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ABSTRACT The Cpk index was originally created to measure the ability of the processes to produce
products meeting specifications but, more recently, Rao and team proposed the use of the Cpk index to
control processes. In reality, they investigated the performance of theCpk chart with the GMDS (Generalized
Multiple Dependent State Sampling) supplementary signaling rule. With the GMDS supplementary run rule,
the Cpk chart signals when a point falls in the action region or when a point falls in the warning region after
a sequence of m points, with less than k , in the central region. The points on the Cpk chart are the estimated
values of the Cpk index obtained with the mean and the variance of the samples. Rao and team obtained the
ARLs of the GMDS Cpk chart by simulation; reminding the ARL is the average number of samples the chart
requires to signal a change in the process. This present work uses the Markov chain approach to obtain the
ARLs, once this approach leads to exact results. The main conclusion is that the GMDS X̄ chart is not only
simpler to use than the GMDS Cpk chart, but it is also more sensitive to process changes.

INDEX TERMS Control charts, generalized multiple dependent state sampling, process capability index.

I. INTRODUCTION
Control charts are monitoring tools specially designed
to detect changes in the process parameters. In general,
the control charts have lower and upper control limits
(LCL and UCL) and require the withdrawal of samples from
the process. The values of the monitoring statistic, obtained
with the sample observations, generate the charting points
and, according to the standard signaling rule, if one of them
falls beyond the control limits, then the control chart triggers
an alarm [1].

In recent studies, the Cpk index has been used as the mon-
itoring statistic of the control chart, that is, at each sampling
point the Cpk index is calculated with the sample mean and
standard deviation as the estimates of mean and standard
deviation of the process. These sample values of theCpk index
are the charting points of the Cpk chart. For instance,
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Rao et al. [2] proposed the use of the Cpk chart with the
GMDS (Generalized Multiple Dependent State Sampling)
supplementary signaling rule, that means the Cpk chart sig-
nals when a point falls in the action region or, yet, when a
point falling in the warning region is preceded by a sequence
of m points with less than k in the central region. If k = m,
the GMDS reduces to the MDS (Multiple Dependent State
Sampling) [3]–[6]. The multiple dependent state sampling
has also been used in combination with repetitive sampling,
MDSRS [7]–[14].

So, supplementary run rules enhance the sensitivity of the
control charts in signaling process shifts. It is possible to
observe three recent articles focusing on the use of supple-
mentary signaling rules [15]–[17].

Control charts based on capability index are drawing
researchers’ attention. Reference [18] proposed the use of the
Cpk chart with the repetitive sampling scheme, that is, three
different decisions are taken according to the sample point
position; if the point falls outside (inside) the outer (inner)
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control limits, the process is declared out of control (in con-
trol). Alternatively, a point falling outside the inner control
limits, but not outside the outer control limits, leads to the
withdrawal of a new sample, then, the information of this new
sample is used to decide the state of the process or to postpone
the decision to the next sample. Reference [19] proposed the
two-stage sampling, with the use of the npchart during the
first stage and the Cpk chart during the second stage. Ref-
erence [20] considered the charting points as the estimated
values of the Cpk index obtained with the median and the
variance values of the samples. Reference [21] considered
the charting points as the estimated values of the Cpk index
obtained with the Gini’s mean difference. Other capability
indices have also been used to control processes [22]–[26].

Thus, the aim of this paper is to compare the performance
of the Cpk and X̄ charts, when the standard signaling rule
of a single point in the action region is used in combi-
nation with the GMDS supplementary run rule. Therefore,
section 2 presents the Cpk and X̄ charts with the GMDS
supplementary signaling rule. Section 3 describes theMarkov
Chains approach with which the exact ARLs and steady-states
ARLs of the GMDS charts are computed. In Section 4, the
ARLs of the two GMDS charts, Cpk and X̄ , are compared.
In Section 5, the comparisons are based on their SSARLs.
Section 6 displays a real example. Finally, section 7 brings
some conclusions.

