels represent obstacles and the black
pixels represent the free space. A third image Ic is derived as
Ic = Ia XOR Ib, which roughly consists of obstacle points
of height lower than hobs, which can be easily cleared by the
robot pelvis. A fourth image Id = Ia − Ic is obtained fol-
lowed by the final operation to obtain the segmented map as
I = 0.5 × Ic + Id . Hence the segmented map classifies
every point on the map as free space (black), clearable obsta-
cle (grey) or non-clearable obstacle (white) using 3 colour
codes (see Fig. 2 for an example). This image is used as the
main 2D map for the introduced variable configuration path
planning development and its pixels form the planner’s query
points.

B. SEARCH METHODOLOGY FOR PROTOTYPE 1
The search for possible paths is done pixel-wise in the created
2D segmented map. The robot is considered a single entity
and with a modifiable rectangular footprint with a constant
constraint on the sum of the length and width. The height of
the base of the robot above the ground is determined using
simple ratios of the width of the rectangle and maximum
and minimum widths of the rectangular footprint. Thereby,
the search is reduced to only valid collision free widths.
An 8-neighborhood search is done to determine motion from
one pixel to another in an attempt to determine the best path.
In this prototype, the robot is always aligned in the direction

2http://wiki.ros.org/navigation

of motion and since a simple A* based grid search was
used, the orientations assumed by the robot were limited. The
following factors are used to determine the cost:

• Deviation from the line joining the current position to
the goal.

• Variation in the rectangular footprint dimensions.
• Total distance being travelled.
• Change in orientation (straighter paths preferred).

Standard A* cost functions for calculating the cost of
moving from parent coordinates (xp, yp) to child coordinates
(xc, yc) are used, with the goal coordinates being (xg, yg).
This refers to the cost of occupying the coordinates and
the heuristic costs. For Prototype 1, they are determined as
follows:

g(xc, yc) = g(xp, yp)+Wt × |δθo| +Wc × |δw|

h(xc, yc) =
√
(xg − xc)2 + (yg − yc)2 +Wg ×

∣∣δθg∣∣ (1)

where δθo is the normalised absolute orientation change of
the robot, δθg is the normalised orientation change away from
the straight line to the goal from the parent point, δw, is the
change in the width of the robot footprint needed to perform
obstacle negotiation if needed to obtain a collision-free path,
while W represent the respective weights which are used to
control the planner behaviour. In-depth descriptions of the
cost equations and the algorithm can be found in [5].

C. SEARCH METHODOLOGY FOR PROTOTYPE 2
Similar to Prototype 1, the second one is also using the
8-neighborhood search, but instead of A*, Theta* is used as
the base planner. This allows for paths to be more flexible and
allows for any-orientation motion, unlike the first prototype
where the motion orientations were limited to multiples of π4 .
Furthermore, the robot’s footprint splits into two rectangu-
lar ones, each for the front wheel pair and the back wheel
pair. This is a difference that is depicted in Fig. 2. This
allows for plans that modify the front and back wheel pairs
independently giving rise to trapezium-like footprints when
necessary.

In addition to the costs mentioned for Prototype 1, the
following are the added costs used for calculating low-cost
paths:

• Variation in individual wheel width pairs.
• Possibility to reach an intermediate search point without
changing orientation (omnidirectional motion without
orientation change for the whole robot is preferred).

The cost functions of Prototype 1 are used here too,
except |w| which is used to represent the absolute sum of
the change of the front and back wheel widths. Furthermore,
since Theta* planner is used, the parent and the child node
need not be immediate neighbours. The best parent node is
chosen using back-tracing, thereby allowing for all possible
orientations of motion from parent to child. A further check
is done to see if the motion from the parent to child node
can be done omnidirectionally. Detailed explanations of the

VOLUME 10, 2022 2433

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

FIGURE 2. Difference in the search methodology of the two prototypes.
In Prototype 1 the maximum of the entire robot polygon area around the
query point is searched to obtain a collision-free configuration. Whereas
in prototype two, two separate neighbourhoods in the vicinity of the front
and back wheel pairs are searched to obtain collision-free widths of the
wheel pairs.

FIGURE 3. Prototype 1 planner executing a plan consisting of expanding
over a low-lying obstacle and then narrowing into the corridor.

FIGURE 4. Prototype 2 planner allowing for any-angle motion alongside
independent front and back wheel pair operation.

variations of the height calculations and the cost functions
compared to Prototype 1 can be found in [6].

The difference in the capabilities of the two prototype can
be seen in the Figs. 3, 4, and 5. Fig. 3 shows the robot
expanding over a low-lying obstacle and then narrowing into
the corridor. However if the distance between the end of
the low-lying obstacle and the start of the corridor had been
lesser than the maximum length of the robot in its narrowest
polygon, the planner would have been unable to find any path.
Furthermore, if the narrow corridor was angled at any orien-
tation other than multiples of π4 , once again navigation would

FIGURE 5. Prototype 2 planner executing omni-directional motion and
independent front and back wheel pair motion with minimal cost, in a
tight constrained environment.

FIGURE 6. Sequence depicting the robot pushing a set of heavy bricks
using a single legged push.

have been impossible. As mentioned earlier, these flaws were
worked upon to improve the planner in Prototype 2. As can be
seen in the simulation sequence in Fig. 4, the robot expands
its front and back wheel pairs independently to negotiate
the low lying obstacle while traversing a corridor angled
at ≈60deg. Furthermore, Fig. 5 shows the robot performing
obstacle negotiation in a very tight space thereby negating
the flaw mentioned earlier while also navigating using omni-
directional motions.

III. LOCAL PUSHING PATH PLANNER
The sequence in Fig. 6 depicts the capability of the robot to
use one of its limbs to push a set of bricks. In this section,
we describe our newworkwhichmakes use of this capability.
In particular, we introduce a novel algorithm that plans a
sequence of object pushes, to clear obstructing obstacles.
The goal is to move an obstacle away from a pre-computed
trajectory (provided by the global planner, see Sec. II) or push
it to a location where it can be avoided or negotiated. The
obstacle’s mass and inertial properties might be unknown.
The planner aims to perform a minimal amount of pushing,
as well as travel the least distance to perform the pushes and
rejoin the original path plan. The distance travelled by the
wheels, the configuration changes, the overall translation of
the centroid of the object, and the rotation of the object while
performing the pushing sequence will be the necessary part
of the weighted additive costs to be minimised.

