IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 3, 2021, accepted December 15, 2021, date of publication December 28, 2021,

date of current version January 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3139085

Shuttle-Exploiting Attacks and Their Defenses
in Trapped-lon Quantum Computers

ABDULLAH ASH SAKI“1, (Graduate Student Member, IEEE),

RASIT ONUR TOPALOGLU?, (Senior Member, IEEE),
AND SWAROOP GHOSH "', (Senior Member, IEEE)

!Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

2IBM, Hopewell Junction, NY 12533, USA
Corresponding author: Abdullah Ash Saki (axs1251 @psu.edu)

This work was supported in part by the National Science Foundation (NSF) under Grant OIA-2040667, Grant DGE-2113839, Grant
DGE-1723687, and Grant DGE-1821766 and in part by the Seed Grants from the Penn State Institute for Computational and Data

Sciences (ICDS) and the Penn State Huck Institute of the Life Sciences.

ABSTRACT Trapped-ion (TI) quantum bits are a front-runner technology for quantum computing.
TI systems with multiple interconnected traps can overcome the hardware connectivity issue inherent in
superconducting qubits and can solve practical problems at scale. With a sufficient number of qubits on the
horizon, the multi-programming model for Quantum Computers (QC) has been proposed where multiple
users share the same QC for their computing. Multi-programming is enticing for quantum cloud providers
as it can maximize device utilization, throughput, and profit for clouds. Users can also benefit from the
short wait queue. However, shared access to quantum computers can create new security issues. This paper
presents one such vulnerability in shared TI systems that require shuttle operations for communication among
traps. Repeated shuttle operations increase quantum bit energy and degrade the reliability of computations
(fidelity). We show adversarial program design approaches requiring numerous shuttles. We propose a ran-
dom and systematic methodology for adversary program generation. Our analysis shows shuttle-exploiting
attacks can substantially degrade the fidelities of victim programs by ~2x to ~63x. Finally, we present
several countermeasures such as adopting a hybrid initial mapping policy, padding victim programs with

dummy qubits, and capping maximum shuttles.

INDEX TERMS Trapped-ion, qubit, quantum computing, shuttle, security, fidelity.

I. INTRODUCTION

Quantum computing has garnered immense attention from
government, industry, and academia alike in recent years
It can be advantageous in domains like machine learn-
ing [1], drug discovery [2], molecule simulation [3], [4],
and optimization [5]. With an active interest in the field,
quantum computing is progressing at a rapid pace. On one
end, researchers are proposing new quantum algorithms
that leverage unique properties like superposition, entangle-
ment, and interference to speed up computation. On the
other end, researchers are pursuing various technologies like
superconducting, trapped-ion (TI), and photonics to design
quantum bits or qubits. Besides scientific breakthroughs,
quantum computing is getting policy-level patronage from

The associate editor coordinating the review of this manuscript and

approving it for publication was Siddhartha Bhattacharyya

2686 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

governments as they understand the immense promise of
the field. For example, the US government has established
a National Quantum Initiative Act [6] and established the
National Quantum Coordination Office [7] to spearhead the
efforts. Quantum computing is poised to shine in the immi-
nent future with all these concerted efforts.

The TI qubit is one of the most promising technologies
for building a quantum computer. It offers several advantages
such as identical qubits, long coherence times, and all-to-all
connectivity among qubits [8]. Several companies such as
IonQ and Honeywell are developing TI systems. Recently,
Honeywell reported a trapped-ion system with quantum vol-
ume (QV) [9] of 1024 [10], highest thus far. Some of these
TI qubit-based systems are also commercially available via
IBM Qiskit [11], [12], Amazon Braket [13], and Microsoft
Azure Quantum [14]. People are using TI devices to run
their proof-of-concept applications that include a wide range

VOLUME 10, 2022

https://orcid.org/0000-0002-6597-2770
https://orcid.org/0000-0001-8753-490X
https://orcid.org/0000-0003-0360-7919

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

IEEE Access

eflon/oubit lon chain a k:‘ ‘
!é@@@t—ﬂ@'@@@\ x @
Trap — Shuttle path Resource under-utilization

Trap0 (T0) Trap1 (T1) *| (20N 1 N2)=3) I:| 2

Multi-programming: resource optimization
| o00@® Heoooo

+—>
+» Repeated shuttles
Chain energy 1 — Gate fidelity |

User — 1 (2Q program)

0 W

User — 2 (6Q program

)
00000¢

FIGURE 1. (a) Overview of a Tl system. (b) The basic concept of
multi-programming. (c) Issues with single programming. (d) Attack
overview: the adversary program shares a trap with the victim. The
adversary program tries forcing repeated shuttles between traps which
increase chain-energy and degrade gate fidelity in the shared trap.

gcoro

of practical topics like machine learning [15]-[17], gen-
erative adversarial networks [18]-[20], finance [21], and
chemistry [22]-[26]. The user-base of TI systems not only
includes academic institutions but also prominent industry
names like Nippon Steel [27], BMW [28], JP Morgan
Chase [21], and Goldman Sachs [29]. They are using the
trapped-ion quantum computers to test their prototype appli-
cations so that when sufficiently large devices are available,
they can immediately use the devices to solve the prac-
tical version of their problem to gain commercial advan-
tages. Towards the goal of enabling real-world applications,
the hardware makers of ion-trap computers are also mak-
ing promising advances. The quality of qubits is improv-
ing [30], [31] and number of ions are increasing. Recently,
IonQ announced a 64-ion trapped-ion device [32]. Similarly,
Honeywell has a well-established roadmap for scaling their
ion-trap hardware [33]. Furthermore, recent comparative
studies [34], [35] between TI and other qubit technologies
show promising results for TI systems. With efforts on both
application and hardware fronts, the future of the TI system
looks promising.

Confining many ions in a single trap becomes problem-
atic from a control and gate implementation perspective.
Therefore, the pathway to scalability in TI systems involves
multiple interconnected traps. A technology named quan-
tum charge-coupled device (QCCD) is proposed in [36]
for scalable and modular trapped-ion systems. In this light,
Murali et al. [37] performed extensive architectural studies
for multi-trap trapped ion systems. They developed a com-
piler and a simulator [38] for such systems with experimen-
tally calibrated values.

Figure 1a shows a TI quantum computer diagrammatically.
In a TI system, qubits are realized using ions. Data is encoded
as ion’s internal states. Ions are confined inside traps using
direct current and oscillatory potentials (thus, we use the
terms ions and qubits interchangeably for TI systems in this
paper). Figure 1a shows a 2-trap system interconnected by a
shuttle path that allows movement (shuttle) of ions between
traps. Here, we are assuming that each trap can accommodate
a maximum of 4 ions i.e., trap capacity = 4 per trap for
illustration purpose only. Note, the work in [37] proposed a

VOLUME 10, 2022

trap capacity between 15-25 qubits for practical systems and
we use this range in our analysis as well. Ions are first cooled
and initialized. Then, laser pulses are applied in sequence on
the ions to manipulate ions’ states to perform computation
(quantum gates). Sometimes computation is required on data
from ions in different traps. In such cases, one ion is shut-
tled (moved) from one trap to another so that the ions are
co-located, and the gate can be performed. Finally, light is
shined on ions and the data is measured as either 0 or 1 based
on presence or absence of fluorescence.

Besides the computational aspects, security is an equally
pivotal aspect for any computing paradigm. Several academic
studies identifying security issues and fixes are surfacing
in the quantum domain [39]-[44]. In [40], authors present
an attack model where a rogue element in the cloud can
report inaccurate device calibration data. Based on the incor-
rect data, a user may run his/her program on inferior qubits
leading to poor results. They propose to include checkpoint
circuits in the program to indicate unwanted variation in
device calibration data. The attack model in [42] assumes
an untrusted element in the cloud could schedule a pro-
gram on inferior hardware instead of allocating the requested
hardware. They propose a quantum physical unclonable
function (QuPUF) to authenticate the requested hardware.
Depending on the noise characteristics, each quantum com-
puter demonstrates a unique signature. The authors in [42]
leverage such signature to design the QuPUF.

A new type of attack vector can emerge in the multi-
programming [45] setting (Figure 1d) for quantum comput-
ers. Suppose, two users are submitting their programs to the
quantum cloud. User—1 program has 2 qubits, and user-2
program has 6 qubits. The cloud can schedule the programs
individually on hardware. In such cases, device resources will
be underutilized. For the 2-qubit program 6 qubits will be
unused, and vice-versa (i.e., 2 unused qubits for the 6-qubit
program). Multi-programming taps into this gap and proposes
scheduling multiple programs together in the same hardware
to maximize resource utilization (Figure 1d). The concept
of multi-programming finds its application in commercial
quantum clouds such as Rigetti’s Quantum Cloud Service
(QCS) [46] where a user can reserve a lattice [47]. A lattice
can be a partial set of qubits from a larger device. Thus, mul-
tiple users can run their programs on a different set of qubits
from a larger device. Although running multiple programs
can optimize resource usage, throughput, and profit for the
cloud, it can create security issues. One such security vul-
nerability in a multi-programming environment is reported
in [43] for superconducting qubits. The authors demonstrate a
crosstalk-induced fault injection attack where crosstalk from
the adversary program affects a victim program. However,
this attack is not applicable for TI systems due to negligible
crosstalk [30].

In this paper, we present an attack in the multi-
programming setting for TI systems by exploiting a new
vulnerability in terms of shuttle operations. Figure 1b-d pro-
vides an overview of the proposed attack model. We assume

2687

IEEE Access

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

qubits from the adversary program span over two traps, and
they share a trap with qubits with the victim program. For
example, adversary and victim qubits share Trap—1 (T1). The
adversary can design his/her program such that it requires
computation (gate) between ions from different traps that will
need frequent shuttles between traps. Repeated shuttling adds
energy to an ion and increases an ion-chain’s energy. This
elevated chain-energy degrades the reliability of computation
(known as gate fidelity). As victim qubits share a chain
(ion-chain in T1) with the adversary qubits, they also suffer
from this shuttle-induced fidelity degradation. Although the
premise seems simple, there are architectural policies that
curbs shuttling and make the attack challenging. Thus, the
attack culminates into designing a program that will trick
the architectural policies and enforce repeated shuttles. The
attack can be launched in a white-box setup where the attacker
knows the policies and beats them to achieve repeated shuttles
(Section V). Or, it can be a black-box type attack where no
prior information is known (Section IV).

