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ABSTRACT A (m, n) sonar sequence is an m × n array with exactly one dot in each column and where
all lines connecting two dots in the array are distinct as vectors. These arrays are known to have many
applications such as sonar and radar detection and these are studied as a particular case of Golomb rectangles
or two-dimensional Sidon sets. The main open problem for sonar sequences is: for fixed m, find the largest
n for which there is an (m, n) sonar sequence, these sequences are called the best sonar sequences. The
extended sonar sequences are generalizations of sonar sequences where each column has at most one dot,
the motivation to study these arrays are the best results obtained when applied to radar and sonar detection.
In this paper, we give the best sonar sequences with m ≤ 100 obtained from an exhaustive computational
search based on the Caicedo, Ruiz and Trujillo constructions and we present new constructions of extended
sonar sequences that use Sidon sets.

INDEX TERMS Sonar sequences, extended sonar sequences, Sidon set.

I. INTRODUCTION
In this paper Z, Z+, Zn and Fq denote the set of integers,
positive integers, congruence classes modulo n and the
finite field with q elements, respectively. For n ∈ Z+,
let [1, n] := {1, 2, . . . , n}.

A set of non-negative integers, in which all the sums of
two different elements are distinct or equivalently with the
property that all the differences of two elements are different,
is called a Sidon set or Golomb ruler [1].

Sidon sets are important by their applications in different
fields of engineering and communications, see [2]–[4]. Sidon
sets are used to generate Optical Orthogonal Codes that are
of great importance in communications [5].

Another application of Sidon sets is to study the Bh
sets [6] and g−Golomb rulers [7]. There are also several
generalizations of Golomb rulers or Sidon sets into two
dimensions, one of the most general is a Golomb rectangle
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was given by Robinson [8] it is an m × n array with k
dots such that all lines connecting two dots in the array are
distinct as vectors, i.e. any two have either different lengths
or slopes. An optimal Golomb rectangle is an array with the
maximum number of points in a given rectangle, the problem
of finding these optimal arrays has been widely studied; no
general solution is known, but optimal rectangles have been
determined for small orders see [9], [10]. The case where
m = n and each row and column has exactly one dot was
first considered by Costas, they are known as Costas arrays.
For complete information of Costas arrays see [12].

Sonar sequences are another class of Golomb rectangles,
they were mentioned in [13]–[15], where m ≤ n and each
column has exactly one dot. These arrays are applied as a
solution to the sonar problem, in radar detection, and physical
alignment. The fundamental problem in the study of the sonar
sequences states that: ‘‘For a fixed m, find the largest n for
which there exists an (m, n) sonar sequence’’. Equivalently
investigate the following function:

S(m) = max{n : there exist a (m, n) sonar sequence}.
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FIGURE 1. (3, 6) sonar sequence.

With the function S(m) we can define the best sonar
sequences.
Definition 1: Let m, n ∈ Z+. An (m, n) sonar sequence

is called the best sonar sequence with parameters m and n,
if and only if, S(m) = n.
For example, the (3, 6) sonar sequence given in Figure 1

where m = 3 is the best because S(3) = 6.
Moreno, Games and Taylor in [13] studied the function

S(m) and found the optimal value of n for m up to 100 with a
computer search. Osorio et. al. [16] studied this function for
small values of m and give the conjecture

lim
m→∞

S(m)
m
= 1.

We can find a trivial upper bound counting the number of
distinct differences of a sonar sequence with m rows, so

S(m) ≤ 2m.

Some researchers achieved best the trivial upper bound,
their results are the following
• S(m) ≤ m + 5m2/3, (Erdös, Graham, Ruzsa and
Taylor [17]).