This local push planner will run at a higher frequency than
the above discussed global planner (Sec. II). The two planners
in the future will be combined to form the full agile navi-
gation system for the hybrid CENTAURO robot. The global

2434 VOLUME 10, 2022

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

motion planner gives initial plans to traverse cluttered spaces,
ignoring pushable objects that can be viewed by the sensory
system (e.g., Velodyne) during the planning phase. On the
other side, the local planner will refine these plans to push
obstacles out of the plans that are computed by the global
planner. This is especially useful in a scenario where global
plans cannot be calculated due to an object blocking the path
to a goal and the object can neither be avoided nor negotiated.
In cases that an object is pushable, the global planner might
take that into account in order to make plans that can be
further refined by the local planner. This will be done by
pushing the object, such that the global path becomes clear
for the robot to pass through. An example of such a scenario
can be seen in Fig. 7, where the pushable object (grey) is
inside a small passage. The blue, red, and green arrow lines
represent the pre-planned front left wheel, robot center, and
front right wheel trajectories, respectively. The lack of space
on the side, as well as the width of the object being greater
than the maximum expansion width of the robot, makes it
impossible to plan a path inside the passage. The new pro-
posed algorithm and solution (i.e., pushing the obstacle in
order to clear the passage) can be seen in Sec. IV (image and
Gazebo simulations in Figs. 16 and 18). In some scenarios,
the solution provided by the new local push planner algorithm
may even aid in reducing the total distance traversed by the
robot as the robot could simply just push one obstacle and
have its path shortened.

The computation of the local plans for our henceforth
named Local Push Planner, in the presence of pushable
obstacles, involves the following steps that will be explained
in detail in the following subsections:
• Region partitioning of 2D environment into rectangular
areas, where collision-free pushing of a movable obsta-
cle can be performed (Sec. III-A).

• Parametrizing the movable obstacle to allow for
repeated, easy, and efficient computations for determin-
ing push sequence. (Sec. III-B).

• Planning the push of obstacles from within a region to a
suitable edge. (Sec. III-C)

• Planning the push in order to move the obstacle from one
region to another. (Sec. III-D)

• Determination either of sufficient clearance of the obsta-
cle from the path or the existence of sufficient space to
negotiate/avoid it. (Sec. III-E).

A. REGION PARTITIONING
The first step of the Local Push Planner, obtains a 2D image
map from the recognition algorithm. This map segments the
image into free spaces (black pixels), immovable obstacles
(white pixels), and movable obstacles (grey pixels), as can
be seen in Fig. 7. We consider as free space the ground
floor that the robot moves on, while movable and immovable
objects can be visually determined by any object recognition
algorithm, such as YOLO [42]. The recognition algorithm
itself is not the main subject of this paper and thus we omit the
details. Notice that we also do not study the problem of having

FIGURE 7. A sample segmented image map on the environment. The
arrowed lines are added to show the pre-planned trajectories from the
global planner. The blue line represents the front left wheel trajectory, the
red represents the robot center trajectory, while the green line represents
front right wheel trajectory.

FIGURE 8. Rectangle partitioning of the environment based on bounding
rectangles of the immovable obstacles.

visually movable objects that are immovable (e.g., a box that
is too heavy to be pushed) and we leave this as future work.

We form bounding rectangles around the white patches to
determine conservative coordinate limits of the immovable
obstacles. Using these bounding rectangles we partition the
environment into a set of rectangles as can be seen in Fig. 8.
These individual rectangular partitions are then processed and
stored in a structure, where each element contains the largest
possible set of contiguous rectangles forming a larger one, but
devoid of any immovable obstacles. The first element of the
structure consists of the largest rectangular region containing
the robot in its initial position, with the subsequent elements
containing rectangular regions in a directional sequence sim-
ilar to that of the expected pre-planned trajectory. Therefore,
during the algorithm processing, moving from one element
to the next will actually mean moving from one rectangular
region to the next possible, while moving in the same direc-
tion as the pre-computed robot path trajectory.

An example of the partitioning and subsequent creation
of the directional structure of rectangular free spaces can be
seen in Fig. 9. As can be seen, the pre-planned trajectory

VOLUME 10, 2022 2435

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

FIGURE 9. Example of computation of connected free-space rectangle
regions. The various colours represent different regions or free space
partitions.

runs from the left to the right part of the image (blue for
the front left wheel/foot, red for the robot center, and green
for the front right wheel/foot), hence connected rectangular
regions are also formedwith similar directions. The algorithm
will attempt to find the appropriate rectangular free-space
partition to allow the placement of the object such that the
robot can try to go around it or otherwise negotiate it. In the
case of Fig. 9, the movable obstacle is present in the pink and
the yellow rectangles. Thus, the processing starts from the
pink towards the yellow region. This is followed by a com-
bination of the blue rectangle and part of the yellow shaded
regions aligned with the blue and green shaded rectangles.
This ensures that modified plans are as close as possible to the
original one, while also ensuring that unnecessary searches in
unneeded directions are not performed.

In each of these rectangular regions or connected parti-
tions, we first test if it is sufficiently large enough to accom-
modate the object. Then we check if there are any points in
the queried rectangular partition where the movable obstacle
can be placed such that the robot can navigate unhindered
to the original trajectory. This can be done either by the
robot footprint having enough space in the new location of
the object to avoid it or the object being low-lying and of
width less than the maximum width of the robot, thereby
allowing it to be negotiated. If no such point is found in
the queried partition then, the obstacle is pushed to the next
partition as computed by the directional structure containing
the sequence of rectangular partitions. This is detailed in the
following subsection.

B. OBSTACLE PARAMETRIZATION AND PUSH
PLANNING IN FREE SPACE PARTITION
While testing the ability of an object in a rectangular free-
space partition to be cleared by the wheel trajectory, we test
for clearance from three trajectory lines. These are the
front left wheel, front right wheel, and the robot center
trajectory lines. The clearance testing for a single trajec-
tory line is detailed as follows. Consider Fig. 10, where an

FIGURE 10. A scenario of a movable object (yellow patch) at one edge of
a rectangular region (red rectangle). The wheel trajectory (blue
arrowed-line) collides with the movable obstacle.

FIGURE 11. Determination of push contact points and push directions at
respective contact points. The push directions represented by arrow lines
are perpendicular to the surface containing point of contact. The red
dotted line is the collision free path around the obstacle tracing the start
points of the push direction vectors.

object (in yellow) needs to be pushed clear of the wheel
trajectory (blue line). The object hence needs to be pushed
in a manner that its centroid is moved to some point inside
the red-rectangular free space region. In this case, the goal
is to ensure none of the object pixels collides with the wheel
trajectory line.