Although TI systems may not be used for secure real-world
applications yet, it is paramount to proactively identify secu-
rity flaws and mitigation measures. While reactive measures
are an option in security research where vulnerabilities and
solutions are researched post-adaptation of a technology,
it may be expensive to fix the issues re-actively and may
even be impossible. In this regard, proactive measures are
beneficial as they unearth forthcoming issues, and our work is
inspired by this mindset. With the rapid advancement of quan-
tum hardware, quantum algorithm, and quantum architec-
tures, quantum cloud services will become more practical and
popular, and evidence [34], [35] suggests that TI technology
will be at the forefront. Therefore, now is an opportune time to
proactively identify vulnerabilities in and devise appropriate
defenses for imminent multi-programming quantum clouds
to prepare for practical scale deployments. This paper is one
of the first efforts towards this goal.

‘We make the following contributions in this paper:

« Identify repeated shuttle operations as a mode of attack.

o Present two malicious program generation methodolo-
gies - systematic and random. Systematic attack uses
prior knowledge about architectural policies to design
a strong attack. The random attack does not require any
prior knowledge, albeit losing some attack potency.

o Modify the QCCD-Compiler [37], [38] to accommo-
date multi-programming. We use QCCD-simulator and
QCCD-compiler interchangeably in this paper since the
compiler and the simulator are a part of the same soft-
ware tool-chain.

o Analyze the impact of trap capacity and victim size' on
shuttle number and fidelity reduction of the victim.

« Discuss three countermeasures to thwart attacks.

IWe use the following definitions for program size and program length:
program size is the number of qubits in a program and program length is the
number of 2-qubit gates in the program

2688

The outline of the paper is as follows: Section II discusses
the basics of quantum computing and TI systems. Section III
describes the attack model and the simulation setup for
analyses in this paper. Section V delineates the methodol-
ogy of systematic malicious program generation. Section IV
discusses the random attack program designing principles.
Section VI reports the results and discussions. Section VII
presents several countermeasures. Finally, Section VIII draws
conclusion.

II. BASICS
In this section, we discuss the basics of trapped-ion
quantum computers and terminologies used in the

paper.

A. QUBIT AND QUANTUM GATE

1) QUBITS

Quantum bits or qubits are the building block of a quantum
computer. Qubits store data (i.e., |0) and |1)) as various
internal states. A qubit can be in both |0) and |1) simultane-
ously due to quantum superposition property. A qubit state
is represented as |¢y) = al0) + b|1) where a and b are
probabilities amplitudes. Measuring the qubit will collapse
one state and return classical bits 0 or 1 with probabilities
la|? and |b|?, respectively.

2) QUANTUM GATES

Quantum gates manipulate information stored in qubits to
perform computation. Quantum gates are realized using
pulses such as radio frequency (RF) and laser pulses. Gate
pulses modify the probability amplitudes of a qubit. For
example, a quantum NOT (X) gate pulse when applied
to a qubit at state |0) will change amplitudes a =
land b=0to a = 0 and b = 1. Quantum gates
are reversible in nature and represented by unitary matri-
ces mathematically. At present, the physically realized
gates are l-qubit and 2-qubit. A quantum program is a
sequence of quantum gates. Figure 3a shows a sample quan-
tum program consisting of 2-qubit Mglmer—Sgrensen (MS)
gates [48].

3) GATE FIDELITY

Quantum gates in existing quantum computers are erroneous.
They incur a finite and non-negligible error rate (¢) when exe-
cuted. Suppose the aforementioned X gate is applied on state
|0) for 10, 000 times. One would, in theory, get output 1 all the
time. However, due to gate errors, the user may end up with
9,900 1’s (correct) and 100 O’s (incorrect). The gate fidelity
(F) is usually defined as the complement of the error rate i.e.,
F = 1—e¢.Itdepends on variations of control pulses and envi-
ronmental interference. Qubits are kept and operated in a con-
trolled environment to shield them from various noises so that
gate fidelities can be high. A lower gate fidelity will introduce
more errors in the output and can completely decimate the
result.

VOLUME 10, 2022

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

IEEE Access

1 0 0 =—i
_lr 0 —ie _1fo 1 —i o
GP’2(¢)‘ﬁ[_iei¢ .] Ms_ﬁ o i 1 o

- 0 0 1
=70 ei¢
GPL@®) = [gip o) Gate fidelity eq.
F=1-Tt—-AQn+1)
e~ 10/2 0 [' = Trap heating rate
0 eig/z] T = Gate time
n = vibrational energy

GZ(6) = [

FIGURE 2. Matrices of gates used in lonQ trapped-ion quantum
computer, and the gate fidelity equation presented in [37], [49].

Sample Program e 4 MS qlaol,qlal]l; ESENERET o

MS an@%,an3%; _—]
MS qlall,qla2];
MS q[a@],q[a3];/| 6@ é @ ':‘ @ @ @ @ |

MS qlae],qlall;
qla1],qla2]; ;
Different trap
Needs shuttle

MS qlae0],qla3]; 8 qlall,qla
MS qlail,qlas5]; >
R El=XJce)

Ms qlas],qla5];
FIGURE 3. (a) A sample quantum program consisting of 2-qubit s gates.
We primarily focus on the 2-qubit gates as it has a lower fidelity and
requires shuttle. (b) lons in same trap: gate can be directly executed.
(c) lons in separate traps: one ion needs shuttling before execution.

0N U WN R
=
(2]

B. TRAPPED-ION QC

1) TRAP DETAILS

In a trapped-ion system, atoms like Yb or Ca are ionized
and trapped between electrodes using electromagnetic fields.
Hence, the name trapped-ion quantum computer. Data |0)
and |1) are encoded as internal states such as hyper-fine or
Zeeman states of the ions. Figure la shows the schematic
of a trapped-ion system. It has 2 traps: Trap 0 or TO and
Trap 1 or T1. Inside the traps, ions form chains. The traps are
connected by a shuttle path which allows movement (shut-
tle) of an ion from one trap to another if needed. Traps
can accommodate a certain number of ions known as trap
capacity. For example, traps in Figure 1a have a trap capac-
ity of 4 ions per trap. Besides, some capacity is reserved
for incoming ions from other traps known as communica-
tion capacity. The communication capacity is not shown
explicitly in Figure 1a, however, an ion can be moved from
TO to T1, and in that case, T1 will hold 5 ions. Thus, the
trap capacity + communication capacity defines the absolute
maximum number of ions a trap can hold. communication
capacity is much smaller than trap capacity in general [37].
Finally, the excess cap (EC) of a trap is defined as trap
capacity + communication capacity - ions in the trap.

2) GATE DETAILS

Laser pulses are used to perform quantum gate operations on
the qubits/ions. Mglmer—Sgrensen (MS) gate is the typical
native 2-qubit gate of trapped-ion systems [48]. It is accompa-
nied by several 1-qubit gates which are mainly rotation gates
to form a universal gate-set. For example, the 1-qubit gates
are GPI, GPI2, and GZ in the IonQ system [50]. The matrices
for these gates are shown in Figure 2. Inside a trap, all the

VOLUME 10, 2022

GATE “8 MS qg[al],q[a5]" STEPS

SWAP ql[al1l,ql2];

M | | D é_ 1)

) ——
SPLIT qla1ll;

i DD @O o

MOVE qlall; //qlal] energy 1

iy || D DD @3@@@

MERGE q[al]; //Chain-1 energy *

v DD QOB (0v)

Increased energy degrades Fidelity (F)
of any gate on chain—1 ions

D ® (o)

FIGURE 4. Shuttle steps to bring ions a1 and a5 in the same trap.

qubits are connected meaning a 2-qubit gate can be performed
between any two qubits in that trap.

On one hand, single-qubit gates have a higher fidelity
(error rate, € in range of 1073 to 10_4) [8], [30]. Besides,
they can be performed in-place. On the other hand, 2-qubit
gates typically have an order of magnitude lower fidelity
than 1 qubit gates (¢ ~ 10~2) 8], [30]. Figure 2 shows
the gate fidelity equation [37] for TI systems. This is an
experimentally validated gate fidelity model. Here, I" is the
trap heating rate, 7 is the gate time, and 7 is the vibrational
energy or motional mode of a chain. A is a scaling factor that
depends on the number of ions in the chain as N /In(N). The
gate fidelity will degrade if gate time and/or motional mode
of the chain increases. A 2-qubit gate cannot be applied to
ions from different traps. It requires a shuttle.

3) NEED OF SHUTTLE OPERATION

Consider the sample program in Figure 3a. The 4" gate
in the program MS g[a0],g[al] involves ions from the
same trap (Trap 0) and can be executed in-place or directly
(Figure 3b). However, the gth gate MS glall,gla5]
involves ions from different traps (Figure 3c. Therefore,
a shuttle is needed to bring the ions in the same trap.

4) SHUTTLE STEPS

The shuttle operation involves several steps as depicted in
Figure 4. First, al and a2 are swapped so that al is transferred
near the shuttle path. Then, al is split from the chain—0 and
shuttled/moved from TO to T1. The shuttle operation adds
energy to the ion. Then, al is merged to the chain-1.
This merge operation increases the vibrational energy () of
chain—1. Finally, MS g[al], g[a5] canbe executed as the
ions are in the same trap (T1) now. As chain—1’s 7 is now
higher, the subsequent gate operations in this chain (either
on aX ions or vX ions) will experience lower fidelity (F).