• S(m) ≤ m+ 3, 78m2/3
+ 4, 76m1/3

+ 2, (Caicedo [18]).
These upper bounds show that for large m, an (m, n) sonar

sequence has to S(m) = n closer to m than 2m.
On the other hand in [19] Moreno, Golomb and Corrada

studied a generalization of sonar sequence where m ≤ n and
each column have at most one dot, they are called Extended
Sonar Sequences (ESS) and has better results to be applied
in the sonar detection because an ESS has the largest n that
a sonar sequence using the same m rows. Moreno et. al. [19]
also, show constructions of extended sonar sequences and a
list of the best possible extended sonar sequences for m up
to 10. Our motivation for considering these sequences come
from new applications to study related concepts, for example,
the ESS are used to obtain new constructions of resolvable
Golomb rulers in [20], for study the Costas extended in [21],
in the search of two-dimensional patterns with distinct
differences and multiple target sonar [22], [23]. In this paper,
we give the parameters of the best sonar sequences with
m ≤ 100 obtained from an exhaustive computational search
based on the Caicedo, Ruiz and Trujillo constructions [24].
Also, we present new constructions of extended sonar
sequences that use Sidon sets, these constructions can be
considered as generalizations of those obtained by Caicedo,
Ruiz and Trujillo in [24].

The rest of this paper is organized as follows. In section II
we give the definitions of distinct difference property
and sonar sequence, in addition, we describe the classic
constructions of sonar sequences. In section III we review the
constructions of modular Sidon sets, constructions of sonar
sequences that use Sidon sets see [24] and the transformations
that can be applied to sonar sequences to obtain better
dimensions see [13], finally in this section we show the best
sonar sequences with m ≤ 100 (see Table 2), obtained
from an exhaustive computational search based on the
constructions of [24]. In section IV we turn our attention
to circular extended sonar sequences that are used to obtain
extended sonar sequences, also we give the formal definition
of ESS. Finally, in section V, we give new constructions of
extended sonar sequences that are a contribution to both the
theory of Golomb rectangles and sonar detection.

II. CLASSIC SONAR SEQUENCES
In the study of the problem of radar detection, Costas was
found that when sending a signal that comes from an array
of frequencies that satisfy the Distinct Difference property,
enough information is obtained to determine the speed and
distance of the object.

The arrays found by Costas can be represented by matrices
with entries in {0, 1} or as sequences of integers whose
elements must satisfy the following property:
Definition 2: The sequence of integers [a1, a2, . . . , an]

has the Distinct Difference (DD) property if and only if ai+h−
ai = aj+h − aj with 1 ≤ i < i + h ≤ n; 1 ≤ j < j + h ≤ n,
implies i = j.
In Costas arrays the frequencies can be sent just once and

each time interval there must be only one frequency. Golomb
and Taylor showed that the first condition is not necessary
i.e., an array with one frequency in every time interval, where
the frequencies can be used more than once and satisfy
the DD property is useful in radar detection. Furthermore,
these arrays provide enhanced results due to the fact that the
received signal contains more information [15].
Definition 3: The sequence [a1, a2, . . . , an] is a sonar

sequence (SS) with n elements over the set [0,m − 1] (or an
(m, n) SS) if it satisfies the DD property. If the differences
are considered modulo m, then it is called an (m, n) modular
sonar sequence (MSS).

In [13] Moreno et. al. constructed new and improve SS by
applying multiplication, rotation and shearing transformation
to Costas arrays andMSS. Table 1 shows the sonar sequences
constructions given in [13], [14].

Using all these constructions in [13], Moreno, Games
and Taylor give a table with the best dimensions of sonar
sequences with up to 100 symbols.

III. KNOWN SONAR SEQUENCES CONSTRUCTIONS
FROM SIDON SETS
One objective of this work is to present new constructions
of extended sonar sequences, these constructions use special

3344 VOLUME 10, 2022



L. M. Delgado Ordoñez et al.: New Constructions of Extended Sonar Sequences From Sidon Sets

TABLE 1. Parameters of modular sonar sequences. here p denotes a
prime and q is a power of p.

one-dimensional Sidon sets as provided by Bose [25] and
Ruzsa [26].

Before we present our result we need to study the
constructions of sonar sequences from Sidon sets. These
constructions were presented by Caicedo, Ruiz and Trujillo
in [24] which are different from the classical sonar sequences.
This constructions allow us to state two constructions of
extended SS as a consequence of Theorem 8.

