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ABSTRACT Railway passenger comfort has been considered a growingly important field to attract more
passengers from other public transports such as air flights. To allow passengers and train companies to
estimate the onboard passenger comfort level, we propose a phone-based hybrid machine learning (ML)
model combining pre-train convolutional neural network as a feature extractor and support vector regressor
as a predictor. To better demonstrate the capacity of the proposed model, two sub-models of the hybrid
model and the same hybrid model but with non-pre-train feature extractor are adopted to be benchmarks.
The raw field data is acquired from a corridor between the University of Birmingham station and Birmingham
International station using phones, subsequently calculated to corresponding comfort level according to UIC
513. The four models are trained by the dataset in two domains — time domain and frequency domain, then
optimized by random search and validated by 10-fold cross-validation. The proposed method yields the best
performance with an R? 0f0.988 4 0.004, a root-mean-square error (RMSE) of 0.028 4 0.015, and a mean-
absolute-error (MAE) of 0.02 £ 0.005. The results of this study underpin the possibility that the railway
passenger has the access to quantify the level of comfort and the real-time assistance for the train driver to

calibrate the driving style from the proposed system.

INDEX TERMS Machine learning, smart phone, vibration, passenger comfort, crowdsensing.

I. INTRODUCTION

The train has gained popularity in many countries as its high
speed and shorter time over air transportation before and after
boarding, especially in short or medium distance travel [1].
With the more demanding requirement of passengers, they
expect a more accurate timetable, higher speed, and more
comfortable service. Passenger comfort is an increasingly
notable area that attracts attention from train companies and
academia to improve it, making railway transportation more
competitive. Roman et al. analyzed the potential competition
of the high-speed train with air transport in the case of
Madrid-Barcelona. They unveiled that passenger is willing
to pay more if the level of comfort drops [2]. Broadly,
passenger comfort is an overall evaluation of the train journey
depending on train vibration, temperature, acoustic, lighting,
interior design, windows, etc. There is no universal standard
to reckon passenger comfort. Section II have summarized
three traditional approaches quantifying railway passenger
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comfort. However, we consider that the implementation of
the three methods is not easy for everyone.

Our research proposes a smartphone-based hybrid ML
model, CNN, to extract informative features from the raw
data and SVR to predict passenger comfort using the
extracted features. The proposed model promises to enable
the train passenger to quantify the comfort level easily and
provide the potential to feedback to the train company. There
is a potential that the train company can use this cost-
efficiency method to monitor the abnormality of passenger
comfort.

A. CONTRIBUTIONS

Our primary contribution is adopting the phone-based ML
model, providing a handy way to measure passenger comfort.
The length of the section is adjustable to fit the specific
train lines. UIC 513 suggests that the passenger comfort is
calculated every five minutes; however, the time gap between
stations is less than five minutes. For instance, the train takes
about 2 minutes from the University station to the Fiveways
station in the UK. More importantly, this framework can be
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implemented to be online assistance to monitor the driver’s
driving style. A shorter period than five minutes is beneficial
to a more explicit monitor.

II. LITERATURE REVIEW

In this section, we have fleshed out the traditional method-
ologies evaluating the railway passenger comfort to date,
the critical status of vibration in railway passenger comfort,
and the highlight of the gaps that may occur in the use of
machine learning in the context of railway passenger comfort
evaluation.

Method 1 - Oboknb and Clarke used a questionnaire
to procure how comfortable the passenger felt about the
journey [3]. They admitted that many pitfalls could emerge in
the interpretation of the data. However, valuable information
can still be extracted if a delicate questionnaire and data inter-
pretation are used. Shinkansen has conducted a questionnaire
to define the impact of physical attributes such as vibration,
acoustics, humidity, lighting, air freshness, air pressure,
seat size, etc., on passenger comfort. It was concluded
that passenger comfort has 70% correlation with vibration,
acoustics, seat size, interior design, and air freshness.

Method 2 - the use of vibration to calculate passenger
comfort has been well established in different regions,
such as ISO 2631, Sperling’s method, and UIC 513. ISO
2631 provides an R.M.S-based approach to evaluate people’s
whole body vibration [4] in various conditions such as in
a building or a car, which has not been adjusted according
to train passengers. Sperling’s method is more suitable for
comparative analysis between vehicles [5], [6]. UIC 513 is
dedicated to guiding the train passenger comfort evaluation
using train vibration.