We begin, by first determining the push contact surfaces,
using the edge pixels coordinates of the object. Since the
resolution of the image is 5cm per pixel and the length of
the face of the CENTAURO foot is 25cm (justification of the
selected values in the global planner work [6]), we search all
the edge pixels of the obstacle in the image in sets of 5 in
order to find smooth surfaces. The angle between vectors
from the first to the third pixel and from the fifth to the third
pixel is used to determine if the surface is smooth or not. This
eliminates sharp corners for the safety of the robot. We then
determine the push direction to be always perpendicular to the
push surface. This is done to ensure maximum contact with
the surface for the duration of the push. As can be seen in
Fig. 11, we furthermore find a collision-free path connecting
all the start points of push actions. This collision-free path
around the obstacle is used to determine if the robot has
sufficient space to move around the obstacle and rejoin the
original pre-planned trajectory after pushing it to a suitable
location. If this is done, the robot can continue executing the
plan.

From this step, we use the complete set of push surfaces
and push direction vectors to completely represent the object.

2436 VOLUME 10, 2022

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

The surface contact points are stored as vectors from the
centroid and the push directions as unit direction vectors.
Let us represent the n position vectors of the contact points
with respect to the centroid as −→cpi and the push directions as
−→
dpi, where i = {1, . . . , n}. Let the centroid coordinates be
represented as

−→
O = {Ox ,Oy} and the start points for the push

be written as position vectors with respect to the centroid as
−→spi . We aim at finding an

−→
O , such that it satisfies either of the

following conditions:

• All coordinates calculated as
−→
O +−→spi are completely on

one side of the wheel trajectory line.
• All the coordinates

−→
O + −→spi are such that the robot

in its smallest square footprint can easily traverse the
curve traced by the dotted red line, as seen in the sample
Fig. 11, and still be sufficiently away from the rectangu-
lar regions consisting of obstacle pixels.

• The object in the particular configuration and location
can be easily negotiated by simply changing the robot
footprint.

There are multiple possible push execution directions,
while the hybrid CENTAURO robot has the capability to push
an object using various strategies due to its high DoF and
agility. Hence, to limit the search space of possible pushing
strategies, as well as efficiently determine the sequence of
pushes to be performed, we compute a push sequence, such
that its principle components are the push actions. Each push
action can be either of three types of pushes. The first type
of push is the single-legged in place, where the robot merely
moves one of the front limbs to move the object. The second
push type is a single-legged drive through, where only one
limb is in contact with the obstacle and the whole robot
moves to push it. The last push type is the two-wheeled drive
through, where the robot moves while both the front limbs are
in contact with the object being pushed. We accumulate a set
of push actions to create a push sequence. To determine the
set of pushing actions, we first determine the reachable set of
contacts point based on the angle of push and current robot
orientation and position. If the angle of the push vector with
respect to the direction of the eventual motion of the robot
is within 90 degrees, then it is deemed a useful push. This,
in turn, means that we discard any pushes that move the object
back, towards the robot center.

Once we have a set of reachable and usable robot push
contact points and push direction vectors, we create a final
set of all possible valid push actions as follows. First, all valid
push vectors are stored as single legged pushes that cause a
translation along the line joining the contact point and object
centroid, represented as a unit vector −→tpi . The corresponding
component of

−→
dpi perpendicular to the line joining the contact

point and centroid is calculated and represented by −→rpi . The
rotation caused by a single push

−→
dpi for translating the object

by two pixels or 10cm is calculated as follows:

θpi = 0.1×
|
−→rpi|

|
−→tpi | × |

−→
lpi |

(2)

The 0.1 value stands for the overall tangential velocity
magnitude for a motion of two pixels, which is set to 10cm/s
for our robot, and

−→
lpi = (lix , liy) represents the vector from the

push contact point to the centroid. Effectively, we calculate a
simple kinematic angular velocity and assume the motion is
performed in 1 s, leading to a rotation of θpi.

For two-wheeled pushes, we just select two push direc-
tions that are within 15 degrees of each other and the two
contact points have a distance between the minimum and
maximum widths of the possible robot footprints which in
our case is either 9 − 22 pixels or 45 − 110cm. The above-
mentioned angle restriction allows for the robot to make and
maintain simultaneous double contact while pushing, thereby
reducing the uncertainty of the pushes. The single-wheel
push calculations are used to find the effective translation
and rotation. As can be inferred, two-wheeled pushes with
opposite rotations will lead to a smaller amount of object
rotation and more stable pushes. Hence, this will be preferred
for long range movements of the object.

Once the set of single- and double-wheeled pushes are
assembled, costs are assigned to them and stored in another
structure to be used for determining the best sequence of
pushes. As can be observed from the very simple kinematic
calculations, the algorithm does not take the mass of the
object being pushed into account nor the inertial distribution.
While the pushing is being carried out, the robot limbs are
in position control mode, hence the force exerted on the
object being pushed keeps increasing until the specified push
motion is executed to completion. Without advanced learning
and recognition algorithms, we cannot entirely determine the
mass of the object from simple visual sensing and mapping
algorithms with inputs from sensors like the Velodyne or
the Realsense D435 look-down camera mounted on the hip
of the robot. Hence we use simple kinematic calculations
and position control to push the unknown object. This is
also the primary reason that necessitates a very conservative
rectangle-based partitioning, in order to determine the space
in which the object can be moved. In case the push execu-
tion causes the object to not move as expected, unnecessary
collision with the other environment objects can be avoided.
Furthermore, the push sequence computation algorithm will
attempt to use pushes with lesser rotations, as this will reduce
the uncertainty in the motion of the object being pushed.

In the following subsection, we will explain the computa-
tions that are involved in order to determine required pushes
that take an object to a free rectangular-partitioned space.

C. DETERMINATION OF FEASIBLE GOAL POINTS
Considering again Fig. 7, the goal is to push the object com-
pletely below the blue wheel trajectory line. First, we deter-
mine the coordinates of the intersection between the region
rectangle and the wheeled trajectory. Then, we fit a line, with
the equation being ax + by+ c = 0, between the two points.
The space below the line is represented as: ax + by+ c > 0.
Let the rectangular region be represented by minimum

VOLUME 10, 2022 2437

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

Algorithm 1 Push Sequence Creation for Rectangular
Partition Ri
Require: Robot left, center, and right trajectory line inequal-

ities Tl , Tc, & Tr
Require: Parametrized obstacles, initial obstacle centroid

coordinates Ox ,Oy, contact point vectors, push directions
(tpi) and push rotations.