First, we need to present two constructions of modular
Sidon sets.
Theorem 1 (Bose Construction): Let q = pn be a power of

a prime, α an algebraic element of degree 2 over Fq and θ a
primitive element of Fq2 . Then

B(q, θ, α) = {logθ (α + a) : a ∈ Fq}, (1)

is a Sidon set with q elements in Zq2−1, and logθ (x) is the
discrete logarithm.

The following proposition given in [24] establishes some
properties of the Sidon set obtained by Bose’s construction.
Proposition 1: The set B(q, θ, α) given in (1) satisfy the

following conditions:
B1 0 /∈ B(q, θ, α) (modq + 1) := {bi (modq + 1) :

bi ∈ B(q, θ, α)}.
B2 If bi, bj ∈ B(q, θ, α) with i 6= j, then, bi 6≡ bj (mod

q+ 1).
B3 B(q, θ, α) (mod q+ 1) = [1, q].
Now we present Ruzsa’s construction.
Theorem 2 (Ruzsa’s Construction): Let p be a prime

number and θ a primitive element of the multiplicative group
F∗p. Then the set

{bi ≡ ip− θ i(p− 1)(mod p2 − p) : 1 ≤ i ≤ p− 1}, (2)

which we denote by R(θ, p) is a Sidon set with p− 1 elements
in Zp2−p.
The following proposition given in [24] presents some
properties that R(θ, p) satisfies.
Proposition 2: Let R(θ, p) be the set given in (2):
R1 R(θ, p) (mod p) = [1, p− 1].
R2 R(θ, p) (mod p− 1) = [0, p− 2].
The new constructions of sonar sequences evidenced

in [24] employ Sidon sets, specifically the constructions of
Bose and Ruzsa. Caicedo, Ruiz and Trujillo [24] obtain the
following result.
Theorem 3 (Caicedo et al. Construction): Let

B = {b1, b2, . . . , bn} be a Sidon set in Zmb such that

B (mod b) = [1, n]. If B is ordered in the form that
bi ≡ i(mod b), then the sequence defined by

ai =
⌊
bi
b

⌋
, (3)

for i ∈ [1, n] is an (m, n) modular sonar sequence.
Proof: For the proof, see [24]. �

As corollaries of Theorem III, in [24] are derived three
constructions of sonar sequences.
Corollary 1 (Bose Sonar): Let B(q, θ, α) be the Sidon set

from Theorem 1. The sequence defined by

ai =
⌊

bi
q+ 1

⌋
, (4)

where bi ∈ B(q, θ, α) is the only element such that
bi ≡ i(mod q+ 1), is a (q− 1, q) modular sonar sequence.
Example 1: Let q = 11, α = 4x an algebraic element

of degree 2 over F11 and θ = 2x + 5 a primitive
element of Fq2 . Then, from (1) we obtain the Sidon set
B(11, θ, α) = {8, 13, 15, 19, 28, 29, 46, 54, 83, 86, 105} in
Z120. Now applying (4) of the Corollary 1 we have the
following sequence [1, 7, 1, 2, 2, 4, 1, 0, 8, 3, 6], which is a
(10, 11) modular sonar sequence.
Corollary 2 (Ruzsa Sonar 1): Let R(θ, p) be the Sidon set

from Theorem 2. The sequence defined by

ai =
⌊
bi
p

⌋
, (5)

where bi ∈ R(θ, p) is the only element such that bi ≡ i(mod
p), is a (p− 1, p− 1) modular sonar sequence.
Example 2: Let p = 11 and α = 2 be a primitive

root modulo 11. Then, from Theorem 2 we obtain the set
R(2, 11) = {7, 39, 58, 63, 65, 86, 92, 100, 101, 104}which is
a Sidon set in Z110. Now applying (5) of the Corollary 2 we
have the following (10, 10) modular sonar sequence:

[9, 9, 5, 8, 9, 3, 0, 5, 7, 5].