Method 3 - some of the studies considered using more
features such as ventilation and lighting than vibration [7]
to assess the train passenger comfort. Rather than just
mechanical attributes, [8] introduced biological parameters
such as the variation in heart rate to determine the passen-
ger’s comfort. More physical features (noise, air pressure,
temperature, humidity, and illumination) and physiological
factors (body pressure distribution, Electroencephalography,
and Electromyography) were taken into account in [9] to
estimate the passenger comfort on a high-speed train. Many
pieces of evidence support the use of physiological factors
to reflect the state of humans. However, it is not practical
and expensive to use these features to estimate passengers’
comfort as additional sensors are needed, and it is suspicious
to violate the passengers’ privacy to obtain the physical
feature from passengers. Moreover, there is no universally
applicable evaluation standard for the physiological factors.

It is noted that the three existing methods have no potential
to evaluate passenger comfort continuously. More impor-
tantly, the measurement policy is not user-friendly, which
implies that the execution of the measurement has to be done
by a specialist. For instance, method 1 needs an appropriate
survey. The passenger cannot answer the tedious questions
about every train journey; method 2 demands proper set-up
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of accelerometers to allow vibration collection; method 3
requires experts to commission vibration measurement.

Most existing research recognizes vibrations’ critical
role in this comfort level domain. [10] has claimed the
vibration relevant ride comfort for a passenger train and
the vibration related to a safety concern for a freight
train should be anticipated at the origin of the design
stage. Other studies like [11] strived to enhance a bogie
suspension, hence increase the passenger’s comfort; [12]
has exerted a numerical model validated with the field
test, concluding the rail irregularities with short-wavelength
redounds to passenger’s comfort; subsequently, [13] has used
a magneto-theological (MR) damper to reduce the disutility
yielded by the large-amplitude vibration caused by rail
irregularities. A full-scale examination with the MR damper
was carried out at speeds from 80- 350 km/h, concluding
that excellent comfort was performed according to UIC 513.
[14] considered there is a strong relationship between the
number and the distance of train/bus stops and the comfort
level. In [11]-[14] the common motivation for their studies
is the importance of vibrations as a better bogie suspension
can isolate more vibration to car bodies; irregularities trigger
wilder train dynamic that affects the train vibration; closer
and more train stops lead to more acceleration/deceleration,
subsequently influence the passenger comfort. It is rationale
to adopt vibration to calculate the passenger comfort since the
literature has well established the application and feasibility
of using vibration.

ML techniques have been thrived to process vibration
data in various fields such as structural damage detec-
tion [15]-[17], human activity recognition [18]-[20], and
the prediction of road surface roughness [21]-[23]. These
researches agree with the success of the ML techniques in
vibration analysis. However, there is little study evaluation
of ride comfort using ML in railway vehicles. Azzoug and
Kaewunruen proposed an artificial neural network (ANN)
to predict ride comfort [24]. There was a limitation that the
running vehicle was only allowed to run at 5 - 17 mph.
However, the main interest was testing the feasibility of
a smartphone phone as a vibration collected tool by a
comparative analysis of the data from a sophisticated
accelerometer and two smartphones. It was concluded that
the phone-based accelerometer is trustworthy. The fully
connected ANN has a large number of parameters, making
the model time-consumed to train, especially for the vibration
dataset that each sample is significant in general. We think
that ANN is computational cost to process such data we use.
This issue can be more dominant if the trained ML model
is implemented to a smartphone. Therefore, a more efficient
way is required.

IIl. PASSENGER COMFORT MEASUREMENT

A. UIC 513 GUIDELINE

In 1988, European Rail Research Institute (ERRI) B153
rolled out a UIC standard to assess the passenger level
based on ISO 2631 after decade research. In 1994, the
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FIGURE 1. Flowchart to calculate the passenger comfort level.

TABLE 1. UIC comfort level.

Comfort level Interval Description
1 N<1 Very comfortable
2 1<N<2 Comfortable
3 2<N<4 Moderate comfortable
4 4<N<5 Poor comfortable
5 N>5 Very poor comfortable

standard was rolled out officially, namely UIC 513. This
standard is a statistical method that integrates the relationship
between vibration and human comfort and the impact of the
vibration on ergonomics. UIC 513 is reliable as it focuses
on the vibration characteristics, which predominantly affect
passenger comfort. A comparative analysis based on ISO
2631 and UIC 513 has been conducted in [25] in a field
testing from two corridors, Beijing to Chengdu and Shenzhen
to Guangzhou, showing that the two standards have a large
overlapped with UIC 513 produces a slightly larger area of
uncomfortable than that in ISO 2631. This implies that UIC
513 is more sensitive to the uncomfortable zone.