II. THE Cpk AND X̄ CHARTS WITH GMDS
SUPPLEMENTARY RUN RULE
The control chart proposed by Rao et al. [2] combines the
use of the process capability index, as themonitoring statistic,
with the generalizedmultiple dependent state sampling, as the
supplementary signaling rule. The monitoring statistic of the
Cpk chart is the Cpk index in (1):

Ĉpk = min
{
USL − X̄

3S
,
X̄ − LSL

3S

}
(1)

Obtained with the mean and the standard deviation of the
sample, respectively (2) and (3):

X̄ = (1/n)
∑n

i=1
Xi (2)

S2 =
∑n

i=1

(
Xi − X̄

)2
/(n− 1) (3)

where n is the size of the samples.
In (2), theUSL and the LSL are, respectively, the upper and

the lower specification limits. The Cpk and the X̄ charts with
the GMDS supplementary run rule have inner (LCL2, UCL2)
and outer (LCL1, UCL1) control limits shown in (4)-(7):

LCL1 = E (MS)− k1
√
Var(MS) (4)

UCL1 = E (MS)+ k1
√
Var(MS) (5)

LCL2 = E (MS)− k2
√
Var(MS) (6)

UCL2 = E (MS)+ k2
√
Var(MS) (7)

In (4)-(7), the MS is the monitoring statistic of the chart;
if the chart is the Cpk chart, then E(MS) = E

(
Ĉpk

)
and

Var(MS) = Var
(
Ĉpk

)
. Alternatively, if the chart is the

X̄ chart, then E(MS) = E
(
X̄
)
= µ0 and Var (MS) =

Var
(
X̄
)
= σ 2

/
n, where µ0 and σ 2 are the in-control mean

and variance of the process.
The opening parameters k1 and k2 are adjusted to meet

the required ARL0 - average number of samples between
false alarms; it has been adopted an ARL0 of 370.4.
Rao et al. [2] obtained k1 and k2 by simulation, and they
also used simulation to obtain the ARL1 - average number of
samples the chart requires to signal process mean increases
(or decreases). The increase or decrease is expressed in units
of σ and represented by δ; if µ1 is the out-of-control mean,
then (8):

µ1 = µ0 ± δσ (8)

Without losing generality, adopting µ0 = 0 and σ = 1.
It was also considered the symmetric case where LSL =

- USL. The process is declared to be in control when (9):

LCL2 ≤ MS ≤ UCL2 (9)

And out of control when (10) or (11):

MS > UCL1 (10)

MS < LCL1 (11)

If the current monitoring statistic point falls in the warning
region (12) or (13):

LCL1 ≤ MS ≤ LCL2 (12)

UCL2 ≤ MS ≤ UCL1 (13)

Then the state of the process is decided by the previous
m points: if less than k are in the central region (in between
LCL2 and UCL2), then the process is declared to be out of
control; otherwise, the process is declared to be in control.

III. THE MARKOV CHAIN TO OBTAIN THE EXPRESSION
OF THE STEADY-STATE ARL
The work developed by Rao et al. [2] calculated the ARLs
using simulation. Since it was not displayed some required
inputs to run the simulation, such as E(MS) and Var (MS),
it was not possible to recalculate the ARLs. As an alternative,
it was used the Markov chains approach, that leads to exact
ARLs and steady-state ARLs of the GMDS charts; reminding
the steady-state ARL (SSARL) is the average number of sam-
ples the chart requires to signal a change in the process, under
the assumption that until the monitoring statistic reaches its
stationary distribution the process mean (µ) remains unal-
tered, with µ = µ0.

The number of states with which the Markov chain is
built is a function of m and k . To illustrate, let m = k = 3,
then the states are defined by the position of the last four
sample points. Fig. 1 presents the Markov chain with the
states defined by the sequence (a, b, c, d), in which a, b,
and c are the sample points positions of the third, second and
first points before the last one, and d is the position of the
last sample point; for instance (C, W, C, A) means the last
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FIGURE 1. The Markov chains with states defined by the
sequence (a, b, c , d ).