2689

IEEE Access

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

Increasing a chain’s motional mode by repeated shuttles is
the basis of the attack proposed in this paper.

C. INITIAL MAPPING POLICY

The initial mapping - in this context - entails the assignment
of program qubits in traps (i.e., mapping of logical qubits
to physical traps) and the relative position of qubits inside
a trap. For example, the program qubits (a0 to a5) from
the sample program in Figure 3a are initially mapped as
TO: [a0, a3, al, a2], T1: [a4, a5] (explained
in Example 1). The program execution will start with this
allocation, and the mapping will be updated based on shuttles.

The initial mapping policy in [37] is the greedy policy
where qubits are allocated in the descending order of edge
weights (wt). A quantum program can be treated as a graph
where each node represents a qubit and an edge between
two qubits represents a 2-qubit gate. Thus, the edge weight
represents the frequency of a 2-qubit gate between a pair of
qubits. In the Greedy policy, the qubits of the most frequent
gates are allocated first.

Example 1: The mapping policy and the result can be
explained with the sample program in Figure 3. The edge
weights of the program are as follows: wt(a0, a3) = 3 (as
the MS g[a0], gl[a3] gate appears 3 times throughout the
program), wt(al, a2) = 2, and wt(a0, al) = wt(a4, a5) =
wt(al, a5) = 1. Therefore, ions a0 and a3 are allocated
first, then al and a2, and finally, a4 and a5. In this exam-
ple, we assume a trap capacity of 4. Thus, ions a4 and a5
are in T1.

D. SHUTTLE DIRECTION POLICY

Shuttle direction policy dictates which ion will be moved to
execute a 2-qubit gate. The shuttle direction policy used in
the QCCD compiler [37] is illustrated in Listing 1. In this
paper, we follow the same shuttle direction policy. In the
example from Figure 4, both traps have an equal number
of ions. Hence, they have the same excess capacity (=trap
capacity — # ions in the trap). Thus, the first ion al in the MS
qlall,gla5]; is shuttled from TO to T1.

I 1f excess_cap0 < excess_capl:
Move Trap0 --> Trapl

3 elif excess_cap0 == excess_capl:

4 Move 1lst ion of the gate

5 else:

6 Move Trapl --> TrapO

Listing 1. Shuttle direction policy [37], [38].

E. MULTI-PROGRAMMING

The proposed attack model exploits the multi-programming
setup. We modify the initial mapping policy [37], [38] to
allow for multi-programming as follows: Suppose, we have
two traps (TO and T1) and two programs (prog—0 and prog—1).
We allocate prog—0 from one end of the TO to T1 (if needed)
and prog-1 from the opposite end of the T1 to TO. Qubits
in a single program are allocated per the greedy mapping

2690

policy [37]. Allocating multiple programs from opposite ends
and different traps ensures that qubits of one program are not
mixed with the other program.

Ill. ATTACK MODEL AND SIMULATION SETUP
A. ATTACK MODEL
The following assumptions are made in the attack model:

o More than one program are running on the QC.

o The adversary program spans more than one trap, and it
shares one trap with another (victim) program.

o The adversary knows device specification such as trap
capacities and communication capacities. This infor-
mation (especially, trap capacities) are usually public
information. For example, the Honeywell H0O TI system
has a capacity of 6 [51].

o Adversary knows architectural policies: initial map-
ping policy and shuttle direction policy (can be
relaxed. Rationale behind the assumption is discussed
in Section V-E3).

o The adversary can access the compiled program. This
is a reasonable assumption because present quantum
clouds provide such access. It allows a user to identify
bottlenecks and optimize their programs. For example,
in AWS Braket the compiled program is available to the
user as the MetaData [52].

The adversary designs his/her program so that it requires
repeated shuttles increasing the vibrational energy of the
shared ion-chain and degrading gate fidelities. Note that,
the adversary program fidelity takes a hit as a byproduct.
However, the objective of the attack is to affect the victim
program.

We present two techniques of devising the attack programs:
systematic (Section V) and random (Section IV). On one
hand, systematic program generation requires several prior
information such as initial mapping and shuttle direction poli-
cies. However, it guarantees a linear increase in the number of
shuttles (desired) with increased program length. On the other
hand, random generation does not guarantee a linear increase
of shuttles but requires no prior knowledge. Nevertheless,
both methods can degrade victim performance (Section VI).

B. SIMULATION SETUP

In this paper, we use the QCCD compiler-simulator [38]
accompanying the paper [37] to perform simulations. The
QCCD compiler takes care of the initial mapping, shuttle
insertion, gate scheduling, and fidelity computation of a pro-
gram. We add our modification on top of the QCCD com-
piler to allow for multi-programming. Our tweaks include:
(i) modifying initial mapping to map multiple programs (as
in Section II-E) to the device and (ii) reporting individual
program fidelities.

For all simulations, we assume a device with 2 traps con-
nected in a linear fashion as in Figure la. The trap capacity
is 15 ions per trap with 2 additional spaces per trap for
incoming (shuttled) ions (communication capacity). We also

VOLUME 10, 2022

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

IEEE Access

show analysis for trap capacities 20 and 25 (with the same
communication capacity of 2). The trap capacity values of
15 to 25 are selected as per [37] as they observed better
performance in this range.

We set the adversary program size to 18 qubits (trap capac-
ity 15 + 3) so that it spans two traps. We vary victim program
sizes from 2 to maximum remaining space in shared trap
T1 i.e., 12 qubits. Note that the adversary and the victim
program sizes will change accordingly for trap capacities
20 (23 and 2 to 17 respectively) and 25 (28 and 2 to 22
respectively).

2-qubit gates mostly affect the program fidelity as they
have an order of magnitude lower fidelity than 1-qubit
gates. Therefore, we consider only the 2-qubit gate fideli-
ties without any loss of generality in our analysis. The
QCCD-simulator [37], [38] includes experimentally cal-
ibrated parameters [30], [49], [53], [54] for the gate
fidelity equation in Figure 2. The program fidelity is
computed from individual gate fidelities (F). For a pro-
gram with k 2-qubit gates (g;), { being an enumeration
parameter across the 2-qubit gates, the program fidelity is
F(go) X F(g1) x ... x F(gk-1)-

IV. RANDOMIZED MALICIOUS PROGRAM

In this section, we discuss randomized malicious program
generation. The randomized attack programs are advanta-
geous as they treat the compiler as a black-box and do
not need information about compiler policies. We present a
methodology to find and refine an effective random program
to launch attacks. The only requirement is that the adversary
can submit many programs to the cloud and can access the
final compiled program. The final shuttle-inserted compiled-
program will tell the adversary which program resulted in
maximum shuttles. The adversary will pick that program to
launch future attacks.

A. GENERAL METHODOLOGIES

We populate the program with (128) gates (all 2 qubit combina-
tions from 18-qubits adversary size with trap cap 15). Then,
we randomly shuffle the gate orders to generate the random
program.

We generate 1000 random circuits and compile them with
pseudo-victim programs of sizes from 2 to 12 qubits. The idea
of a pseudo-victim program is that the adversary will send
two programs to the cloud to mimic an adversary-victim pair.
After analyzing the collected results, the adversary can select
the random circuit that gives the highest average number of
shuttles across victim programs of all sizes.

B. PRUNING THE RANDOM CIRCUIT

The best random circuit can be pruned further as not all the
gates contribute to shuttling. The intuition is that we can
remove some gates from the random circuit without lowering
the number of shuttles. The pruning logic is as follows: we
remove one gate from the original random circuit starting
from the first gate, compile it, and check the number of shut-

VOLUME 10, 2022

tles. If the number of shuttles does not drop from the original
case, we permanently remove the gate from the circuit and
move on to the next gate. If removing the gate lowers the num-
ber of shuttles, we reinstate the gate and move on to checking
the next gate. Following this step-by-step check, we can
remove some redundant gates without affecting the number
of moves. The pruning on average removed ~ 48 gates from
the program of 153 gates.

V. SYSTEMATIC MALICIOUS PROGRAM

A. BASIC IDEA

The systematic method of malicious program generation uses
the following 3 ingredients to craft a strong attack pro-
gram: (i) initial mapping policy, (ii) shuttle direction policy,
and (iii) information on the victim size. As mentioned earlier,
a gate will require a shuttle when the ions belong to two
different traps. This principle is leveraged in the systematic
method, and gates are added in the malicious program with
ions from different traps. However, this approach requires
knowledge about ion locations, and the above 3 ingredients
facilitate the tracking of ion locations.

Algorithm 1: Create Initial Mapping Controller Block

Input: trap capacity
Qutput: initial mapping controller

1 ion_list = [0 to (trap capacity — 1)];

2 ion_a, ion_b < 2 arbitrary ions from ion_list;

3 add gate (ion_a & ion_b) twice in the initial mapping

controller block;

4 remove ion_a & ion_b from ion_list;

5 while ion_list is not empty do

6 ion_a < ion_b from last gate;

7 ion_b < next ion from ion_list;

8 add gate (ion_a & ion_b) twice in the initial

mapping controller block;
9 remove ion_b from ion_list;
10 end

Our proposed systematic malicious program consists of
three blocks: (i) shuttle controller (SC), (ii) a bridging gate,
and (iii) initial mapping controller (IMC). Each block is gen-
erated using specific logic as explained later in this section.
After all blocks are generated, they are stitched to create the
complete malicious program (i.e., malicious program = shut-
tle controller + a bridging gate + initial mapping controller).

The IMC block is generated first, then the SC block, and
finally the bridging gate, although they appear in a different
order in the program. This ensures no gate from the SC block
and the bridging gate have a higher edge weight than gates
from the IMC block (explained more in Section V-E1).

