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ABSTRACT Predictive analytics has become an essential area of research in health informatics. The
availability of multi-source and multi-modal data in healthcare has made the disease prediction, diagnosis,
and medication process more effective and reliable. However, the analysis and decision making have become
challenging task, particularly when data is in multiple formats and from different sources. In this study,
different frameworks have been proposed to handle multi-nature data at different levels for predictive
analytics. Dimensionality reduction techniques have been applied to extract relevant features to enhance the
analysis. To improve the performance of predictive analytics at different fusion levels, the potential benefits
of multi-modal data have been discussed. Moreover, notable improvement in prediction accuracy has been
observed through experimental evaluation of the proposed frameworks. Furthermore, the issues which have
been found during dimension reduction and fusion approaches have also been highlighted.

INDEX TERMS Dimensionality reduction, feature extraction, data fusion, feature fusion, machine learning,

high dimensional data.

I. INTRODUCTION

Over the past few decades, the evolution of Information and
Communication Technology in healthcare has brought rev-
olutionary changes in data collection tools and techniques.
Healthcare is a data-intensive field generating a massive vol-
ume of data every day. Health informatics systems are mak-
ing a significant contribution to transform healthcare from
a data-intensive to a data-rich field. An intense increase in
the data size and dimensions used for different applications
demands novel approaches to make effective use of data to
enhance the performance of these systems [1], [2].

Health informatics systems play an essential role in hospi-
tals and healthcare centers. These systems need to be mod-
ernized as they face many issues in acquiring relevant and
complete data [3], [4]. Various issues have been found in
health informatics data such as uncertainty, imperfection, het-
erogeneity, inconsistency, redundancy, high dimensionality
and representation create problems for the fusion process [5].
The performance of disease management and prediction sys-
tems is often adversely affected due to data quality issues [6].
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To overcome these issues, it becomes essential to remove
discrepancies from the data to discover valuable hidden infor-
mation for analysis and decision making.

Data belonging to different sources and modalities have
different features that provide different information about
disease and patient condition. Thus feature fusion of
multi-source and multi-modal data can improve the accuracy
and reliability of results as compare to single modality [7].
Moreover, relying on the data from a single source or modal-
ity can be challenging to discriminate different diseases and
classification of severity level. The fusion of multi-source and
multi-modal data has become common in recent years. Multi-
modal systems not only consider different aspects of disease
management, but also allows for missing data imputation,
quality-aware fusion, and improve the precieved experience.

A variety of techniques can be used to analyze current
and historical information to make accurate predictions. The
predictive analytics approaches allow the maintenance of
actions based on changes in the parameters and factors that
can affect disease diagnosis. However, the quality of input
data has a significant impact on the performance of the
prediction system [8], [9]. In HDD, multiple parameters
belonging to one entity may be collected to diagnose disease.
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FIGURE 1. Architecture of classical uni-modal approach for predictive analytics. Here, predictive analytics is
performed for data x; retrieved from each source S; separately. First, data from each source S; is
preprocessed to clean the data x;. Then DRT transforms the data x; into lower dimension y;. Finally,
predictive analytics model is applied according to type of data to attain the results.

HDD often holds redundant, sparse, missing, noisy, and irrel-
evant features [10]-[12]. Moreover, analysis of HDD and
diverse nature data is challenging for decision-making and
disease prediction.

The predictive analytics approaches allow the maintenance
of actions based on such changes in the parameters and factors
that affect disease diagnosis. A variety of techniques can be
used to analyze current and historical information to make
accurate predictions. However, the quality of input data has
a significant impact on the performance of the prediction
system [8], [9]. In some situations, hundreds or even mil-
lions of measurements belonging to one entity may be col-
lected to diagnose disease. In such a situation, generally, the
issue of HDD is raised. HDD often holds redundant, sparse,
missing, noisy, and irrelevant features [10]-[12]. Moreover,
analysis of HDD and diverse nature data is challenging for
decision-making and disease prediction; only relevant fea-
tures are required.

Many Dimensionality Reduction Techniques (DRTs) have
been successfully applied in the literature to extract only
precise and relevant features for analysis and disease predic-
tion. Dimensionality Reduction (DR) can be performed via
feature selection and feature extraction [13]. Feature selec-
tion creates a subset of features using correlation analysis
or weighting methods [14]. Feature extraction transforms the
original HDD into a low-dimensional representation by elim-
inating the redundant features [15]. Feature extraction can
be performed using linear approaches [16], such as Principal
Component Analysis (PCA), Independent Component Anal-
ysis (ICA). And nonlinear approaches [17], such as Kernel
PCA (KPCA), Isomap, and Self Organizing Map (SOM), etc.
Different DRTs can be applied for different types of data (e.g.,
image, text, signals) [11]. Moreover, different researchers
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have applied different machine and deep learning models,
such as Support Vector Machine (SVM), Decision Tree (DT),
Logistic Regression (LR), Random Forest (RF) [18], [19],
Clustering [5], [20], and Neural Networks (NN) [21] for
disease classification and prediction [3], [22].