FIGURE 2. The Markov chains with five transient states and one
absorbing state.

point is in the action region (represented by A), and the third,
second and first points before the last one are, respectively,
in the central (represented by C), in the warning (represented
by W) and in the central regions. Fig. 2 shows that, if
m= k= 3, then the Markov chain can be represented by five
transient states (in white) and one absorbing state (in red).

Using the arrows of Fig. 1 as guide, the transition proba-
bility matrix is given by (14):

P =


p11 p12 0 0 0 p16
0 0 p23 0 0 p26
0 0 0 p34 0 p36
0 0 0 0 p45 p46
p51 p52 0 0 0 p56
0 0 0 0 0 1



=


p1 p2 0 0 0 p3
0 0 p1 0 0 1− p1
0 0 0 p1 0 1− p1
0 0 0 0 p1 1− p1
p1 p2 0 0 0 p3
0 0 0 0 0 1

 (14)

where pij denotes the transition probability in which i is the
prior state and j is the current state. So:
• p1 = p11 = p23 = p34 = p45 = p51 =
Pr [LCL2 ≤ MS ≤ UCL2];

• p2 = p12 = p52 = Pr [LCL1 ≤ MS ≤ LCL2] +
Pr [UCL2 ≤ MS ≤ UCL1];

• p3 = p16 = p56 = Pr [MS > UCL1] +
Pr [MS < LCL1];

• p26 = 1 −p23;

• p36 = 1 −p34;
• p46 = 1 −p45.
Reference [27] displays that the first step to obtain the

steady-state ARL is the construction of the matrix (I-Q),
in which I is the 5 by 5 identity matrix andQ is the transition
matrix given in (14), with the last row and column removed
as displayed in (15):

(I − Q) =


1− p1 −p2 0 0 0

0 1 −p1 0 0
0 0 1 −p1 0
0 0 0 1 −p1
−p1 −p2 0 0 1

 (15)

The steady-state ARL is given by S′(I-Q)−1, in which S is
the vector with the stationary probabilities of being in each
transient state. The inverse of (I-Q) is described in (16), as
shown at the bottom of the next page.

Reference [27] presents that the vector S is the solution of
S′ = P∗S, in which P∗ is the transition probability matrix P
with the absorbing state 6 transformed into a return to the
state 1; in other words, after a false alarm the monitoring
always returns to state 1 (the return to state 1 is equivalent
to assume that the last four sample points are in the central
region). Matrix P∗ is shown in (17):

P∗ =


p1 + p3 p2 0 0 0
1− p1 0 p1 0 0
1− p1 0 0 p1 0
1− p1 0 0 0 p1
p1 + p3 p2 0 0 0

 (17)

The solution of S′ = P∗S is given by (18):

S′ =
(
1− p31p2 p2 p1p2 p21p2 p31p2

)
/a (18)

In which a is calculated through (19):

a =
(
1+ p2 + p1p2 + p21p2

)
(19)

Consequently, the steady-state ARL of the GMDS X̄ chart
is computed with the S′(I-Q)−1 expression. The ARL of the
GMDS X̄ chart is also computed with the S′(I-Q)−1 expres-
sion, but now with the first element of vector S being equal
to one, and all the other elements being equal to zero.

IV. COMPARING THE ARLs OF THE GMDS X̄ AND Cpk
CHARTS
Table 1 presents the ARLs of the GMDS X̄ chart given
by S′(I-Q)−1 with S’= (1,0. . . 0) and also the ARLs of the
GMDS Cpk chart published by Rao et al. [2].
The results show that depending on the (m, k) combination

one chart is better than the other (the winning chart is in bold).
For instance, if (m, k) = (3,2) the GMDS Cpk chart is more
sensitive than the X̄ chart, but with (m, k) = (4,2) the charts
alter their positions: now the GMDS X̄ chart is more sensitive
than the GMDS Cpk chart. If (m, k) = (3,3) or (4,4), the
GMDS Cpk chart signals faster small shifts (δ ≤ 0.67), but
for larger shifts (δ ≥0.89), the GMDS X̄ chart signals faster.
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TABLE 1. The ARLs of the GMDS X̄ and Cpk charts for n = 5.