B. INITIAL MAPPING CONTROLLER

With knowledge about the initial mapping policy, the adver-
sary can intelligently add gates in the program to force a
known initial mapping. As described in Section II-C, the

2691

IEEE Access

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

GATE # GATE
ime1 | Ms qlel,ql1];
imc2 | MS q[0],ql[1]; imc23 | MS q[11]1,q[121;
ime3 | MS q[1],q[2]; imc24 | MS q[11],q[12];
ime4 | MS q[1],ql[2]; imc25 | MS q[12],q[13];
ime5 | MS q[27,q[3]; | imc26 | ms q[12],q[13];
imc6 | MS q[21,q[31; | imc27 | MS q[13],q[14];
imc28 | Ms q[13]1,q[14]1;

FIGURE 5. IMC block of the malicious program. Arrows showing
dependency between gates.

initial mapping policy in the QCCD-compiler is a greedy
one that allocates ions based on gate frequencies (edge
weights). Therefore, the adversary can judiciously increase
edge weights between certain nodes (ions/qubits) which
he/she wants to be allocated first. Algorithm 1 illustrates the
gate selection methodology. We explain the algorithm with
Example 2.

Example 2: Suppose, the trap capacity is 15. Thus, the
ion_list will be [0, 1, 2,..., 13, 14]. Next, we arbitrarily
select two ions O (ion_a) and 1 (ion_b) from the list. Note
that any two ions can be selected. We add gate MS g[0],
g[1] twice in the program with these ions. This will make
edge weight of (0, 1) = 2. Next, ions 0 and 1 are removed
from the ion_list which now becomes [2, 3,4 ..., 13, 14].

Next, ion_a and ion_b values are updated. ion_a’s value
becomes the previous ion_b value (i.e., 1), and ion_b’s value
becomes the next value from the ion_list (i.e., ion_b = 2).
Then, the gate with these two ions - MS g[1], gl[2]-
are added twice in the block. Finally, ion_b = 2 is removed
from the ion_list for this iteration, and ion_list becomes [3,
4,5,...,13, 14]. The above routine is repeated unless the
ion_list becomes empty i.e., all the ions are added in the
block.

The final IMC block will be similar to Figure 5. All the
gates in the block have an edge weight of 2. The logic in
the other blocks (SC block and bridging gate) ensures that no
other edge weight exceeds 1 (i.e., all other gates will appear
once). Due to the higher edge weights, gates in the IMC block
will be allocated first according to the greedy policy. Thus,
ions 0 to 14 (15 qubits) will be allocated first to TO (the
remaining 3 qubits of the 18 qubit adversary will be allocated
to T1 by default).

Assuming a victim size of 12, the trap states after
initial mapping will be {TO (EC = 2): [0, 1,
2,...,13, 1471, Tl (EC = 2): [15, 16, 171+
[12Q victim]}. Here, EC = excess capacity. TO has
15 ions from adversary program. T1 also has 15 ions, 3 from
the adversary and 12 from the victim. Thus, each trap has an
excess capacity of 2 (from communication capacity).

C. SHUTTLE CONTROLLER
After the IMC block ensures a known initial mapping, we use
Algorithm 2 to add gates in the malicious program that

2692

require shuttles. The flow consists of 5 steps. We explain each
step in Example 3. The core idea is to track ion locations
(using shuttle direction policy) after each gate and select ions
from different traps for the next gate.

Algorithm 2: Create Shuttle Controller Block
Input: trap states, shuttle direction policy, node
weights, edge weights, block length, prog. size
Output: shuttle controller block (sc_block)

1 sc_block < empty; # of added gates < 0; flag < 0;
2 while # of added gates < block length do

3 // STEP - 1;

4 if # of added gates == 0 then

5 ‘ ion_a < random ion € {0 to prog. size—1};
6 else if flag == 0 then

7 ‘ ion_a < moved ion from last gate;

8 else

9 ‘ ion_a < non-moved ion from last gate;
10 end
11 // STEP - 2;
12 get ion_a’s location; get opposite_trap;
13 /l STEP - 3;
14 for ion_b € {ions in the opposite trap} do
15 if edge weight (ion_a, ion_b) == 0 then
16 | flag < 0; break;
17 else
18 ‘ flag < 1; continue;
19 end
20 end
21 if flag == 1 then
2 | continue;
23 end

24 // STEP — 4,
25 sc_block <« sc_block + gate (q[ion_a], q[ion_b]);

26 last_gate < (ion_a, ion_b);
27 /I STEP - 5;
28 identify moved ion, update node and edge weights,

update trap states using shuttle policy;
29 # of added gates < # of added gates+1
30 end

Example 3: Step-1: For the very first gate, we randomly
select 1 ion from adversary’s ion list (i.e., from [0 to 17] for
the 18-qubit adversary). Suppose, the selected ion is 14 (i.e.,
ion_a = 14).

Step—2: From the initial mapping, we know ion 14’ is in
TO. Therefore, the opposite trap is T1..

Step—3: Selection 15 from T1. Check if gateMS g[14],
g [15] does not exist in the program (i.e., edge weight of (14,
15) is O in the program graph). As the gate does not exist in the
program, we do not check more ions from T1 and can break
from the loop with ion_b = 15.

Step—4: Add gate MS g[14], g[15] in the program.
This gate will require a shuttle when executed. Therefore, trap
states need updating after the gate.

VOLUME 10, 2022

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

IEEE Access

(a) Shuttler controller block

GATE # GATE
scl |MS q[14]1,q[15];
sc2 [Ms q[0],ql[14]; |sc77 |mS q[4],q[17];
sc3 |MS q[141,q[16]; | sc78 |MS ql[e],q[4];
sc4 [MS q[1]1,q[14]; | sc79 [mS qgl0],q[15];
sc80 |Ms qle],ql10];

GATE
bel |Ms qlol,qr161; |
1)

imc1 |MS ql[@1,q[1]1;

One ion from SC
block’s last gate

One ion from
IMC block’s first gate

(b) Bridging gate

FIGURE 6. (a) The partial SC block, showing first and last few gates.
(b) The bridging gate between the shuttle controller and the initial
mapping controller block. Only one bridging gate is necessary between
these blocks.

Step-5: Both TO and T1 have equal excess capacity of
2 each. Therefore, according to the shuttle direction pol-
icy in Listing 1, the first ion in the gate MS g[14],
q[15] i.e., ion 14 will move from TO to TI1. Thus,
the updated trap states are {TO (EC = 3): [0, 1,
2,...,13], Tl (EC = 1):[14, 15, 16, 17] +
([12Q victim]}. (Note, the victim size information is
required to compute the excess capacity of the shared trap
T1 and to find the shuttle direction accurately.) Edge weights
list is updated with the new gate.

Following the same routine, we keep adding gates in
the malicious program until target number of gates are
reached. For the next iteration, we pick ion 14 (moved
ion from the last gate) as the ion_a in Step—1. As ion
14 is in T1 now, we pick the other ion from TO (say,
ion 2). The next gate is MS g[2], gl[l4]. As TO has
more EC (=3) than T1 (EC = 1), ion 14 will again move
but this time from T1 to TO. Finally, the updated trap
states after this gate will be {TO (EC = 2): [0, 1,
2,...,13, 14], T1 (EC = 2):[15, 16, 171 +
[12Q victim]}. A partial shuttle controller block of
block length 80 is illustrated in Figure 6a. Note the last gate
in the block. It is required for the bridging gate.

D. THE BRIDGING GATE AND THE COMPLETE MALICIOUS
PROGRAM

1) THE BRIDGING GATE

The bridging gate is formed by taking one ion from the last
gate of the shuttle controller block and one ion from the
first gate of the initial mapping controller block (Figure 6b).
As the name suggests, this gate bridges two blocks and
maintains the gate dependency. Only one bridging gate is
necessary.

2) THE COMPLETE MALICIOUS PROGRAM

The complete malicious program is created by combining
individual parts in the following order: gates from the SC
block + bridging gate + gates from the IMC block.

VOLUME 10, 2022

Assumed victim size = 2Q
u=66.09, 0 =8.68,ICV =1.34

n 8

2

+= 60

>S5

ﬁ 40 Highest number of shuttles: # of shuttles drop
“= 90 when assumption matches for an assumption |
o actual victim size. mismatch

* 0

2 3 4 5 6 7 8 9 10 11 12
Actual victim size (qubits)

FIGURE 7. Variation of shuttle numbers across different (actual) victim
sizes. The adversary program assumes victim size = 2.

E. DISCUSSIONS ON THE SYSTEMATIC METHOD

1) OUT-OF-ORDER IMC BLOCK

In greedy policy, ions from a gate is primarily mapped based
on their frequency of appearance and secondarily by their
order of appearance in the program. Gates in the IMC block
have the highest frequencies across the complete program
because they each are deliberately added twice in the pro-
gram, and gates from the other blocks each are added once.
Generating the IMC block first ensures that other blocks can
skip gates already in the IMC block. The compiler sorts gates
in the descending order of their frequencies for mapping.
Therefore, gates in the IMC block come first in the sorted
list for mapping although they appear last in the malicious
program.

2) NECESSITY OF VICTIM SIZE INFORMATION

The victim size is a parameter of the SC block generation
algorithm. If the victim size is correct, each gate in the gen-
erated SC block will require one shuttle when the malicious
program is executed. However, with an inaccurate victim size,
some of the gates in the SC block will not force a shuttle.

Example 4: Consider the SC block in Figure 6a gen-
erated assuming a victim size of 12. Suppose, the actual
victim size during run is 5. Then, the actual trap states
and excess capacities will be as follows at the beginning:
TO (EC = 2): [0, 1,...,14], Tl (EC = 7):
[15, 16, 17] 4+ [5Q victim]. Gate # scl will
need a shuttle as ion 14 is in TO and ion 15 is in
T1. Updated trap states will be TO (EC = 3): [0,
1,...,13], T1 (EC = 6):[14, 15, 16, 17] +
[5Q victim] (Note T1 EC > TO EC, different than
the assumption). Gate # sc2 will also require a shut-
tle as the ions are in different traps. New trap states:
TO (EC = 4): [1,...,13], Tl (EC = 5): [O,
14, 15, 16, 171 + [50 victim]. However, the
next gate # sc3 will not require a shuttle as both ions 14 and
16 are in T1.