Require: Pre-determined cost weights C1,C2,C3,C4
for all Ti do

Find all qix , qiy, satisfying (3)
Sort all qix , qiy based on distance from current OX ,Oy
for All qix , qiy do

Greedy search of push actions based on tpis
Check collisions & robot escape from obstruction
Dr ← Total distance travelled by robot center
Dw← Distance travelled by wheels
Do← Distance travelled by object centroid
Dt ← Rotation of the object
Cixy← Cost to move to qix , qiy
Cixy = C1 ×Dr +C2 ×Dw +C3 ×Do +C4 ×Dt

end for
end for
if solution coordinates qix , qiy found then

Choose push sequence and qix , qiy with min Cixy
else

Find min. rotation push to next partition
end if

and maximum coordinates (xmin, ymin), (xmax , ymax). Then,
we find all queried coordinates −→q = (qx , qy) inside the
rectangle, such that they satisfy the following conditions:

xmin ≤ qx ≤ xmax
ymin ≤ qy ≤ ymax
a(qx + six)+ b(qy + siy) > 0

(qx + six , qx + siy) /∈ XObs (3)

If we are able to find points satisfying all the conditions
in (3), thenwe have a goal coordinate for the object’s centroid.
Thus, the object can be moved to a point in the free space
region, where there is no more obtrusion in the wheel trajec-
tories. Furthermore, the last condition ensures that none of
the surface contact points are in obstacle regions represented
by Xobs. This is a check that can be done very quickly using
just the bounding rectangle coordinates.

Starting from the first partition occupied by the object, the
aforementioned process is applied to find out all the possible
points that the centroid can be moved to in that particular
partition, so as to clear the trajectory line in query. Three
trajectory lines are considered namely the front left wheel
trajectory, the front right wheel trajectory, and the robot center
trajectory. If any of these trajectory lines intersect with the
object, then the above-described process is repeated as many
times as the trajectory intersections. We also check if the

object can be moved to either side of the trajectory lines
within the partition being examined.

Hence, for every one of the three trajectory lines inter-
secting with the movable obstacle, we get a set of possi-
ble coordinates where the obstacle can be moved to. This
clears the lines and leaves the obstacle within a free space
rectangular partition. Furthermore, the aforementioned steps
are repeated for different orientations of the obstacle. In case
no solution is found in the current orientation, the object is
rotated by 5 degrees and similar steps are carried out.We limit
the rotation of the object to a maximum of 30 degrees, as it
means that the robot will have to completely turn itself in
order to rotate the object. Thereby, the robot will diverge from
the original plan by too much. In the case of mathematical
operations, as we represent the object by a simple set of
contact points with vectors to the centroid, a simple rotation
matrix multiplication with the vectors is all that is needed to
re-run the tests mentioned in (3).

In the case that all the conditions except the line inequal-
ity are satisfied, then it means that the object needs to be
moved through the rectangular region to another neighbour-
ing region. In this case, the object is moved in the direction
of the pre-planned trajectory to the next connected free space
rectangular partition. This takes place using a sequence of
motions that involves the least amount of rotations and least
distance travelled to reach the edge of the current rectangular
partition it is situated in.

The determination of the sequence of pushes to reach either
the goal coordinates in the partition or the edge of the partition
shall be detailed in the next subsection.

D. DETERMINATION OF PUSH SEQUENCE
The first point to be noted is that we are merely trying to push
the object in a rectangular region known to be free. Hence,
considerably greedymethods can be used to find the sequence
of actions from a given set of push actions.

We run an iterative local region loop to determine the push
sequence. We have two scenarios. The first is that inside
the given local region, it is impossible to clear the wheel
trajectories. In this case, the goal would be to move the
obstacle from one region to the next possible region, with
minimal possible rotation.

As mentioned earlier, we either have a set of coordinates
that the object can be moved to, such that the queried wheel
trajectory line is cleared or it can be pushed to the next free
space rectangular partition.We sort the coordinates in ascend-
ing order of distance from the current centroid coordinate.
All the possible pushes are normalised, so that the appli-
cation of one such push, results in the same amount of
translation.

Loops are run through each of the possible goal coordinates
to determine the sequence of pushes that leads to the centroid
of the object at one of the goal coordinates. The determination
is performed as follows:
• First, a vector from the current centroid coordinate to the
goal coordinate is calculated.

2438 VOLUME 10, 2022

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

• The push that has a translation vector closest to the
direction of the vector computed in the previous step is
chosen.

• The set of pushes with the least number of deviations,
rotations, and number of steps are chosen and stored,
using a simple greedy loop.

• In the case that the target is not reached in a nominal
number of steps, it is checked if the predicted coordinate
is in the set of goal coordinates. If so, then the push is
accepted, otherwise, the push sequence is computed for
the remaining goal coordinates.

• At each computation step of the sequence, every push
action is checked in order to determine if the robot can
move using the collision-free connected loop around
the object to the right push start points without collid-
ing or exiting the free space rectangular partition (the
connected loop was computed while parametrizing the
object). The free space partition boundary checks is
done using simple minimum and maximum coordinate
checks.

The above sets of steps are repeated for each trajectory
in line, passing through the queried rectangular free space
partition. All possible sequences of solutions are stored, costs
are assigned based on the distance of the push, the rotation
caused by the push and the distance moved by the robot to
cause the push. This ensures that pushes that involve lesser
rotations and changes in the push action sequence are chosen.
A brief description of the flow of computations of the new
local push planner for on single rectangular partition can be
seen in Algorithm 1.

E. EXECUTION OF THE PUSH SEQUENCE BY THE ROBOT
As mentioned earlier, the robot has multiple ways of execut-
ing the push: 1) it can stand in place and perform a single
legged push, 2) it can drive through and perform a single
legged push, and finally 3) it can perform a drive through
double legged push. To further simplify the process of choos-
ing which method would be best, the following decisions are
taken:
• If the single leg push is chosen and it is on the right side
of the object with respect to the robot and the push results
in anti-clockwise rotation, we always push with the front
left so that the robot doesn’t rotate into the polygon of
the robot.

• Same is done for the opposite rotation and relative posi-
tion of the push with respect to the robot.

• Drive-through pushes with minimal rotations are pre-
ferred if this allows for the robot to not have the need
to change its configuration.

The above decisions are included in the cost as the distance
travelled by the robot to reach the push contact point and the
distance travelled by the wheels to execute the configuration
changes needed to perform the push.