In terms of overall performance, the GMDS Cpk chart
with (m, k) = (3,2) is the winner of all control charts under
comparison. The authors were not able to verify the simulated
ARLs obtained by Rao et al. [2] because it was not provided
all the required inputs to run the simulations, that is, E(MS),
Var (MS) andUSL values. As an alternative, it was decided to
investigate the properties of the GMDSCpk chart by using the
S′(I-Q)−1 expression. In the next section, it will be compared
the SSARLs of the GMDS Cpk chart with the SSARLs of
the GMDS X̄ chart; both SSARLs were obtained by using
S′(I-Q)−1 expression.

V. COMPARING SSARLs OF THE GMDS X̄ AND
Cpk CHARTS
In order to obtain the cumulative distribution of the Ĉpk
statistic it was used the recent result presented by Costa [28]
that evidenced (20):

Pr
[
Ĉpk < Co

]
=

∫
∞

0
Pr[
√
n (3sCo − LSL − µ) /σ <Z

<
√
n (USL − 3sCo − µ) /σ ]f (s) ds (20)

In (20), Z ∼ N (0,1) and f (s) is the density function of the
sample standard deviation given by (21):

f (s) =
2
σ

√
(n− 1)n−1

2

( s
σ

)n−2 {exp[−0.5(n− 1) (s/σ)2

0[0.5 (n− 1)]

}
(21)

The density function of the Ĉpk statistic is totally
asymmetric; Fig. 3 shows the case for which n = 5 and

FIGURE 3. The asymmetric density function f (s) of the Ĉpk .

USL = 1.5. Based on that, it was chosen to use symmetric
warning and action limits regarding the in-control proba-
bilities (a, b), in which (a) is the probabilities to obtain a
Ĉpk point in the action region and (b) is the probabilities to
obtain a Ĉpk point in the warning region. If LCL1= ka1 (in
which ka indicates the opening parameter for action region),
LCL2= kw1 (in which kw indicates the opening parameter for
warning region), UCL2= kw2 and UCL1= ka2, it is possible
to calculate (22)-(24):

Pr[Ĉpk < ka1 =] = a/2 (22)

(I − Q)−1 =
1

1− p1 − p31p2



1− p31p2 p2 p1p2 p21p2 p31p2

p41 1− p1 p1 − p21 p21 − p
3
1 p31 − p

4
1

p31 p21p2 1− p1 p1 − p21 p21 − p
3
1

p21 p1p2 p21p2 1− p1 p1 − p21

p1 p2 p1p2 p21p2 1− p1


(16)
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TABLE 2. The SSARLs of the GMDS X̄ and Cpk charts for n = 5.

Pr[Ĉpk > ka2] = a/2 (23)

Pr[kw1 < Ĉpk < kw2] = 1− a− b (24)

Consequently, the probabilities p1, p2 and p3 with which
the transition probability matrix P is built and used to obtain
the SSARLs of the GMDS Cpk chart are given by (25)-(27):

p1 = Pr
[
kw1 ≤ Ĉpk ≤ kw2

]
(25)

p3 = Pr
[
Ĉpk > ka2

]
+ Pr

[
Ĉpk < ka1

]
(26)

p2 = 1− p1 − p3 (27)

Table 2 presents the SSARLs of the GMDS X̄ chart (n = 5)
and the SSARLs of the GMDSCpk chart (n = 5, UCL = 1.5);
the GMDS Cpk chart reaches its best overall performance
with UCL = 1.5.