The above example illustrates that some gates in the SC
block will skip shuttling when the actual victim size is dif-
ferent from the design assumption. As the adversary may
not know the victim size, he/she needs to assume a value that
gives the best number of shuttles across all possible victim
sizes. To find the best assumption, we sweep the victim size

2693

IEEE Access

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

Assumed victim size = 3Q
1 =6045,0=11.71,ICV =0.91

Assumed victim size = 4Q
1 =44.45 0=501,ICV = 1.56

Assumed victim size = 5Q
4 =56.18, 0 = 11.97, ICV = 0.82

Assumed victim size = 6Q
4 =6473,0=28.36,ICV =136

Assumed victim size = 7Q
1 =62.36,0=98,ICV=112

» 80

(] @ Q ﬂm)
= 60 =60 =60 60 =60
3 3 =3 3 3
£ 40 < 40 £ 40 £ 40 < 40
@ @ & @ »
%520 %5 20 5 20 520 520
* o * o #* o * #* o
2 3 4 5 6 7 8 9 10 11 12 2 3 45 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 1011 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 1011 12
Actual victim size (qubits) Actual victim size (qubits) Actual victim size (qubits) Actual victim size (qubits) Actual victim size (qubits)
Assumed victim size = 8Q Assumed victim size = 9Q Assumed victim size = 10Q Assumed victim size = 11Q Assumed victim size = 12Q
1 =67.18,0=7.22,ICV =1.63 /1 =68.18, 0 = 8.38,ICV = 1.43 1 =168.18,0=8.38,ICV =143 1 =61,0=11.23,ICV=0.95 1 =61,0=11.23,ICV=0.95
« 80 » » 80 » 80 » 80
Q (] (o} @ (o}
= 60 =60 = 60 = 60 = 60
5 E E] E] E]
£ 40 £ 40 < 40 < 40 < 40
& @ » » &
%5 20 %520 %5 20 520 520
#* 9 £ #* #*

2 3 4 5 6 7 8 9 1011 12
Actual victim size (qubits)

2 3 4 5 6 7 8 9 1011 12
Actual victim size (qubits)

2 3 45 6 7 8 9 1011 12
Actual victim size (qubits)

2 3 45 6 7 8 9 1011 12
Actual victim size (qubits)

2 3 45 6 7 8 9 1011 12
Actual victim size (qubits)

FIGURE 8. Effect of victim size assumption (trap capacity = 15). Assuming victim size 8 provides best result (highest ICV).

and propose selecting the value that gives the highest inverse
coefficient of variation (ICV). The inverse of coefficient of
variation is the ratio of the mean (u) to standard deviation
(o). A higher ICV indicates a higher mean and/or lower
standard deviation. For our purpose, we want a distribution
that provides a higher mean number of moves with a tighter
spread (a lower o). Before computing ICV, we normalize both
u and o with respect to the respective maximum value. The
results are discussed in Section VI.

3) AVAILABILITY OF ARCHITECTURAL POLICIES

The systematic method relies on knowledge initial mapping
and shuttle direction policies to ensure an effective attack.
Details on such architectural policies are available in liter-
ature [45], [55]-[57] and/or compiler documentations [58],
[59]. Architectural policies like speculative execution are
available to the public even in the classical domain. Numer-
ous papers on architectural policy flaws and their mitigation
also exist [60]-[63]. Spectre [62] and Meltdown [63] are two
such famous vulnerabilities that exploit the knowledge of an
architectural policy. Thus, we envision such availability of
architectural policies in the quantum domain as well. Finally,
if the cloud provider does a good job in protecting their secrets
i.e., restrict access to policies, the adversary can follow two
options. Option—I: the adversary can adopt a trial-and-error
route and design several attack programs each considering
separate policies available in the literature. Then, he/she can
launch an attack to check which one gives the best results
(high number of shuttles). Option—2: the adversary can revert
to the random attack described in Section IV which does not
require any prior information.

VI. RESULTS AND DISCUSSIONS

A. VICTIM SIZE SWEEP

1) SYSTEMATIC ATTACK

Figure 7 shows the number of shuttles for various actual
victim sizes (2 to 12, trap cap 15) where the attack program
is designed assuming a 2-qubit victim. The plot shows the
highest number of moves (80) is achieved when adversary
assumption matches actual victim size (dark bar in the plot).
We also observe that for other actual victim sizes shuttle
numbers vary and typically drop from the highest value.

2694

TABLE 1. Statistics from victim size-assumption sweep for trap caps
20 and 25.

Victim Trap cap = 20 Trap cap = 25
SIZ€ 1 AvG STD IcvV | AVG STD ICV
asmp.
2 |[50.12 14.96 0.77 [6029 1292 1.21
3 |6219 1118 1.28 |[51.05 1758 0.75
4 |51.06 1588 0.74 | 5862 10.75 1.41
5 |66.25 997 153 5048 1692 0.77
6 |57.19 1512 0.87 |59.24 14.38 1.07
7 |6494 904 166 5138 166 0.8
8 58 12.34 1.08 |62.38 11.36 1.42
9 |6888 741 214 |5457 15 0.94
10 |6169 979 145|619 10.18 158
11 [64.38 91 1.63 |57.14 1359 1.09
12 | 62 876 163 |6657 827 2.09
13 |67.25 6.75 23 |59.86 109 142
14 |67.12 762 203 |64.76 7.78 2.16
15 |67.12 7.62 203 |59.38 10.73 1.43
16 |6562 7.97 19 |66.33 6.83 252
17 |6562 797 19 |6276 829 1.96
18 - - - |6562 695 245
19 - - - |e7.8 719 245
20 - - - |6786 719 245
21 - - - |65.05 776 217
22 - - - |65.05 776 217

We report the mean (u), standard deviation (o), and inverse
of coefficient of variation (ICV) of this distribution.

To find the best assumption, we sweep the victim size
assumption from 3 to 12 (in addition to the assumed size of
2 in Figure 7) and record the statistics. The results are plotted
in Figure 8. In all cases, we observe that the highest number
of moves is achieved when the assumption matches the actual
size. From the statistics, an assumed victim size of 8 qubits
gives the best performance (highest ICV).

We perform the same analysis for trap capacities (cap)
20 and 25. For trap cap of 20, possible victim sizes vary from
2 to 17, and for trap cap 25 it varies from 2 to 22. We report
the mean, standard deviation, and ICV for both trap caps in
Table 1. For trap cap 20, an assumption of 13 qubits in the
victim gives the highest ICV, and for trap cap 25 the best
assumption is 16 qubits.

VOLUME 10, 2022

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

IEEE Access

TABLE 2. Shuttle statistics for the random attack.

Victi Trap cap = 15 Victi Trap cap =15

m (random attack) m (random attack)
SZ€l avc sTD IV [5%| Avc STD 1oV
asmp| lasmp.

2 42 1013 1.17 8 14245 11.84 1.01

3 14291 957 1.26 9 |4555 973 1.32

4 13509 13.04 0.76 | 10 [42.18 11.88 1

5 |4482 855 147 || 11 [43.36 11.37 1.07

6 |4464 7.81 1.61 12 141.27 10.87 1.07

7 146.36 12.361.05

Fidelity Reduction (Trap cap = 15)
Avg. reductions
20 60 gates: 2.63X | 80 gates: 5.40X | 100 gates: 13.11X

60 gates
151 lmgo gates
=100 gates

2 3 4 5 6 7 8 9 10 1 12
Actual victim size (qubits)

Fidelity reduction (X)

FIGURE 9. Fidelity reduction for various victim lengths. The adversary
program assumes victim size of 8. The trend exhibits a positive
correlation between reduction and length.

2) RANDOM ATTACK

Table 2 shows the statistics for victim size sweep for random
attack programs. The assumption of victim size 6 provides the
best results in terms of ICV. Therefore, we select this program
to launch future attacks.

B. FIDELITY REDUCTION

1) SYSTEMATIC ATTACK

Figure 9 shows fidelity reduction of the victim program
under attack for 3 victim lengths - 60, 80, and 100. The SC
block length, trap cap, and assumed victim size are 80 gates,
15 ions, and 8 qubits respectively. The plot shows that the
fidelity reduction increases with higher victim lengths. Aver-
age fidelity reductions are 2.63x, 5.40x, and 13.11x for
victim lengths 60, 80, and 100 respectively. Figure 10 qualita-
tively explains the positive correlation between victim length
and fidelity reduction. The shuttle operations are spread
across the length of the SC block. If the victim program
completes before the SC block, shuttles at the later part of the
block (hatched pattern in Figure 10) does not affect the victim
program. The opposite happens if the victim program is
longer. Repeated shuttles from adversary programs increase
the chain energy. Therefore, the later gates (cross pattern in
Figure 10) in the victim program experience excessive fidelity
drops.

Table. 3 shows fidelity reductions for trap caps 20 and
25 for 3 victim program lengths - 60, 80, and 100. For trap cap
20, the average fidelity reduction for these 3 program lengths
are 2.71x, 5.66x, and 13.51 x. For trap cap 25, the average
fidelity reductions are 4.77 x, 15.65x, and 68.13 x. In case of
trap cap 25, we observe aggravated fidelities, especially for

VOLUME 10, 2022

<+— Longer victim program —ﬁ%

[+— Shorter victim program —7/7/

<+—— SC block length ——»
7/ Shulttles in this part of the adversary program
A does not affect victim.

Gates in this part of victim experience
highly degraded fidelity.

FIGURE 10. Explanation of the positive correlation between fidelity
reductions and victim lengths.

TABLE 3. Fidelity reduction values for trap capacities 20 and 25.