Corollary 3 (Ruzsa Sonar 2): Let R(θ, p) be the Sidon set
from Theorem 2. The sequence defined by

ai =
⌊

bi
p− 1

⌋
, (6)

where bi ∈ R(θ, p) is the only element such that bi ≡ i(mod
p− 1), is a (p, p− 1) modular sonar sequence.
Example 3: Let p = 11 and α = 2 be a primitive root

modulo 11. Then, from (2) we obtain the set R(2, 11) =
{7, 39, 58, 63, 65, 86, 92, 100, 101, 104} which is a Sidon set
in Z110. Now applying (6) of the Corollary 3 we have the
following (11, 10) modular sonar sequence:

[10, 10, 9, 6, 10, 6, 8, 0, 5, 3].

We utilize the constructions Bose sonar, Ruzsa sonar 1 and
Ruzsa sonar 2 to obtain the best sonar sequences from
Sidon sets. After having used these constructions we did
a computational search with the following transformations,
see [13].
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We denote the set of units of the group G with U(G) and
we refer as sonar array to the representation in an array of a
sonar sequence:
1. Addition by a modulo m, ci = ai + a (modm). This be

in tune to cyclically rotating the rows of the sonar arrays
a units.

2. Multiplication by u, where u ∈ U(Zm), ci = uai(mod
m). This be in tune to a permutation of the rows of the
sonar array.

3. Shearing by s modulo m, ci = ai + si (mod m). This be
in tune to shearing the columns of the sonar sequence by
s units and reducing modulo m.

All these transformations produce an improved sonar
sequence when the size ofm can be reduced. Moreno, Games
and Taylor in [13] showed that the transformations can be
combined as in the following theorem.
Theorem 4: Let ai be an (m, n) modular sonar sequence,

s, a ∈ Zm and u ∈ U(Zm), then the sequence defined by ci ≡
uai + si+ a (mod m) is an (m, n) modular sonar sequence.

Proof: For the proof, see [13]. �
Example 4 illustrates the application of these

transformations.
Example 4: Given p = 7, from Construction Ruzsa

sonar 1 we obtain the sequence [bi : 1 ≤ i ≤ 6] =
[4, 1, 1, 3, 1, 2], which is a (4, 6) modular sonar sequence.
With the parameters u = 1, s = 4 and a = 0 we apply
Theorem 4, so

ci ≡ ubi + si+ a(mod 6),

obtaining the (3, 6) sonar sequence ci = [2, 3, 1, 1, 3, 2].
The array of this sequence is shown in Figure 1. Note that
the sequence ci is better that bi since it requires only three
frequencies.

In Table 2 we give the best (m, n) sonar sequences result
of the computational search with m up to 100 using the
constructions Bose sonar, Ruzsa sonar 1, Ruzsa sonar 2 and
Theorem 4.

IV. CIRCULAR EXTENDED SONAR SEQUENCES
When the sonar sequences were introduced by Golomb and
Taylor it was allowed that a frequency is used more than
once, which showed that the necessary characteristic that
a sequence should have in the radar detection is that its
elements satisfy the DD property. Later Moreno, Golomb and
Corrada observed the behavior of the returning signal finding
always blank time slots, so that the new idea was sending
blank time intervals inside the sequences that satisfy the DD
property to obtain better results, these sequences were called
extended sonar sequences [19]. In the next sections we denote
the blank time slots with the symbol (∗).
Definition 4: If the sequence [a1, a2, . . . , an+k ] is

contained in the set [0,m − 1] ∪ {∗}, have k blanks (∗),
and satisfy the DD property (where we consider only
the differences between numbers). Then it is called
an (m, n, k) extended sonar sequence (ESS).

TABLE 2. Best sonar sequences from Sidon sets with m ≤ 100.

The way to get ESSs depends on the constructions on
circular extended sonar sequences that we define below.
Definition 5: Let c ∈ Z, d ∈ Z+ and the following

sequence

[a1, a2, . . . , an, an+1, . . . , a2n+1]

where an+1 = ∗ and ak+n+1 ≡ ak + c (modd), for
1 ≤ k ≤ n. Now consider the differences

a1+h − a1, a2+h − a2, . . . , an+h − an

where h ∈ [1, n] and where ∗ − ai = ∗. We call this a
modular circular extended sonar sequence if these differences
are always distinct modulo d, with exactly n− 1 differences,
and an ∗.