The results show the superiority of the GMDS X̄ chart; that
is, regardless of the (m, k) combination, the SSARLs values
of the GMDS X̄ chart are always the lower ones. It is worthy
to note that all SSARLs values were checked by simulation.
Table 2 also reveals the following observations:
a) In terms of charts performance, the signaling rules

(m, k) = (3, 3) and (m, k) = (4, 4) are practically
equivalent;

b) Comparing the signaling rules (m, k) = (3, 3) and
(m, k) = (3, 2), or yet, the rules (m, k) = (4, 4) and
(m, k) = (4, 3), the second signaling rule always reduces
the ability of the Cpk chart to detect mean increases
or decreases, and slightly improves the ability of the
X̄ chart in signaling moderate or small mean increases
or decreases (δ ≤ 1);

c) Comparing the signaling rules (m, k) = (4, 3) and
(m, k) = (4, 2), the second one reduces the ability of
the Cpk and the X̄ charts to detect mean increases or
decreases.

VI. REAL EXAMPLE
Suppose that a company, which supplies shafts, is facing
considerable losses due to the production of defective items.

FIGURE 4. The GMDS Ĉpk chart for the real example.

The diameter of the shafts has been the cause of rejection.
As the specifications are very tight, a minor shift in the pro-
cess mean leads to manufacturing the shafts with diameters
beyond the specifications; so, the shift should be detected as
fast as possible. Past data shows the standard deviation (σ ) of
the diameters is pretty close to 0.0010 inches. This example
was originally explored by Costa and Rahim [29].

Table 3 presents the diameter X of 25 samples with 5 shafts
each; the data of the first 15 samples were simulated with
the process mean free of shifts, whereas the data of the last
10 samples were simulated with an increased process mean of
one standard deviation. Fig. 4 and fig. 5 present, respectively,
the Cpk and the X̄ charts with the GMDS supplementary run
rule (m, k) = (3, 2); in both charts, the eighteenth sample
signals the mean shift. The Cpk chart signals with the eigh-
teenth sample because the sixteenth and seventeenth samples
are in-between the LCL1 and LCL2 lower limits. On the other
hand, the X̄ chart signals with the eighteenth sample because
the sixteenth and seventeenth samples are in-between the
UCL2 and UCL1 upper limits.

As a result, both the Cpk and the X̄ charts are considered
practical tools for process surveillance subject to moderate
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TABLE 3. The X s, X̄ and Ĉpk values for the real example.

FIGURE 5. The GMDS X̄ chart for the real example.

disturbances. Depending on the parameters, one chart can be
perceived as more efficient than the other one. In this real
example, both charts displayed the same performance for the
supplementary run rule (m, k) = (3, 2).

VII. CONCLUSION
Thanks to the Markov chains properties, it was obtained
the exact expression of the SSARLs. To illustrate how exact

expressions of the SSARLs can be obtained by the Markov
chain approach, it was considered the control chart with the
GMDS supplementary run rule (m, k) = (3, 3). It is important
to notice that this expression is independent of the statistic in
use to control the process.

Inspired by the work proposed by Rao et al. [2] in which
the authors investigate the performance of the Cpk control
chart with the supplementary run rule GMDS, this article
broadens the investigation to also include the X̄ control chart
with GMDS run rule. Consequently, the ARL and SSARL
values calculated demonstrate insightful analysis on the com-
parison of the performance of GMDS Cpk and X̄ control
charts.

In terms of comparison, it was proved that the GMDS Cpk
chart should be considered with care, because it is pretty
slow in signaling mean shifts. The GMDS X̄ chart with the
supplementary run rule (m, k) = (4, 3) has the best overall
performance.

It is worthy to note that, when the monitoring statistic of
the control chart is the Ĉpk , that is, the Cpk index obtained
with the X̄ and S sample values, the specification limits can
no longer be seen as the limits beyond which a product is
considered defective. In fact, they are now tuning parameters
of the control chart because they deeply affect the speed in
which the Cpk chart signals. The GMDS Cpk chart reaches its
best overall performance with UCL = 1.5.
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