F. TERMINATING CONDITIONS FOR THE PLANNER
As mentioned earlier, we check if we can push the object
completely to one side of the trajectory line or push it

sufficiently far from all obstacle regions. The second of the
above conditions can be easily verified by checking if all the
push start points are sufficiently distanced from the obstacle
rectangle lines. The sufficient distance is ensured, simply by
checking if the robot is in its minimal square configuration
(the footprint is a 50cm2 square). If the robot was at the
queried push start points, does not cross over into the obstacle
regions, it would mean that the robot can freely move around
the object and hence rejoin its original trajectory.

Another terminal condition is to see if the pushed object
at any part of the plan is in such an orientation that it can
be negotiated by changing the footprint configuration. Once
again this is a simple calculation of orienting the points in
the direction of the robot and merely finding the horizontal
extremities of the obstacle pixels to determine if the robot can
expand over it. This is a process similar to the computations
used in the global planner of Prototype 1, as explained in
Sec. II-B, but on a smaller scale to perform quick operations.

When either of these terminal conditions ismet we stop any
push sequence calculations and pass on the new trajectory to
the trajectory execution interface.

IV. EXPERIMENTAL AND SIMULATION RESULTS
In this section, we first briefly discuss the experimental
results obtained on the real CENTAURO robot using the
plans from Prototype 1 and Prototype 2 of the global planner
algorithms, described in Sec. II. This is followed by the
simulation results of the new local planner presented in this
article, as described in Sec. III.

A. EXPERIMENTAL RESULTS OF PROTOTYPE 1 AND 2
Fig. 12 shows a simple execution of the global plan, where the
robot needs to narrow itself into a passage, created by the tall
concrete bricks, to reach its goal. It is to be noted, that the
footprint width signifies the distance between centers of the
wheels. The robot initially was in an expanded configuration,
with the width of the rectangular footprint being 100 cm,
whereas the safe width of the narrow passage was only 75 cm.
The computation time of the plan being executed in an Intel
Corei7-6700 PC with 24GB RAMwas approximately 0.11 s.

Fig. 13 shows a longer and slightly more complicated plan
execution, where the robot has to firstly narrow into a passage
and then expand over the low-lying obstacle on which the
target goal coordinates were set. The width of the passage
is 80 cm. The robot starts in the expanded configuration with
a footprint width of 100 cm, then narrows to 60 cm in the
narrow passage, and finally expands to a safe width of 76 cm
over the low-lying obstacle of width 50 cm. The computation
time of this plan was roughly 0.23 s.

It should be noted from Fig. 13 that the distance between
the narrow passage and the low-lying obstacle in the front,
is longer than the length of the robot in the narrow configu-
ration. Had that not been the case, no plan would have been
found. This flaw, as explained earlier, is solved in Prototype 2
as can be seen in Fig. 14, by having the robot operate
its front and back wheel pairs independently. The distance

VOLUME 10, 2022 2439

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

FIGURE 12. Sequence depicting the CENTAURO robot narrowing into the space in between the tall bricks to reach outside the narrow passage.

FIGURE 13. Sequence depicting the robot first narrowing in the corridor and then expanding over the low-lying wide object over which the target goal
coordinate was specified.

between the narrow passage and the low-lying obstacle is
much shorter than the case of Prototype 1, but as the front
and back wheel pair operations are independent, the robot
has sufficient agility to navigate the environment. Once again,
the width of the passage is 75 cm and the width of the low-
lying object is 50 cm. The distance from the end of the narrow
passage to the object is 80 cm, which is 30 cm less than the
length of the robot in the narrowest configuration, i.e. when
both wheel pairs are inside the passage. The robot first omni-
directionally aligns itself with the passage. Then, the front
wheel pair narrows from a width of 70 cm to 50 cm, followed
by the same operation being done by the back wheel pair.
Finally, while exiting the passage the front wheel pair alone
expands to a width of 80 cm. The time to compute these plans
once again executed on an Intel Corei7-6700 PC with 24GB
RAM was 0.0634 s on average.

B. SIMULATIONS OF THE LOCAL PUSH PLANNER
We first present simple image-based simulations, depicting
just the push sequences planned for two scenarios where the
path of the robot is blocked. The scenarios and the solutions,
as seen in Figs. 15 and 16, depict the utility of the Local Push
Planner in the specific scenario of an object obstructing the
entry into a corridor/passage.

In Fig. 15, the obstructing object is before the planned entry
into the passage, between the two white obstacles. The robot

just uses a single-drive through-push to completely move the
obstacle out of the path, allowing the robot enough space
to move into the corridor without the need to change the
configuration. The time taken to compute the push sequence
was 29 ms on an Intel i7-6500U core, 16GB RAM laptop.

The sequence in Fig. 16, depicts the solution to the scenario
in the previously presented Fig. 7, where the obstructing
object is already inside the passage, through which the robot
has planned to pass through. In this scenario, the planner
chooses to move the object with the double legged drive-
through push till it reaches a point where it detects it is in
a sufficiently large free space partition and the object can be
moved outside the path. Here the robot shrinks and performs a
single legged push to translate and rotate the object away from
the pre-planned front left legged trajectory. Thereby, it allows
the robot enough space to escape the obstruction after per-
forming the minimal required push. 33 ms was needed to
compute the push sequence for this scenario.

Now we present the results of the simulated CENTAURO
robot executing local push plans, through means of Gazebo
simulations. The first simulated sequence can be seen in
Fig. 17. In this situation, a long obstacle is obstructing the
entrance to the corridor. The global planner ignores the
obstructing object and plans the path through the corridor.
The local planner then sees that the obstructing object can
be moved to a place inside the same rectangular free-space

2440 VOLUME 10, 2022

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

FIGURE 14. Sequence depicting the robot executing plans from Prototype 2. The robot omni-directionally aligns with the narrow passage, first narrows
the front wheel pair to enter the passage, then the back wheel pair to pass through the passage. Finally it expands the front wheel pair to negotiate to
go-over the low lying obstacle.