Fig. 1 provides a flowchart to overview how the data
flow from a smartphone to comfort level using UIC 513.
UIC 513 specifies that passenger comfort is evaluated in
every five-minute section. Each five-minute section is further
split into 60 five-second sub-sections, and each subsection
is transformed to frequency domain before being weighted.
The RMS value of each subsection is calculated. Finally,
the confidence probability of 95% is applied to calculate the
passenger comfort using (1).

Nuw = 6+ (apdos)” + (apdos) + (ahpbos)’ (1)

where:

Ny - the passenger comfort of the simplified measure-
ment.

a - acceleration.

X, Y, and Z - the directions of the acceleration (See Fig. 1).

P - vehicle floor where the acceleration is collected.

Wa, Wp, - frequency weighting where b is for Z direction
anddisfor X and Y.

Subscript 95 - confidence probability.

The ratings of comfort level are tabulated in Table 1. There
are five levels from level one to five. UIC 513 recommends
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FIGURE 3. An example of raw data.

the upper limits of the comfort level for rural trains, traditional
trains, and posh trains are 4, 3, 2, respectively.

The correlation between the frequency of the vibration
and the sensitivity of human beings is complex. To quantify
the physical values of vibration to passengers’ feelings,
the frequency weighting curves in the vertical direction,
longitudinal, and horizontal direction are given in Fig. 2.
Several weighing factors are up to around one corresponding
to some frequencies implying that people are more sensitive
to that range of frequencies such as 0.5 - 5 Hz in the
longitudinal and horizontal directions, 6 - 10 Hz in the vertical
direction.

In our work, we have carried out a data collection
with a smartphone on a return trip from University station
to Birmingham International station. To make sure the
acceleration sensed by the phone is only from the train, the
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phone is asked to remain stable on the floor with no relative
movement with the running train. A mobile app “Phyphox”
is installed on the phone to allow access to the accelerometer
embedded in the phone, visualizing and saving the vibrations.
Fig. 3 provides an example of the raw data, showing the
vibrations in horizontal and longitudinal directions are larger
than those in the vertical direction.

As aforementioned, UIC 513 evaluates passenger comfort
every five minutes. However, we use a slightly different
scenario from UIC 513 since we promise to enable passengers
to quantify the comfort level with their phones, which means
that the passengers will need to keep their phones with no
movement in five minutes. It is not practical for passengers
to place their phones on the floor doing nothing for five
minutes. More importantly, to estimate the passenger comfort
in the section shorter than five minutes, we decide to evaluate
the comfort level on a more detailed scale of five seconds,
the so-called instance comfort level.

IV. HYBRID MODEL DEVELOPMENT

In this section, we discuss the details of how we configure
the hybrid model, hyperparameter optimization, and 10-fold
cross-validation

A. DATA PRE-PROCESSING

There are two datasets used: time-domain and frequency
domain. The two datasets are processed in the same way.
To predict passenger comfort in five seconds, the raw dataset
is sliced into samples, and the first sample Xy is given by

Xo=| : ¢ &)
500 ‘%00 a500

where:

X,: the first sample

a: acceleration

x,y, and z: the three directions shown in Fig. 1.

The subscripts 1 - 500: time steps (100 Hz sample rate is
set, producing 500 timesteps in five seconds.

After the raw data is sliced into five-section windows,
the dataset is split into ten elements with ten equal sizes.
As 10-fold cross-validation is used, every nine elements
are used to train the model, and left one-fold is used to
validate the model. More details on 10-fold validation are
discussed in Section IV (D). It is worth knowing that the
validation set should hold-out and with no touch before the
model is selected. Therefore, when applying the Min-Max
normalization subsequently, only the information from the
training set is employed to normalize the validation set.

B. HYBRID MODEL

CNN is initially designed for classifying images. However,
we still use CNN in our work for two reasons: (1) the principle
of CNN provides a more efficient way than ANN. This allows
us to save computational costs when the proposed model is
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applied to phones. (2) CNN can be an auto feature extractor
to avoid the usage of handcrafted features, which might
introduce human bias if the dataset cannot be understood
thoroughly.