Trapcap 60gates 80gates 100 gates
20 2.71X 5.66X 13.51X
25 477X 15.65X 68.13X

0Fidelity Reduction - Rand Attk. (Trap cap = 15)

Avg. reductions =60 gates
15l 60 gates: 2.22X =80 gates
80 gates: 4X

=100 gates
100 gates:8.94X |

N
o

o
T

Fidelity reduction (X)

o

2 3 4 5 6 7 8 9 10 1" 12
Actual victim size (qubits)

FIGURE 11. Fidelity reduction for random attack program.

larger victim sizes. Intuitively, this behavior can be attributed
to the scaling factor A in the gate fidelity equation F =
1 —T't — AQ2n + 1). Factor A o« N/log(N) where N =
number of qubits in the chain. For larger victims in a larger
capacity trap, A scales up making the motional mode (72) more
pronounced, and exacerbating gate fidelity (F).

2) RANDOM ATTACK

Figure 11 shows the fidelity reduction values for random
attack program (trap cap = 15). We omit the values for
trap cap 20 and 25 for brevity (fidelity reductions will be
even higher at these capacities). The results show an average
fidelity reduction of 2.22x, 4.0x, and 8.94x. These values
are lower than the systematic attack.

C. CHOICE BETWEEN SYSTEMATIC AND RANDOM ATTACK
PROGRAMS

The choice between systematic and random attack is not
an either-or proposition although the systematic approach
provides a higher fidelity reduction. The adversary needs to
submit many programs to the cloud to find a good attack
program using the random approach. Using the systematic
approach, a good attack program can be generated in one
try. Thus, the choice between approaches will depend on the
resources available to the adversary. If he/she has informa-
tion about the architectural policies, adopting the systematic

2695

IEEE Access

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

approach is the fastest and the best choice. If an adversary
has the resources to run many programs on the cloud (running
programs will cost money) and/or does not have knowledge
about necessary policies, then adopting the random approach
will lead to stronger attacks.

VIl. COUNTERMEASURES

A. RANDOM INITIAL MAPPING

The compiler can adopt a random initial mapping policy
where each program at each iteration starts from a random
allocation. Both malicious program creation methods rely
on a consistent initial mapping i.e., the same program will
be allocated in the same fashion for every run. In case of a
random attack, if initial mapping changes randomly from
one instance to another, the attack program generated at
one instance (with one mapping) will not work effectively
for another instance (with a different) mapping. A random
mapping will invalidate the systematic method as traps will
start from unknown states.

We validate this proposed technique with an 18-qubit
adversary program designed for a 12-qubit victim. With the
greedy policy, it forces 80 shuttles. Next, we switch the initial
mapping policy to random and gather results for 1000 runs.
We find that with a random initial mapping policy, the average
number of moves drastically drops to &~ 27 (¢ = 9.45)
(2.96x drop). Therefore, it proves the efficacy of random
initial mapping in weakening the attack.

1) TRADE-OFF OF RANDOM INITIAL MAPPING

Although a random initial mapping policy can disarm an
adversary, it may penalize a legitimate user. A good ini-
tial mapping policy tries to place ions with frequent gates
together so that communication can be minimized in typi-
cal benchmarks (note that attack programs are not typical
programs— they are artificially crafted to contain numerous
shuttles by hacking an intelligent initial mapping policy).
However, a random initial mapping policy does not exploit
such intelligence and cannot always guarantee an optimal
number of communications. To show the impact of random
mapping, we simulate a suite of popular noisy intermediate-
scale quantum (NISQ) benchmarks used in [37] with both
greedy and random mapping policies. Benchmarks include
quantum Fourier transform (QFT), quantum approximation
optimization algorithm (QAOA) circuit, supremacy circuit
from Google’s quantum supremacy experiment, and quantum
adder circuit. The circuits are generated using [64]. The mean
values for random policy are computed from 1000 random
allocations. The results (Table 4) show that random mapping
increases shuttles for NISQ benchmarks up to 6x. Thus,
a random mapping policy can weaken attacks at a cost of
penalizing legitimate users.

2) HYBRID APPROACH
To alleviate the issue, the cloud can adopt a hybrid approach.
In the hybrid approach, the compiler compiles a program with

2696

TABLE 4. Penalty of random mapping in NISQ benchmarks.

Benchmark name ?Gl\feoev(?; A}’,g;?oor:?s Moves 1
Supremacy_25Q (depth = 10) 56 65 1.16X
QAOA_20Q (depth = 10) 14 47 3.35X
QAOA_30Q (depth = 10) 19 114 6X
QFT_20Q 15 48 3.20X
QFT_30Q 30 162 5.4X
Adder_22Q 6 22 3.67X

both random and intelligent (e.g., greedy) initial mapping and
discards the result with higher shuttles. It will execute the
version with the lower shuttles.

B. DUMMY PAD QUBITS IN THE VICTIM PROGRAM

A user (victim) can protect his/her program by adding a
sufficient number of dummy qubits to pad the unused qubits
in a trap. Suppose, the actual user program needs 10 qubits,
and he/she wants to execute the program on a system with a
trap cap 15/trap. In such a case, the user can add 5 dummy pad
qubits in his/her program to make the program size 15 which
will fully occupy a trap. Thus, an adversary qubit cannot share
a trap with the victim preventing shuttle-induced fidelity
degradation. The user can apply virtual-Z gates [65] (e.g.,
GZ gate in the IonQ machine [50]) on the dummy qubits.
It will ensure that the compiler considers the qubits during
allocation. As the virtual-Z gate is a software gate, it has
perfect fidelity, requires no physical, and will not affect the
user program.

However, there can be a security vs. cost trade-off. The
quantum cloud may charge the user more for using more
qubits. Consider a linear cost model where requesting 1 qubit
cost 1 unit. The cost of running the 10-qubit will be 10 units.
However, with 5 dummy qubits for padding and security,
now the user has to spend 15 units increasing the cost by
1.5x. Not to mention that the cost model could be based
on an exponential relation with the qubits counts. Therefore,
this defense will be more cost-effective for a low number of
dummy qubits (i.e., where actual user program size is large
and/or trap cap is low).

C. CAPPING MAXIMUM NUMBER OF ALLOWED
SHUTTLES

The cloud can enforce a max shuttle to prevent shuttle-
exploiting attacks. The cloud provider can check the required
number of shuttles in a program, and if it exceeds the set max-
imum value, the cloud can schedule it separately (without any
accompanying program). This means for certain programs
the cloud will dynamically switch to a single-programming
mode from the multi-programming mode. However, the cloud
will lose some throughput due to this switching. It can cover
the loss by charging extra for programs requiring a high
number of shuttles. Suppose, the 18 qubit adversary program

VOLUME 10, 2022

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

IEEE Access

exceeds the max set shuttles. The cloud needs to run it in a
single-programming mode with 30 qubit resources (2 traps x
15 qubits/trap). Thus, the cloud will now charge 30 units -
considering the previous linear cost model - instead of
18 units before to cover the loss in device utilization. In this
way, programs with high shuttles cannot affect other pro-
grams, and the cloud will not incur a loss.

VIil. CONCLUSION

In this paper, we present a vulnerability in multi-programming
access to TI quantum computers and propose several
defenses. With extensive numerical simulations, we establish
the shuttle operation as a mode of fault injection attack.
We present two methodologies, namely, systematic and ran-
dom, to design malicious programs that will cause repeated
shuttles between traps. The purpose is to increase the energy
of an ion chain, which degrades the gate and program fidelity.
We perform analysis for a wide range of design parameters
such as trap capacity (15 to 25 ions per trap), program
length (60 to 100 gates), and victim size (2 to 22 qubits).
Our simulation results indicate that shuttle-exploiting attacks
can degrade victim program fidelity by &2 x to ~68x. The
results prove that shuttle attacks are a significant problem
unless appropriate countermeasures are deployed.

To protect against the shuttle-exploiting attacks, we pro-
pose several mitigation techniques, including adopting a
hybrid initial mapping policy, adding dummy pad qubits in
the victim program, and capping the maximum number of
allowed shuttles. We show that using a random initial map-
ping policy can reduce the number of shuttles by ~3x in
malicious programs and thus, can weaken the attack. How-
ever, this approach also penalizes legitimate programs, which
is an undesired effect. To balance the opposite effects, we pre-
scribe compilation using both a random and a systematic
(e.g., greedy) initial mapping policy and discard the result
with a higher number of shuttles. In this manner, malicious
programs will be abated, whereas legitimate programs will
not be penalized.

A. OPEN CHALLENGES AND FUTURE DIRECTION

For the countermeasures, there is a cost vs. effectiveness
trade-off. For example, adding dummy padding qubits or
switching to a single program mode when the number of
shuttles exceeds a set maximum can isolate two programs
and safeguard against nefarious effects of repeated shuttles.
However, these reduce device utilization and throughput and
increase the cost to run a program. Thus, there are scopes to
explore low-cost countermeasures. In this regard, ion cooling
(e.g., [66]) can be explored as a potential solution. It will
require adding laser cooling of ions after a certain number
of shuttles to negate the heating of the ion chain and restore
the fidelity of gate operations. Added cooling steps may
consume some time and can make program execution slower.
Therefore, cooling operations need to be added as required.
Exploration of the optimum number of cooling operations is
a future research topic.

VOLUME 10, 2022

ACKNOWLEDGMENT

The authors would like to thank Prakash Murali (Princeton)
for providing the codebase for the QCCD compiler and sim-
ulator.

REFERENCES

[1] M. Schuld and N. Killoran, “Quantum machine learning in feature Hilbert
spaces,” Phys. Rev. Lett., vol. 122, no. 4, Feb. 2019, Art. no. 040504, doi:
10.1103/PhysRevLett.122.040504.

[2] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum com-
puting for drug discovery,” IBM J. Res. Develop., vol. 62, no. 6, pp. 1-6,
2018.