FIGURE 15. Image simulation sequence depicting push motions. The
grey/purple obstacle blocks the passage between the immovable white
obstacles. The purple pixels show the position of the pushed object over
the execution of the planned single wheeled push sequence. The orange
rectangle depicts the robot.

partition, like that of the initial coordinates of the object using
a simple single-leg push. In this case, the single-leg push
could be executed using simple drive through motion and
hence the object is cleared just enough to allow the robot to
safely enter into the passage. It can be seen that the planner
chose to keep pushing the obstacle until it is clear of the pre-
planned front left wheel trajectory of the robot. If instead,
it had chosen to only clear the robot center trajectory, the
robot would have had to change its footprint configuration to
the narrowest polygon to enter the passage. In this case, the
weighted cost of the overall distance travelled by the wheels
for the configuration change, outweighed the small extra
distance of pushing, as the robot would have had to move
in a configuration close to the minimal square configuration
(square footprint of side 50cm) to safely enter the passage

FIGURE 16. Image simulation sequence depicting a double legged drive
through push sequence execution followed by a single legged rotating
push to clear the robot of the initial planned path so as to allow the robot
enough space to rejoin the planned again by going around the object.

without colliding with the wall. Furthermore, the cost of the
push would have been low as it involved minimal rotation.

Fig. 18 depicts the Gazebo simulated CENTAURO robot,
performing the push sequence planned for the situation in
Fig. 7. It should be noted that even the drive-through push
is not entirely accurate, but the conservative nature of the
plan ensures the lack of collisions with the other obstacles.
Furthermore, since the object is wider than 1.1m, the robot
cannot negotiate it unless the object is rotated by more than
50 degrees. It is worthwhile to note that the robot could
have continued to push the object in drive-through mode for
longer, and then moved around its edges. But in this case,
the robot, by rotating the obstacle after pushing it through the
passage, performs pushing for a smaller distance in terms of
translations. Furthermore, since it changes configuration to

VOLUME 10, 2022 2441

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

FIGURE 17. Simulation sequence depicting the robot clearing the obstructing obstacle using a single legged drive through push and then
entering the corridor.

perform the push as well as move to one side of the object
(thereby already in the process of going around it), it travels
slightly less distance to rejoin the original plan, while also
minimising the distance the object is pushed.

The final simulation, as can be seen in Fig. 19, shows
a sequence of pushes where the robot executes a non-drive
through single legged push. In this situation, a two-wheeled
push would have resulted in more distance pushed for the
object. Moreover, the object would have been rotated more
than in the case where a single horizontal push would be
performed from the side. Since the object is already onto
one side of the exit of the passage and not in the center,
simply pushing it more to the side which it was on the exit of
the passage, meant less pushing distance, and less probable
rotation. Hence, the robot expands fully and moves to the
opposite side, so that the front right leg could move from its
widest position and then push towards the inward direction,
in turn pushing the object to the side. As can be seen, the
robot also moves horizontally after the front right leg reaches
its inner width limit. Then the robot returns, reconfigures
to the smallest and narrowest configuration, and then goes
around the object. As can be seen, the push is not exact, as the
object is rotated to a little extent, but that is fine due to the
conservative nature of our planner.

Through the experimental results of the Prototype 1 and 2
algorithms, we have managed to increase the number of
cluttered environment scenarios the robot can solve and tra-
verse when compared to simple wheeled navigation. This is

done while still allowing us to take maximum advan-
tage of the fast wheeled-motion mode of the CENTAURO.
Furthermore, through our image-based and Gazebo simula-
tions, it can be seen that the robot can easily clear obstacles
from the path. This is especially true in the particular scenar-
ios of blocked entry to or exit from passages. The presented
algorithm though is not without its downsides. All our sim-
ulations consisted of moving only a single obstacle, hence
it is only expected that the computation time will increase
with the increase in the obstacles to be pushed. Furthermore,
complex scenarios where the robot might need to perform
very accurate and precise pushes to avoid damaging the
environment may be beyond the capabilities of the current
algorithm. While the conservative and simplistic geometry
approach may limit us in more complex scenarios, the fact
that we are able to plan these pushes in very short times allows
for potential repeated planning and multi-object pushing in
the future versions of the algorithm. While multiple movable
obstacles in close proximity might hinder the search for
solutions, a simple algorithm that plans for the separation
of objects from one another might be beneficial. In such a
case, instead of pushing the obstacle to clear a trajectory
line, it would be needed to push one obstacle from another.
A similar framework that was presented in this work can
be used with appropriate modifications to clear one obstacle
from a region than a trajectory line. This can be followed
by subsequent planning, using the framework presented in
this work, to clear the obstacle from wheel trajectory lines,

2442 VOLUME 10, 2022

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

FIGURE 18. Gazebo simulation sequence of the scenarios in Fig. 7. The robot performs a two-legged drive through push to
move the obstacle in the small passage before using a single wheeled push sequence to rotate the object, to give sufficient
space to go around the obstacle and rejoin the original plan.

FIGURE 19. Simulation sequence depicting the robot moving through a corridor, clearing the obstructing object and moving forward. The
robot first reaches the obstructing movable obstacle. It then expands and moves to the side to allow the front right wheel to use its full
range of horizontal motion inwards to perform the push and then push the object from the side.

as there is sufficient separation between the objects. The
agility of the robot and the usage of single legged operations
would be sufficient to perform such subtle pushes. Thereby
this improves the ability of the robot to traverse heavily
cluttered spaces.

V. CONCLUSION AND FUTURE WORK
In this article, the development of a reconfigurable and agile
navigation planner suite for hybrid legged-wheeled robots
was outlined. First, the previously developed prototypes for
the global planner were described, comparisons between the

VOLUME 10, 2022 2443

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

prototypes were made, and the results were reviewed and pre-
sented. The plan from the global planner Prototype 2 allowed
for very agile navigation in tight cluttered spaces giving the
robot the ability to solve and traverse more environments
than simple non-reconfigurable wheeled navigation planning,
by using the full capabilities of reconfiguration. At the same
time, the planning search space was designed to be low-
dimensional, allowing for high-speed computations. This,
in the future, would allow for repeated quick long-distance
global planning for the robot.

Following the previously developed global planner, a new
local planner, to clear movable objects obstructing the plans
from the global planner, was introduced. The planner used
line equations, rectangular partitions, object parametrization,
and simple collision checks to determine a sequence of push
actions that lead to minimum rotation, minimum pushed
distance, and minimal configuration changes of the robot in
order to achieve the push and, thus, escape the obstruction.
Image-based and Gazebo simulations, with the CENTAURO
robot, were performed to demonstrate the capability of the
new local planner. This new prototype runs in parallel with
the global planner in the final version of the navigation.