Extensive research has shown that CNN has presented
promising results in a variety of fields as sentences
modelling [26], heartbeats classification [27], and a CNN
for image classification dedicated to phone devices with
significant computational cost reduction [28]. A substantial
advantage of CNN is the reduction of parameters compared
to ANN, which allows a more extensive and deeper model for
a more complex task. To receive a five-second sample, one
node of ANN produces 1,500 weights. One node might not
be capable enough to achieve the required mission so that we
might need to increase the number of nodes that considerably
scale up the size of weights. This situation can become more
dominant if the passenger comfort for a more extended period
is estimated using ANN as the size of each sample is growing.
Another advantage of using CNN is that it automatically
allows the model to obtain abstract features. For instance,
CNN can detect the edge and the simple shapes of the
image in the first layers. The more detailed features can be
extracted in the fowling layers. Our project can also introduce
handcrafted features if the handcrafted features can be pre-
defined by human experts. However, it is hard to cover all the
features essential to the required task and challenging to avoid
bias. UIC 513 infers passenger level based on the intensity
of the vibration, which reflects that the peak of the vibration
plays an important role. However, we should also consider the
intensity at different frequencies as passengers can percept
differently even though the intensity of the vibration is the
same but at different frequencies.

In summary, it is sensible to use CNN as a feature extractor
when the handcrafted features are hard to define. Fig. 4
presents how the data flow in the hybrid model with two sub-
models: CNN and SVR. As shown in Fig. 4(a), CNN outputs
the intermediate features before the prediction layer to the
SVR predictor. Unlike some researches which replaced the
prediction layer of CNN with SVR as shown in Fig. 4(b),
such as [29] to predict guide RNA activity, [30] to predict
wastewater index, and [31] to predict short-term traffic flow.
These works concluded that the hybrid model performs better
than either only CNN or SVR. However, the scenario in
Fig. 4(b) does not present a satisfactory result in our work.
The outcomes that compare the impact of the with and
without CNN prediction layer are shown in SECTION V.

C. HYPER-PARAMETERS TUNING

Zhang and Wallace have carried out an extensive experiment
on the effect of each CNN’s hyperparameter for sentence
classification [32]. Although the goal was different from ours,
we can still use it as a guideline as [32] has included almost
all the hyper-parameters of CNN. The tuned parameters
are listed in Table 2, consisting of the boundary for each
hyperparameter used in the proposed model. Random search,
a strategy for hyper-parameter optimization, is dedicated to
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and (b) non-pre-train feature extractor.

TABLE 2. Hyper-parameter for the hybrid model.

Hyper-parameter

Boundary

The no. of convolutional layers
Filter size
The No. of filters
Activation function
Pooling strategy
The No. of pooling layer
The No. of pooling size
The No. of dense layer
Dense size
Regularization
Dropout rate
Loss function
Optimizer
Momentum
Learning rate
Weight initializer
kernel
Regularization parameter C

1-6
1-15
(32, 64, 128, 256, 512)
Relu, tanh, sigmoid
Average pooling, max pooling
1-6
1-15
1-3
10-700
10,102, 107,104, 10°
0.1,0.2,0.3,0.4,0.5,0.6

Mean square error, mean absolute error

Stochastic gradient descent, Adam
0.7,0.8,0.9

103, 10%, 107, 10, 10%, 10, 107, 10
Glorot uniform, he_uniform, he normal, ramdom_normal

Linear, poly, rbf
1-1000

searching the hyper-parameters with optimal scores [33]. It is
noted that the dropout [34] and the regularization [35] are
used to prevent overfitting. Learning rate decay by epochs is
adopted to speed up the training process given by (3).

learning rate
decay rate = edrming rate 3)
epochs
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D. K-FOLD CROSS-VALIDATION AND EVALUATION
MEASUREMENT

It is easy to yield an overoptimistic outcome if the same
dataset was used to train and evaluate a model as early as
1930 [36]. This issue has been addressed by cross-validation
estimating the model’s performance with a new dataset [37].
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To evaluate a model rigorously and minimize the bias related
to randomly sampling, the way to split the data has been a
major interest as the limited amount of data in practice. Our
study introduces k-fold cross-validation to perform model
selection and compare different learning algorithms. K-fold
cross-validation splits the dataset into k segments with equal
size or approximately equal size where k-/ components are
used to train the model. The kth element is employed to
test the model performance [38]. The k is set to ten as [39]
concluded k = /0 is sensible if we aim to measure the model’s
error.