Now we present the constructions of modular circular
extended sonar sequences given in [19].
Theorem 5 (Circular Extended Logarithmic Welch): Let p

be a prime and α a primitive element of Fp, then consider the
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sequence defined by

ai =


logα i, i ∈ [1, p− 1].
∗, i = p.
logα(i− p), i ∈ [p+ 1, 2p− 1].

where 1 ≤ ai ≤ p − 1. Then the sequence is a
modular circular extended sonar sequence, with n = p − 1,
d = p− 1 and c = 0.
Theorem 6 (Circular Extended Shift): Let p be a prime, α

a primitive element of Fp2r and β a primitive element of Fpr
then consider the sequence for p = 2 defined by

ai =

{
logβ ((α

i)p
r
+ αi), i ∈ [1, 2pr + 1], i 6= pr + 1.

∗, i = pr + 1.

where 1 ≤ ai ≤ pr + 1. For p odd, define ai similarly except
that

ai =


logβ ((α

i)p
r
+ αi), i ∈

[
−(pr − 1)

2
,
3pr + 1

2

]
and i 6=

pr + 1
2

.

∗, i =
pr + 1

2
.

Then the sequence is a modular circular extended sonar
sequence, with n = pr , d = pr − 1 and c 6= 0.
Theorem 7 (Circular Extended Golomb-Lempel): Let pr >

2 be a prime power, α and β primitive elements of Fpr then
consider the sequence defined by

ai =


j, iff αi + β j = 1 where i ∈ [1, 2pr − 3]

i 6= pr − 1.

∗, i = pr − 1.

where 1 ≤ ai ≤ pr − 2. Then the sequence is a modular
circular extended sonar sequence, with n = pr − 2,
d = pr − 1 and c = 0.

V. NEW CONSTRUCTIONS OF EXTENDED SONAR
SEQUENCES FROM SIDON SETS
The extended sonar sequences were introduced in [19]. The
signals provided for these sequences results be better as
they used the same band or number of frequencies with
more elements in the sequence. The new sequences have
consequences in other related concepts as multiple target
sonar and construction of Golomb rectangles [21], [23].

Theorem 8 presents the main result of this work that
shows a new construction of modular circular extended sonar
sequences using Sidon sets. Besides, by using this theorem it
is possible to obtain ESSs, as we will show later.
Theorem 8: Let B = {b1, b2, . . . , bn} be a Sidon set in

the additive group Zm(n+1) such that B(mod n+ 1) = [1, n].
If B is ordered in the form that bi ≡ i(mod n + 1), then the

sequence defined by

ai=



⌊
bi

n+ 1

⌋
, i ∈ [1, n].

∗, i = n+ 1.(⌊
bi−(n+1)
n+ 1

⌋
− 1

)
(mod m), i∈ [n+ 2, 2n+ 1].

(7)

is a modular circular extended sonar sequence with
c = −1 and d = m.

Proof: Let h, i, j be integers such that 1 ≤ h, i, j ≤ n
with i+ h 6= n+ 1 and j+ h 6= n+ 1. Suppose that

ai+h − ai ≡ aj+h − aj (mod m).

We have the following cases:
1) If i+ h < n+ 1 and j+ h < n+ 1. We have from (7),⌊

bi+h
n+ 1

⌋
−

⌊
bi

n+ 1

⌋
≡

⌊
bj+h
n+ 1

⌋
−

⌊
bj

n+ 1

⌋
× (mod m).

So there exists an integer t such that⌊
bi+h
n+ 1

⌋
−

⌊
bi

n+ 1

⌋
=

⌊
bj+h
n+ 1

⌋
−

⌊
bj

n+ 1

⌋
+ tm.