Through the new local planner, the robot is now capable of
traversingmore complex environments by performing a small
sequence of pushes to clear the path and reach target goals.
This will be extremely useful when the robot is commissioned
to perform tasks in cluttered spaces. Furthermore, there exists
onemoremethod of locomotion that the CENTAURO can use
to navigate cluttered spaces, which is stepping over obstacles
of appropriate height. The final version of the suite will con-
tain a step planner, which in the presence of low-height obsta-
cles, will determine safe footsteps and determine if stepping
is worth the safety cost to perform, rather than avoiding or
negotiating the obstacle. Adding a computationally moderate
stepping planner will give the robot another option to navigate
cluttered paths. Together these three computationally moder-
ate components, namely, the global obstacle negotiating plan-
ner, local push planner, and the immediate step planner could
allow for repeated, reliable and quick planning in cluttered
spaces.

REFERENCES
[1] N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, and

E. M. Hoffman, ‘‘CENTAURO: A hybrid locomotion and high power
resilient manipulation platform,’’ IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 1595–1602, Apr. 2019.

[2] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge
Univ. Press, 2006.

[3] E.Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, ‘‘The
office marathon: Robust navigation in an indoor office environment,’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2010, pp. 300–307.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[5] V. S. Raghavan, D. Kanoulas, A. Laurenzi, D. G. Caldwell, and
N. G. Tsagarakis, ‘‘Variable configuration planner for legged-rolling
obstacle negotiation locomotion: Application on the CENTAURO robot,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), Nov. 2019,
pp. 4738–4745.

[6] V. S. Raghavan, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
‘‘Agile legged-wheeled reconfigurable navigation planner applied on the
CENTAURO robot,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2020, pp. 1424–1430.

[7] A. Nash, K. Daniel, S. Koenig, and A. Felner, ‘‘Theta: Any-angle path
planning on grids,’’ in Proc. AAAI, vol. 7, 2007, pp. 1177–1183.

[8] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[9] E. A. Hansen and R. Zhou, ‘‘Anytime heuristic search,’’ J. Artif. Intell. Res.,
vol. 28, pp. 267–297, Mar. 2007.

[10] A. Stentz, ‘‘Optimal and efficient path planning for partially-known
environments,’’ in Proc. IEEE Int. Conf. Robot. Autom., Oct. 1994,
pp. 3310–3317.

[11] S. Koenig and M. Likhachev, ‘‘D*̂lite,’’ in Proc. IAAI, vol. 15, 2002,
pp. 476–483.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, andM.H.Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,’’
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[13] S. M. LaValle, ‘‘Rapidly-exploring random trees: A new tool for path plan-
ning,’’ Dept. Comput. Sci., Iowa State Univ., Ames, IA, USA, Tech. Rep.,
1998.

[14] S. M. LaValle and J. J. Kuffner, Jr., ‘‘RRT-connect: An efficient approach
to single-query path planning,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
Apr. 2000, vol. 2, pp. 995–1001.

[15] A. Atramentov and S. M. LaValle, ‘‘Efficient nearest neighbor searching
for motion planning,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2002,
pp. 632–637.

[16] M. Brunner, B. Bruggemann, and D. Schulz, ‘‘Motion planning for actively
reconfigurable mobile robots in search and rescue scenarios,’’ in Proc.
IEEE Int. Symp. Saf., Secur., Rescue Robot. (SSRR), Nov. 2012, pp. 1–6.

[17] M. Menna, M. Gianni, F. Ferri, and F. Pirri, ‘‘Real-time autonomous
3D navigation for tracked vehicles in rescue environments,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., Sep. 2014, pp. 696–702.

[18] M. Norouzi, J. V. Miro, and G. Dissanayake, ‘‘Planning high-visibility sta-
ble paths for reconfigurable robots on uneven terrain,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS), Oct. 2012, pp. 2844–2849.

[19] A. Le, V. Prabakaran, V. Sivanantham, and R. Mohan, ‘‘Modified
A-star algorithm for efficient coverage path planning in tetris inspired self-
reconfigurable robot with integrated laser sensor,’’ Sensors, vol. 18, no. 8,
p. 2585, 2018.

[20] L. Pfotzer, S. Klemm, A. Roennau, J. M. Zöllner, and R. Dillmann,
‘‘Autonomous navigation for reconfigurable snake-like robots in challeng-
ing, unknown environments,’’ Robot. Auto. Syst., vol. 89, pp. 123–135,
Mar. 2017.

[21] K. Hauser and J.-C. Latombe, ‘‘Multi-modal motion planning in non-
expansive spaces,’’ Int. J. Robot. Res., vol. 29, no. 7, pp. 897–915,
Jun. 2010.

[22] D. Kanoulas, A. Stumpf, V. S. Raghavan, C. Zhou, A. Toumpa,
O. Von Stryk, D. G. Caldwell, and N. G. Tsagarakis, ‘‘Footstep planning
in rough terrain for bipedal robots using curved contact patches,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 1–9.

[23] D. Kanoulas, C. Zhou, A. Nguyen, G. Kanoulas, D. G. Caldwell, and
N. G. Tsagarakis, ‘‘Vision-based foothold contact reasoning using curved
surface patches,’’ in Proc. IEEE-RAS 17th Int. Conf. Hum. Robot.,
Nov. 2017, pp. 121–128.

[24] T. Klamt and S. Behnke, ‘‘Planning hybrid driving-stepping locomotion
on multiple levels of abstraction,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2018, pp. 1695–1702.

[25] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko,
D. Droeschel, and S. Behnke, ‘‘Supervised autonomous locomotion and
manipulation for disaster response with a centaur-like robot,’’ 2018,
arXiv:1809.06802.

[26] R. Buchanan, T. Bandyopadhyay, M. Bjelonic, L. Wellhausen, M. Hutter,
andN. Kottege, ‘‘Walking posture adaptation for legged robot navigation in
confined spaces,’’ IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 2148–2155,
Apr. 2019.

[27] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, ‘‘CHOMP: Gradient
optimization techniques for efficient motion planning,’’ in Proc. IEEE Int.
Conf. Robot. Autom., May 2009, pp. 489–494.

[28] R. Buchanan, L. Wellhausen, M. Bjelonic, T. Bandyopadhyay, N. Kottege,
and M. Hutter, ‘‘Perceptive whole-body planning for multilegged robots in
confined spaces,’’ J. Field Robot., vol. 38, no. 1, pp. 68–84, 2021.

[29] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
‘‘OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,’’ Auto. Robots, vol. 34, no. 3, pp. 189–206, 2013.