We adopt three indicators, the coefficient of determination
R?, root mean square error (RMSE), and mean absolute error
(MAE). The definition of RZ makes it useful to estimate the
success of a model predicting the dependent variable from
the independent variables [40]. Both RMSE and MAE are
widely used to measure the average performance of an ML
model, although there are arguments between two widely
cited papers [41], [42]. The dispute is not our interest, so that
we decide to deploy both of the two measures to include their
advantages. The three metrics are given by:

R2 —1— 271:1 (Pi—yi)2 (4)
S i =)
MAE — D ic Lﬁi — il 5)
m w2
RMSE —= M—’y’) (6)
m

where p; and y; are the predictions and the actual values; y
is the mean of the label values in the validation set; m is the
number of samples in the validation set.

V. RESULTS AND DISCUSSION

In this section, we perform the results produced by four
models (CNN, SVR, pre-train CNN + SVR, non-pre-train
CNN + SVR) based on two kinds of the dataset (time domain
and frequency domain). This section commences with Table 3
presenting the optimal hyper-parameters searched by random
search. The results follow the order: CNN, SVR, pre-train
CNN + SVR, and non-pre-train CNN + SVR with time-
domain data and frequency domain subsequently.

Fig. 5(a-c) plots the three measures R?, MAE, and
RMSE using time-domain data to compare the different
performances between each fold. It is very apparent from
Fig. 5(a-c) that the pre-train CNN 4 SVR model has
gained the highest R?, lowest MAE, and RMSE. The pre-
train CNN + SVR model’s R? appears to fluctuate mildly,
unveiling a 0.04 standard deviation as shown in Table 4.
The most interesting aspect in Fig. 5(b) and Fig. 5(c) is that
the non-pre-train CNN + SVR procures a smaller MAE but
larger RMSE than those of SVR in the fifth fold. It is due
to the RMSE squares the error assigning a bigger weight
to more considerable errors. This implies that the non-pre-
train CNN 4 SVR produces some significant error points in
the fifth fold. Although it has been widely argued that either
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TABLE 3. Optimal hyper-parameters.

Hyper-parameter Boundary
The no. of convolutional layers 4
Filter size 5,5,5,3 (layerl to layer 4)
The no. of filters 64,64,64,512 (layerl to layer 4)

Activation function Relu

Pooling strategy
The no. of pooling layer
The no. of pooling size

max pooling

4,4,3,2 (layerl1 to layer 4)

The no. of dense layer 1
Dense size 512
Regularization 103
Dropout rate 0.4
Loss function Mean square error
Optimizer Adam
Momentum Not applicable for Adam
Learning rate le-5
Weight initializer he normal
Kernel linear
C 3

MAE or RMSE should be used [41], [42], it is sensible to
use both RMSE and MAE as biases can emerge in certain
conditions, such as the circumstance just mentioned.

Further analysis of the four models’ performance using
frequency domain data is provided in Fig. 5(d-f). It is noted
that there is no performance for SVR due to the unavailable
using a complex number. In the three subfigures Fig. 5(d-f),
the pre-train CNN + SVR model gives the highest R? and
lowest MAE and RMSE in every fold. It is concluded that
the pre-trained CNN + SVR using the dataset in frequency
domain outperforms all other scenarios, which is further
proven by Table 4 providing the overall performance.

The results, calculated by the mean and the standard
deviation in ten folds in the form of u £ o as shown in
Table 4 [43], indicate the overall performance comparison.
The proposed model illustrates a significantly large average
R? (0.988) than others and the slightest standard deviation
(0.004), yielding a coefficient of variation of 0.4%. The
proposed model is the best in terms of high performance
and satisfactory stability. The average value for MAE and
RMSEis 0.02 and 0.028, yielded by the proposed model, both
indicating that the prediction error is minor. More details at
the sample level can be seen from Fig. 6 in the appendix. Most
of the actual values stay between the region from 0 to 1, which
reveals the tested train line section is at an excellent comfort
level, referring to Table 1. It is worth knowing that our work
uses a regression model that predicts the comfort level’s
exact value, not the interval of the comfort level presented
in Table 1. If we now turn to Fig. 6(i) - fold 9, the predictions
at the two peaks offer an apparent gap from the two actual
values; however, the true values and the predictions remain in
the same comfort interval. It can be observed that the model’s
performance can be enhanced if the label of the dataset is
transformed to the interval of the comfort level.