[3] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M. Troyer, ‘‘Hybrid

quantum-classical approach to correlated materials,” Phys. Rev. X, vol. 6,

no. 3, Sep. 2016, Art. no. 031045, doi: 10.1103/PhysRevX.6.031045.

A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow,

and J. M. Gambetta, “‘Hardware-efficient variational quantum eigensolver

for small molecules and quantum magnets,” Nature, vol. 549, no. 7671,

pp. 242-246, 2017.

E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate opti-

mization algorithm,” 2014, arXiv:1411.4028.

(Dec. 2018). H.R.6227—National Quantum Initiative Act. [Online]. Avail-

able: https://www.congress.gov/bill/115th-congress/house-bill/6227/

(Dec. 2018). The National Quantum Coordination Office (NQCO).

[Online]. Available: https://www.quantum.gov/nqco/#THE-NATIONAL-

QUANTUM-COORDINATION-OFFICE

[8] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam,
N. Grzesiak, J-S. Chen, N.-C. Pisenti, M. Chmielewski, C. Collins,
and K.-M. Hudek, “Benchmarking an 11-qubit quantum computer,”
Nature Commun., vol. 10, no. 1, pp. 1-6, 2019.

[91 A.W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta,
“Validating quantum computers using randomized model circuits,” Phys.
Rev. A, Gen. Phys., vol. 100, no. 3, Sep. 2019, Art. no. 032328, doi:
10.1103/PhysRevA.100.032328.

[10] Honeywell. (Jul. 2021). Honeywell Sets Another Record
for Quantum Computing Performance. [Online]. Available:
https://www.honeywell.com/us/en/news/2021/07/honeywell-sets-another-
record-for-quantum-computing-performance

[11] IONQ. (Apr. 2021). Getting Started Using Qiskit With IonQ Hard-
ware. [Online]. Available: https://ionq.com/posts/getting-started-using-
qiskit-with-ionq-hardware

[12] (Apr. 2021). Quantum (Hardware) Service Providers. [Online]. Available:
https://qiskit.org/documentation/partners/

[13] Amazon. (May 2021). Amazon Braket.
https://aws.amazon.com/braket/

[14] Microsoft. (May 2021). Azure Quantum. [Online]. Available:
https://azure.microsoft.com/en-us/services/quantum/

[15] T. Hubregtsen, D. Wierichs, E. Gil-Fuster, P-J. H. S. Derks,
P. K. Faehrmann, and J. J. Meyer, “Training quantum embedding
kernels on near-term quantum computers,” 2021, arXiv:2105.02276.

[16] D.-B. Zhang, S.-L. Zhu, and Z. D. Wang, “Protocol for implementing
quantum nonparametric learning with trapped ions,” Phys. Rev. Lett.,
vol. 124, no. 1, Jan. 2020, Art. no. 010506.

[17] S. Johri, S. Debnath, A. Mocherla, A. Singk, A. Prakash, J. Kim,
and I. Kerenidis, “Nearest centroid classification on a trapped ion
quantum computer,” npj Quantum Inf., vol. 7, no. 1, pp.1-11,
Dec. 2021.

[18] C. Bravo-Prieto, J. Baglio, M. C¢, A. Francis, D. M. Grabowska, and
S. Carrazza, “Style-based quantum generative adversarial networks for
Monte Carlo events,” 2021, arXiv:2110.06933.

[19] M. S. Rudolph, N. Bashige Toussaint, A. Katabarwa, S. Johri,
B. Peropadre, and A. Perdomo-Ortiz, “Generation of high-resolution
handwritten digits with an ion-trap quantum computer,” 2020,
arXiv:2012.03924.

[20] E. Y. Zhu, S. Johri, D. Bacon, M. Esencan, J. Kim, M. Muir, N. Murgai,
J. Nguyen, N. Pisenti, A. Schouela, K. Sosnova, and K. Wright, “Gener-
ative quantum learning of joint probability distribution functions,” 2021,
arXiv:2109.06315.

[21] R. Yalovetzky, P. Minssen, D. Herman, and M. Pistoia, “NISQ-
HHL: Portfolio optimization for near-term quantum hardware,” 2021,
arXiv:2110.15958.

[4

=

[5

—

[6

—

17

—

[Online]. Available:

2697

http://dx.doi.org/10.1103/PhysRevLett.122.040504
http://dx.doi.org/10.1103/PhysRevX.6.031045
http://dx.doi.org/10.1103/PhysRevA.100.032328

IEEE Access

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

2698

D. Zhu, S. Johri, N. M. Linke, K. A. Landsman, C. H. Alderete,
N. H. Nguyen, A. Y. Matsuura, T. H. Hsieh, and C. Monroe, “Generation
of thermofield double states and critical ground states with a quantum
computer,” Proc. Nat. Acad. Sci. USA, vol. 117, no. 41, pp. 25402-25406,
Oct. 2020.

Z. Davoudi, M. Hafezi, C. Monroe, G. Pagano, A. Seif, and A. Shaw,
“Towards analog quantum simulations of lattice gauge theories with
trapped ions,” Phys. Rev. Res., vol. 2, no. 2, Apr. 2020, Art. no. 023015.
Y. Kawashima, E. Lloyd, M. P. Coons, Y. Nam, S. Matsuura,
A. J. Garza, S. Johri, L. Huntington, V. Senicourt, A. O. Maksymov,
J. H. V. Nguyen, J. Kim, N. Alidoust, A. Zaribafiyan, and T. Yamazaki,
“Optimizing electronic structure simulations on a trapped-ion quantum
computer using problem decomposition,” Commun. Phys., vol. 4, no. 1,
pp. 1-9, Dec. 2021.

C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen,
P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush, A. Aspuru-Guzik,
R. Blatt, and C. F. Roos, “Quantum chemistry calculations on a trapped-ion
quantum simulator,” Phys. Rev. X, vol. 8, no. 3, Jul. 2018, Art. no. 031022.
Y. Nam, J.-S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov,
K. R. Brown, J. M. Amini, J. Apisdorf, and K. M. Beck, “Ground-
state energy estimation of the water molecule on a trapped-ion quantum
computer,” NPJ Quantum Inf., vol. 6, no. 1, pp. 1-6, Dec. 2020.
Honeywell. (Nov. 2021). How Quantum Computing Can Help
Nippon Steel Improve Scheduling at Plants. [Online]. Available:
https://www.honeywell.com/us/en/news/2021/06/how-quantum-
computing-can-help-nippon-steel-improve-scheduling-at-plants
Honeywell. (Nov. 2021). How BMW Can Maximize its
Supply Chain Efficiency with Quantum. [Online]. Available:
https://www.honeywell.com/us/en/news/2021/01/exploring-supply-
chain-solutions-with-quantum-computing

T. Giurgica-Tiron, S. Johri, I. Kerenidis, J. Nguyen, N. Pisenti, A. Prakash,
K. Sosnova, K. Wright, and W. Zeng, ““‘Low depth amplitude estimation on
a trapped ion quantum computer,” 2021, arXiv:2109.09685.

J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses,
M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer,
C. Ryan-Anderson, and B. Neyenhuis, ‘“Demonstration of the trapped-
ion quantum CCD computer architecture,” Nature, vol. 592, no. 7853,
pp. 209-213, Apr. 2021.

R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland, A. Kwiatkowski,
S. Glancy, E. Knill, D. J. Wineland, D. Leibfried, A. C. Wilson,
D. T. C. Allcock, and D. H. Slichter, “High-fidelity laser-free universal
control of trapped ion qubits,” Nature, vol. 597, no. 7875, pp. 209-213,
Sep. 2021.

TIonQ. (Nov. 2021). IonQ Opens Door to Dramatically More Powerful
Quantum Computers, Debuts Industry First: Reconfigurable Multicore
Quantum Architecture. [Online]. Available: https://ionq.com/news/august-
25-2021-reconfigurable-multicore-quantum-architecture

Honeywell. (Oct. 2020). Get to Know Honeywell’s Latest
Quantum Computer System Model HI1. [Online]. Available:
https://www.honeywell.com/us/en/news/2020/10/get-to-know-honeywell-
s-latest-quantum-computer-system-model-h1

N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt,
K. A. Landsman, K. Wright, and C. Monroe, “Experimental com-
parison of two quantum computing architectures,” Proc. Nat. Acad.
Sci. USA, vol. 114, no. 13, pp. 3305-3310, 2017. [Online]. Available:
https://www.pnas.org/content/114/13/3305

T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise,
C. H. Baldwin, K. Mayer, and T. Proctor, “Application-oriented perfor-
mance benchmarks for quantum computing,” 2021, arXiv:2110.03137.
D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a
large-scale ion-trap quantum computer,” Nature, vol. 417, no. 6890,
pp. 709-711, 2002.

P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, “Architect-
ing noisy intermediate-scale trapped ion quantum computers,” in Proc.
ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA), May 2020,
pp. 529-542, doi: 10.1109/ISCA45697.2020.00051.

P. Murali. (Jan. 2021). QCCDSim. [Online].
https://github.com/prakashmurali/QCCDSim

S. M. Saeed, R. Wille, and R. Karri, “Locking the design of building blocks
for quantum circuits,” ACM Trans. Embedded Comput. Syst., vol. 18,
no. 5s, pp. 1-15, Oct. 2019.

N. Acharya and S. M. Saeed, “A lightweight approach to detect mali-
cious/unexpected changes in the error rates of NISQ computers,” in Proc.
39th Int. Conf. Comput.-Aided Design, Nov. 2020, pp. 1-9.

Available:

(41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

(49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

V. Saravanan and S. M. Saeed, ‘“Decomposition-based watermarking of
quantum circuits,” in Proc. 22nd Int. Symp. Quality Electron. Design
(ISQED), Apr. 2021, pp. 73-78.