2444 VOLUME 10, 2022

V. S. Raghavan et al.: Reconfigurable and Agile Legged-Wheeled Robot Navigation in Cluttered Environments

[30] V. Suryamurthy, V. S. Raghavan, A. Laurenzi, N. G. Tsagarakis,
and D. Kanoulas, ‘‘Terrain segmentation and roughness estimation
using RGB data: Path planning application on the CENTAURO
robot,’’ in Proc. IEEE-RAS 19th Int. Conf. Hum. Robot., Oct. 2019,
pp. 1–8.

[31] M. Stilman and J. Kuffner, ‘‘Navigation among movable obstacles: Real-
time reasoning in complex environments,’’ in Proc. 4th IEEE/RAS Int.
Conf. Hum. Robot., vol. 1, Nov. 2004, pp. 322–341.

[32] M. Stilman, K. Nishiwaki, S. Kagami, and J. J. Kuffner, ‘‘Planning and
executing navigation among movable obstacles,’’ in IEEE/RSJ Int. Conf.
Intell. Robot. Syst., May 2006, pp. 820–826.

[33] M. Stilman, ‘‘Navigation among movable obstacles,’’ Ph.D. dissertation,
Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA, 2007.

[34] M. Stilman and J. Kuffner, ‘‘Planning among movable obstacles with arti-
ficial constraints,’’ Int. J. Robot. Res., vol. 27, nos. 11–12, pp. 1295–1307,
Nov. 2008.

[35] H.-N. Wu, M. Levihn, and M. Stilman, ‘‘Navigation among movable
obstacles in unknown environments,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robot. Syst., Oct. 2010, pp. 1433–1438.

[36] M. Levihn, M. Stilman, and H. Christensen, ‘‘Locally optimal navigation
among movable obstacles in unknown environments,’’ in Proc. IEEE-RAS
Int. Conf. Hum. Robot., Nov. 2014, pp. 86–91.

[37] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, ‘‘Manipulation
planning among movable obstacles,’’ in IEEE Int. Conf. Robot. Autom.,
Oct. 2007, pp. 3327–3332.

[38] B. Renault, J. Saraydaryan, and O. Simonin, ‘‘Towards S-NAMO:
Socially-aware navigation among movable obstacles,’’ CoRR,
vol. abs/1909.10809, pp. 1–13, Sep. 2019.

[39] B. Renault, J. Saraydaryan, and O. Simonin, ‘‘Modeling a social placement
cost to extend navigation among movable obstacles (NAMO) algorithms,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), Oct. 2020,
pp. 11345–11351.

[40] M. Wang, R. Luo, A. O. Onol, and T. Padir, ‘‘Affordance-based mobile
robot navigation among movable obstacles,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), Oct. 2020, pp. 2734–2740.

[41] K. Ellis, H. Zhang, D. Stoyanov, and D. Kanoulas, ‘‘Navigation among
movable obstacles with object localization using photorealistic sim-
ulation,’’ Dept. Comput. Sci., Univ. College London, London, U.K.,
Tech. Rep., 2021. [Online]. Available: https://sites.google.com/view/isaac-
namo/home

[42] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

VIGNESH SUSHRUTHA RAGHAVAN received
the Bachelor of Technology degree in instru-
mentation and control from the National Insti-
tute of Technology, Tiruchirappalli, India, in 2014,
and the master’s degree in systems and control
from Technische Universiteit Delft, The Nether-
lands, in 2016. He is currently pursuing the Ph.D.
degree with the Humanoids and Human-Centered
Robotics (HHCM) Laboratory, Istituto Italiano di
Tecnologia, Genova, and the Department of Infor-

mation Engineering, University of Pisa. His main research interests include
reconfigurable autonomous navigation and sensor data fusion for mapping
and localization.

DIMITRIOS KANOULAS (Member, IEEE)
received the Ph.D. degree from Northeastern
University, Boston. He is currently a Lecturer
(an Assistant Professor) in robotics and compu-
tation at the Department of Computer Science,
University College London (UCL). Before joining
UCL, he was a Postdoctoral Researcher at the
Italian Institute of Technology for five years. His
research interests include robot perception, plan-
ning, and learning, while he has worked on more

than six humanoid/animaloid robots. He has publishedmore than 40 research
articles in high-impact robotic journals and conferences, while he has won
the Best Interactive Paper Award in IEEE Humanoids 2017 and the Best
Student Paper Award Finalist in IEEE ICARCV 2018.

DARWIN G. CALDWELL (Fellow, IEEE)
received the B.Sc. and Ph.D. degrees in robotics
from the University of Hull, in 1986 and 1990,
respectively, and the M.Sc. degree in management
from the University of Salford, in 1994. He is
currently the Founding Director of the Italian
Institute of Technology (IIT), where he is also the
Director of the Department of Advanced Robotics.
He is or has been anHonorary Professor at the Uni-
versities of Manchester, Sheffield, King’s College,

the University of Bangor, U.K., and Tianjin University, China. He is a pioneer
in the development of compliant and variable impedance actuation, soft and
human friendly robotics and the creation of ’softer’, safer robots that have
been fundamental to advances in humanoids, quadrupeds, exoskeletons, and
medical robots. Key robots developed by him and his teams include: iCub, a
child-sized humanoid robot; COMAN, a controllably compliant humanoid;
WALK-MAN, that competed in the DARPA Robotics Challenge; the HyQ
series of high performance quadrupeds; and Centauro, a centaur based robot
for harsh, unstructured environments. He has published over 700 papers and
won/been nominated for over 50 conference/journal awards. His research
interests include medical/surgical robotics, exoskeletons and haptics. He is
a fellow of the Royal Academy of Engineering.

NIKOS G. TSAGARAKIS (Member, IEEE)
received the D.Eng. degree in electrical and com-
puter science engineering from the Polytech-
nic School, Aristotle University of Thessaloniki,
Thessaloniki, Greece, in 1995, and the M.Sc.
degree in control engineering and the Ph.D. degree
in robotics from the University of Salford, Salford,
U.K., in 1997 and 2000, respectively. Since 2013,
he has been working as a Visiting Professor with
the Center for Robotics Research, Department of

Informatics, King’s College University, London, U.K. He is currently a
Tenured Senior Scientist with the Istituto Italiano di Tecnologia, Genoa,
Italy, with overall responsibility for humanoid design and human centered
mechatronics development. He was a Technical Editor of the IEEE/ASME
TRANSACTIONS ON MECHATRONICS. He is on the Editorial Board of the IEEE
ROBOTICS AND AUTOMATION LETTERS.

VOLUME 10, 2022 2445