Now, multiplying by n+ 1, we obtain

(n+ 1)
⌊
bi+h
n+ 1

⌋
− (n+ 1)

⌊
bi

n+ 1

⌋
= (n+ 1)

⌊
bj+h
n+ 1

⌋
− (n+ 1)

⌊
bj

n+ 1

⌋
+ tm(n+ 1).

If we add h = (i+ h)− i = (j+ h)− j to both sides of
equation, we have[
(n+ 1)

⌊
bi+h
n+ 1

⌋
+ (i+ h)

]
−

[
(n+ 1)

⌊
bi

n+ 1

⌋
+ i
]

=

[
(n+ 1)

⌊
bj+h
n+ 1

⌋
+ (j+ h)

]
−

[
(n+ 1)

⌊
bj

n+ 1

⌋
+ j
]
+ tm(n+ 1).

bi+h − bi − bj+h + bj = tm(n+ 1),

this implies that

bi+h + bj ≡ bj+h + bi (mod m(n+ 1)).

Since B is a Sidon set in the additive groupZm(n+1),
then {i+ h, j} = {j+ h, i}, and thus i = j.

2) If i+ h > n+ 1 and j+ h < n+ 1. We have from (7),⌊
bi+h−(n+1)
n+ 1

⌋
− 1−

⌊
bi

n+ 1

⌋
≡

⌊
bj+h
n+ 1

⌋
−

⌊
bj

n+ 1

⌋
(mod m).
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So there exists an integer t such that⌊
bi+h−(n+1)
n+ 1

⌋
− 1−

⌊
bi

n+ 1

⌋
=

⌊
bj+h
n+ 1

⌋⌊
bj

n+ 1

⌋
+ tm.

Now, multiplying by n+ 1, we obtain

(n+ 1)
(⌊

bi+h−(n+1)
n+ 1

⌋
− 1

)
− (n+ 1)

⌊
bi

n+ 1

⌋
= (n+ 1)

⌊
bj+h
n+ 1

⌋
− (n+ 1)

⌊
bj

n+ 1

⌋
+ tm(n+ 1).

If we add h = (i+ h)− i = (j+ h)− j to both sides of
equation, we have

(n+ 1)
(⌊

bi+h−(n+1)
n+ 1

⌋
− 1

)
+ (i+ h)

−

[
(n+ 1)

⌊
bi

n+ 1

⌋
+ i
]

= (n+ 1)
⌊
bj+h
n+ 1

⌋
+ (j+ h)

−

[
(n+ 1)

⌊
bj

n+ 1

⌋
+ j
]
+ tm(n+ 1).

Since i+h > n+1, then, replacing i+h = k+ (n+1).

(n+ 1)
(⌊

bk+(n+1)−(n+1)
n+ 1

⌋
− 1

)
+ k + (n+ 1)− bi

= bj+h − bj + tm(n+ 1).

(n+ 1)
⌊

bk
n+ 1

⌋
+ k − bi = bj+h − bj + tm(n+ 1).

bk − bi − bj+h + bj = tm(n+ 1),

this implies that

bk + bj ≡ bj+h + bi (mod m(n+ 1)).

Because B is a Sidon set in the additive group Zm(n+1),
then {k, j} = {j+ h, i}, therefore i = j.

3) If i+ h < n+ 1 and j+ h > n+ 1. We have from (7)
that i = j, by following the same steps as in the previous
case.

4) If i+ h > q+ 1 and j+ h > q+ 1. We have from (7)
that i = j, by following the same steps as in the two
previous cases.

Therefore we have a modular circular extended sonar
sequence. �

As a consequence of Proposition 1, Theorem 2 and
Theorem 8, we have the following constructions of circular
extended sonar sequences. Proofs follow immediately from
Theorem 8.
Corollary 4 (Circular Extended Bose Sequence): Let

B(q, θ, α) be the Sidon set given in (1). Then the sequence

defined by

ai=



⌊
bi

q+ 1

⌋
, i ∈ [1, q].

∗, i = q+ 1.⌊
bi−(q+1)
q+ 1

⌋
− 1 (mod q− 1), i∈ [q+ 2, 2q+ 1].