The three models, the non-pre-train CNN + SVR, SVR,
and CNN, are also tuned by the same method random search.
The difference between CNN and the proposed method is the
prediction layer. The best R> CNN can perform is 0.706 =+
0.129. The reason can be that the prediction layer of the
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FIGURE 5. R2, MAE, and RMSE for four models using time-domain data (a-b) and frequency-domain data (d-f).
TABLE 4. Overall results.
R? MAE RMSE
Data domain Time Frequency Time Frequency Time Frequency
CNN 0.706 £ 0.129 0.592+£0.161 0.07 £0.02 0.083 £0.031 0.177 £0.123 0.222+£0.185
SVR 0.365+0.134 N/A 0.119+0.04 N/A 0.268 £0.216 N/A
Non-pre-train CNN+SVR 0.51+0.202 0.463 £ 00.14 0.099 +0.03 0.112+0.036 0.250 £0.223 0.250 £ 0.226
Pre-train CNN+SVR 0.925 +0.043 0.988 + 0.004 0.036 +0.007 0.02 £ 0.005 0.079 £ 0.047 0.028 £0.015

proposed model is SVR which is more potent than a dense
layer used by CNN. The excellent generalization capability
and accuracy that SVR can achieve have been proven [44].
The effectiveness of CNN to be a feature extractor can
be seen from the comparison of non-pre-train CNN 4 SVR
and SVR. Around a 10% increase of R? can be found from
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SVR to non-pre-train CNN + SVR. A leap of R* has been
observed from non-pre-train CNN + SVR to pre-train CNN
+ SVR. An explanation for this might be that the feature
extractor shown in Fig. 4(a) has been trained to minimize the
loss between the labels and the predictions during the CNN
data flow. The features extracted by the pre-trained feature
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extractor are more informative than those extracted by a non-
pre-train feature extractor shown in Fig. 4(b).

As mentioned in the literature review, the questionnaire
needs massive effort from train crews and passengers, which
may thwart the long-term implementation. Besides, it is
challenging to get away from the false interpretation of the
information collected. In contrast, our system is less likely
to suffer from the effort and time consumed. Besides, the
guideline we used, UIC 513, devotes itself to the vibration,
avoiding subjective judgments in the questionnaire. Our
implementation contrasts with that of method 2 discussed
in the literature review requires an accelerometer to sense
the train vibration and a computer to visualize and save
vibrations. Smartphones provide us with a compact tool to
obtain train vibrations. The results shown in this work also
prove the feasibility of the proposed system at a higher speed
than that of [24] conducted the field test at 5 — 17 mph.

VI. CONCLUSION

This study set out to measure train passenger comfort level
using a phone-based machine learning model. We adopt a
hybrid model combining CNN and SVR. Pre-train CNN
extracts informative features, and SVR predicts the passenger
comfort using the features. With a hyperparameter optimiza-
tion method random search, optimal results are gained to
four models. It has been inferred that the hybrid model
shows superior performance than one of the sub-models. The
most critical finding reveals that a pre-train feature extractor
outperforms the non-pre-train one.

The finding will be of interest to train companies keen
to improve the comfort level. The proposed solution can be
integrated easily into an onboard driving-aided system that
provides real-time feedback to the driver on how the current
driving style impacts passenger comfort. The insights gained
from this study may assist passengers with a simple way
to quantify the level of comfort and engineers a straight
ward way to calculate the comfort index as the traditional
way is more complicated. A limitation of this study is
that most of the actual values in the dataset fall into the
interval from O - 1, as can be seen from Fig. 6. It is
noticeable that this study is limited by the absence of more
datasets with uncomfortable intervals. Despite its limitation,
the proposed model presents a satisfactory result for the
limited uncomfortable samples. The major effort we can put
into making the result more convincing is using 10-fold cross-
validation. Therefore, a larger number of field data with
various comfort intervals could also be conducted to further
determine the proposed model’s effectiveness.

APPENDIX
See Fig. 6.
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