K. Phalak, A. Ash-Saki, M. Alam, R. O. Topaloglu, and S. Ghosh, “Quan-
tum PUF for security and trust in quantum computing,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 11, no. 2, pp. 333-342, May 2021, doi:
10.1109/JETCAS.2021.3077024.

A. Ash-Saki, M. Alam, and S. Ghosh, “Analysis of crosstalk in NISQ
devices and security implications in multi-programming regime,” in Proc.
ACM/IEEE Int. Symp. Low Power Electron. Design, New York, NY, USA,
Aug. 2020, pp. 25-30, doi: 10.1145/3370748.3406570.

A. Suresh, A. A. Saki, M. Alam, R. O. Topalaglu, and D. S. Ghosh,
“A quantum circuit obfuscation methodology for security and privacy,”
2021, arXiv:2104.05943.

P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A case for multi-
programming quantum computers,” in Proc. 52nd Annu. IEEE/ACM Int.
Symp. Microarchitecture, New York, NY, USA, Oct. 2019, pp. 291-303,
doi: 10.1145/3352460.3358287.

Rigetti. (May 2021). Quantum Cloud Services. [Online]. Available:
https://qcs.rigetti.com/

Rigetti. (May 2021). Reservations. [Online]. Available:
https://docs.rigetti.com/en/getting-started-with-your-ide/jupyterlab-ide
K. Mglmer and A. Sgrensen, ‘“Multiparticle entanglement of hot trapped
ions,” Phys. Rev. Lett., vol. 82, no. 9, pp. 1835-1838, Mar. 1999, doi:
10.1103/PhysRevLett.82.1835.

Y. Wu, S.-T. Wang, and L.-M. Duan, “Noise analysis for high-fidelity
quantum entangling gates in an anharmonic linear Paul trap,” Phys. Rev. A,
Gen. Phys., vol. 97, no. 6, Jun. 2018, Art. no. 062325, doi: 10.1103/Phys-
RevA.97.062325.

IONQ. (May 2021). Best Practices—Native Gates. [Online]. Available:
https://ionq.com/best-practices

Honeywell. (Jan. 2021). Honeywell System Models HO and HI.
[Online]. Available: https://www.honeywell.com/us/en/company/quantum/
quantum-computer

AWS-Braket. (Mar. 2021). Allocating Qubits on QPU Devices. [Online].
Available: https://github.com/aws/amazon-braket-examples/blob/main/
examples/braket_features/Allocating_Qubits_on_QPU_Devices.ipynb

C. J. Trout, M. Li, M. Gutiérrez, Y. Wu, S.-T. Wang, L. Duan, and
K. R. Brown, “Simulating the performance of a distance-3 surface
code in a linear ion trap,” New J. Phys., vol. 20, no. 4, Apr. 2018,
Art. no. 043038.

M. Gutiérrez, M. Miiller, and A. Bermudez, ‘“Transversality and lat-
tice surgery: Exploring realistic routes toward coupled logical qubits
with trapped-ion quantum processors,” Phys. Rev. A, Gen. Phys.,
vol. 99, no. 2, Feb. 2019, Art. no. 022330, doi: 10.1103/PhysRevA.99.
022330.

P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers,” in Proc. 24th Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2019, pp. 1015-1029.

S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A case
for variability-aware policies for NISQ-era quantum computers,” in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2019, pp. 987-999.

M. Y. Siraichi, F. M. Q. Pereira, V. Dos Santos, and C. Collange,
“Qubit allocation,” in Proc. Int. Symp. Code Gener. Optim., Jun. 2020,
pp. 113-125.

Rigetti. (May 2021). Compiler. [Online]. Available: https://pyquil-
docs.rigetti.com/en/v2.22.0/compiler.html

(May 2021). Transpiler. [Online]. Available:
https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible in
the cache hierarchy,” in Proc. 51st Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Oct. 2018, pp. 428—-441.

O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “NDA:
Preventing speculative execution attacks at their source,” in Proc. 52nd
Annu. IEEE/ACM Int. Symp. Microarchitecture, New York, NY, USA,
Oct. 2019, pp. 572586, doi: 10.1145/3352460.3358306.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, ““Spectre
attacks: Exploiting speculative execution,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 1-19.

VOLUME 10, 2022

http://dx.doi.org/10.1109/ISCA45697.2020.00051
http://dx.doi.org/10.1109/JETCAS.2021.3077024
http://dx.doi.org/10.1145/3370748.3406570
http://dx.doi.org/10.1145/3352460.3358287
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevA.97.062325
http://dx.doi.org/10.1103/PhysRevA.97.062325
http://dx.doi.org/10.1103/PhysRevA.99.022330
http://dx.doi.org/10.1103/PhysRevA.99.022330
http://dx.doi.org/10.1145/3352460.3358306

A. A. Saki et al.: Shuttle-Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers

IEEE Access

[63] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user
space,” in Proc. 27th USENIX Secur. Symp. Secur. (USENIX),
Baltimore, MD, USA, Aug. 2018, pp. 973-990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 1 8/presentation/lipp

[64] T. Tomesh. (May 2021). Quantum-Circuit-Generator. [Online]. Available:
https://github.com/teaguetomesh/quantum_circuit_generator

[65] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta,
“Efficient Z gates for quantum computing,” Phys. Rev. A, Gen. Phys.,
vol. 96, Aug. 2017, Art. no. 022330, doi: 10.1103/PhysRevA.96.022330.

[66] C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano,
D. J. Wineland, and P. Gould, “Resolved-sideband Raman cooling of a
bound atom to the 3D zero-point energy,” Phys. Rev. Lett., vol. 75, no. 22,
pp. 4011-4014, Nov. 1995, doi: 10.1103/PhysRevLett.75.4011.

ABDULLAH ASH SAKI (Graduate Student
Member, IEEE) received the B.Sc. degree from the
Bangladesh University of Engineering and Tech-
nology (BUET), in 2014, and the M.S. and Ph.D.
degrees from The Pennsylvania State University,
University Park, PA, USA, in 2020 and 2021,
respectively. In his Ph.D., he worked on noise
resilient and secure quantum computing. He is set
to join Zapata Computing as a Quantum Research

: Scientist, since January 2022. He was a recipient
of Dr. Nirmal K. Bose Dissertation Excellence Award from the Department
of Electrical Engineering, Penn State.

RASIT ONUR TOPALOGLU (Senior Member,
IEEE) received the B.S. degree in EE from
Bogazici University and the Ph.D. degree in com-
puter science and engineering from the University
of California at San Diego. He has worked for
companies, such as Qualcomm, AMD, GLOB-
ALFOUNDRIES and is currently with IBM. He
works on next-generation computer technology
and design currently as a Senior Hardware Devel-
oper. He was partially involved with qubit charac-
terization laboratory work at IBM Research. He has over 60 peer-reviewed
publications and over 60 issued U.S. patents, more than a 30 of which are on
quantum technologies. He has chaired the IEEE/ACM DAC Workshop

VOLUME 10, 2022

on Design Automation for Quantum (DAQ). As of 2021, he is working on a
Quantum Computing book. He serves on IEEE/ACM Design Automation
Conference (DAC), IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), and IEEE International Symposium on Quality
Electronic Design (ISQED) Technical Program Committees that cover quan-
tum topics. He serves as the Chair for [EEE Mid-Hudson and the Secretary of
ACM Poughkeepsie. He is an IEEE/ACM DAC Outstanding Innovator and
an IBM Master Inventor.

SWAROOP GHOSH (Senior Member, IEEE)
received the B.E. degree (Hons.) from IIT, Roor-
kee and the Ph.D. degree from Purdue Univer-
sity. He is currently an Associate Professor with
Pennsylvania State University. Earlier, he was with
the Faculty of University of South Florida (USF).
Prior to that, he was a Senior Research and Devel-
opment Engineer in Advanced Design, Intel Cor-
poration. His research interests include emerging
memory technologies, hardware security, quantum
computing, and digital testing. He is a Senior member of the National
Academy of Inventors (NAI) and an Associate Member of Sigma Xi and a
Distinguished Speaker of the Association for Computing Machinery (ACM).
He was a recipient of Intel Technology and Manufacturing Group Excellence
Award in 2009, the Intel Divisional Award in 2011, the Intel Departmental
Awards in 2011 and 2012, the USF Outstanding Research Achievement
Award in 2015, the College of Engineering Outstanding Research Achieve-
ment Award in 2015, the DARPA Young Faculty Award (YFA) in 2015, the
ACM SIGDA Outstanding New Faculty Award in 2016, the YFA Director’s
Fellowship in 2017, the Monkowsky Career Development Award in 2018, the
Lutron Spira Teaching Excellence Award in 2018, the Dean’s Certificate of
Excellence in 2019 and 2021, and the Best Paper Award in American Society
of Engineering Education (ASEE) Annual Conference in 2020. He has also
served in the technical program committees of more than 25 ACM/IEEE
conferences, including DAC, ICCAD, CICC, DATE, ISLPED, GLSVLSI,
Nanoarch, and ISQED. He served as the Technical Program Co-Chair of
ISLPED 2022, the General Chair of ISQED 2021, the Conference Chair
of ISQED 2020, the Program Chair of DAC Ph.D. Forum 2016, and the
Track (Co)-Chair of CICC 2017-2019, ISLPED 2017-2021, and ISQED
2016-2017. He served as an Associate Editor for the IEEE TRANSACTIONS
oN Circuits AND SYSTEMS—I: REGULAR PapPERs and IEEE TRANSACTIONS ON
CompUTER-AIDED DESIGN and as a Senior Editorial Board member for IEEE
JourNAL oF EMERGING Topics oN CircuiTs AND SysTEMS (JETCAS). He served
as a Guest Editor for the IEEE JETCAS and IEEE TRANSACTIONS ON VERY
LARGE ScALE INTEGRATION (VLSI) SysTEMS.

2699

http://dx.doi.org/10.1103/PhysRevA.96.022330
http://dx.doi.org/10.1103/PhysRevLett.75.4011