(8)

where bi ∈ B(q, θ, α) is the unique element such that
bi ≡ i (modq + 1), is a modular circular extended sonar
sequence, with c = −1, d = q− 1 y n = q.
Corollary 5 (Circular Extended Ruzsa Sequence): Let

R(θ, p) be the Sidon set given in (2). Then the sequence
defined by

ai =



⌊
bi
p

⌋
, i ∈ [1, p− 1].

∗, i = p.⌊
bi−p
p

⌋
− 1 (mod p− 1), i ∈ [p+ 1, 2p− 1].

(9)

where bi ∈ R(θ, p) is the unique element such that
bi ≡ i (mod p), is a modular circular sonar sequence with
c = −1, d = n = p− 1.
The Theorem 9 given in [19], allows us to display that from

any circular extended Bose sequence or any circular extended
Ruzsa sequence can be obtained n extended sonar sequences.
Theorem 9: Let d ∈ Z+ and [a1, a2, . . . , a2n+1] be a

modular circular extended sonar sequence with modulo d,
then

[ak+1, ak+2, . . . , ak+n+2],

is a (d, n + 1, 1) extended sonar sequence for every
k ∈ [0, n− 1].

As a consequence, we achieve the following two new
constructions of extended sonar sequences:
Corollary 6 (Extended Bose Sequence): Let

[a1, a2, . . . , aq, aq+1, aq+2, . . . , a2q+1]

a circular extended Bose sequence as in Corollary V. Then
every sequence

[ak+1, ak+2, . . . , ak+q+2],

be a (q − 1, q + 1, 1) extended sonar sequence for
k ∈ [0, q− 1].
Example 5: Let q = 11 and B(11, θ, α) the Sidon set in

Z120 of Example 1. Now applying (8) we have the following
circular extended sonar sequence with d = 10, m = 11.

[1, 7, 1, 2, 2, 4, 1, 0, 8, 3, 6, ∗, 0, 6, 0, 1, 1, 3, 0, 9, 7, 2, 5].

Finally, from Corollary 6 we have the (10, 12, 1) extended
sonar sequences given in Table 3.
Corollary 7 (Extended Ruzsa Sequence): Let

[a1, a2, . . . , ap−1, ap, ap+1, . . . , a2p−1]
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TABLE 3. Extended sonar sequences.

TABLE 4. Extended sonar sequences.

FIGURE 2. (10, 11, 1) extended sonar sequence.

a circular extended Ruzsa sequence as in the Corollary V.
Then every sequence

[ak+1, ak+2, . . . , ak+p+1],

be a (p− 1, p, 1) extended sonar sequence for k ∈ [0, p− 2].
Example 6: Let p = 11 and R(2, 11) the Sidon set in

Z110 of Example 2. Now applying (9) we have the following
circular extended sonar sequence with d = m = 10.

[9, 9, 5, 8, 9, 3, 0, 5, 7, 5, ∗, 8, 8, 4, 7, 8, 2, 9, 4, 6, 4].

Finally, from Corollary 7 we have the (10, 11, 1) extended
sonar sequences given in Table 4.
In Figure 2 we show the (10, 11, 1) extended sonar

sequence given by [9, 9, 5, 8, 9, 3, 0, 5, 7, 5, ∗, 8].

VI. CONCLUSION
In this work we obtain two new constructions of extended
sonar sequences using special one-dimensional Sidon sets,
this contribution is a result for both the sonar detection
and the theory of two-dimensional Sidon sets or Golomb
rectangles. Through a computational search and using Sidon
sets theory tools such as generations of disjoint Sidon
sets and sonar sequences from Sidon sets we provide the

best sonar sequences with m ≤ 100 (see Table 2) these
are particular near optimal Golomb rectangles. On the
other hand, we consider important as future work use
these new constructions in the study of resolvable Golomb
rulers, Costas extended, two-dimensional patterns with
distinct differences and multiple target sonar. Also the new
constructions of extended sonar sequences can be used for
search optimal Golomb rectangles because the Sidon sets
theory is a powerful tool in the computational search.
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