At present, most of the frameworks proposed in the litera-
ture are using a single modality for predictive analytics (e.g.,
the prediction of disease) (Figure 1). For example, Electrocar-
diogram (ECG) signals have been used for arrhythmia detec-
tion [23]. The problem with this approach is that ECG signals
and ECG reports may not be available simultaneously. But,
other information such as symptoms of heart disease, risk
factors information, and demographic data may be available,
which can be helpful for disease prediction. An ECG-based
prediction system that uses ECG signals only can limit the
scope and need modification in such a situation. Similar
issues have been found with other disease prediction and
management systems developed to work with one modality
at a time [2], [24]. Some studies proposed fusion frameworks
such as for readmission prediction [25], disease prediction
which are specific for the fusion of multi-modal or multi-
source data at a time [18], [26]. These systems offer better
results than unimodal based system. There is need for a
mechanism than can utilize multi-source, multi-modal, and
multi-nature data simultaneously to develop dynamic and
efficient disease prediction and management systems.

Several techniques have been proposed to combine data
from multiple sources and modalities in recent years, which
may hold similar and different data formats used for pre-
dictive analytics [18], [21], [26]-[28]. These techniques
include data integration, data fusion, feature fusion, knowl-
edge fusion, and multi-sensor fusion [4], [21], [26]. There
is need to develop a system that can fuse multi-source,
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multi-nature, and multi-modal data to improve the perfor-
mance of disease diagnostic and prediction systems [5].
Multi-source fusion increases the reliability and availability
of data. However, different sources may hold data in different
modalities (e.g., formats). When the objective is to fuse (com-
bine) diverse nature multi-source data, it becomes more suit-
able to apply multi-source fusion. But multiple sources may
contain redundant features, so there is a need to fuse features
belonging to different modalities. Feature fusion models can
combine feature sets belonging to two or more modalities to
acquire distinct, relevant, and precise features. Many studies
explored different levels of fusions [3], [29], [30]. Selection
of required fusion level needs a clearly defined objective for
combing various features belonging to different sources in
the form of different modalities and vice versa. The resulting
(combination of) features belonging to multiple sources and
modalities is expected to generate improved prediction per-
formance compared to individual modality or data belonging
to a single source [5].

This study proposed different fusion frameworks to com-
bine the data from multiple sources and modalities for pre-
dictive analytics to overcome the issues mentioned above.
Moreover, knowledge and decision fusion frameworks have
been introduced to improve decision-making. It becomes
challenging to use a particular DRT or a common classifier
or Machine Learning (ML) model for multi-nature and multi-
modal data [11], [19], [31]. To resolve this challenge, suitable
DRTs can be applied to extract the most relevant, reliable, and
precise features to improve the performance of the classifier
or the ML model. Ultimately, to enhance the performance of
predictive analytics for health informatics.

This study makes the following contributions:

o Multi-modal, multi-source data, feature, knowledge, and
decision fusion frameworks have been proposed to com-
bine the data from multiple sources and modalities to
improve predictive analytics.

« For considering the contribution of different DRTs and
ML models, we explored different DRTs and ML models
for the proposed fusion frameworks.

« Key issues belonging to DRTs and fusion frameworks
for predictive analytics have also been highlighted.

The present study is organized as follows: Section II
presents the related work. Fusion frameworks are proposed
in section III. Section IV discusses the results of the pro-
posed frameworks. Section V explores the key challenges that
limit the application of DRTs and fusion approaches. Finally,
section VI concludes the study.

Il. REVIEW OF LITERATURE

Several multi-source, multi-modal, and knowledge fusion
frameworks have been introduced in the literature to improve
the performance of disease prediction systems. This section
provides a brief review of different fusion frameworks sug-
gested in the literature for handling high-dimensional, multi-
source, and multi-nature health informatics data. According
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to reviewed literature three common fusion levels have been
found. Data fusion approaches such as integration and fusion
have been used to fuse multi-source or multi-modal data.
Feature fusion approaches have been defined to combine
features from multiple sources and modalities. Feature selec-
tion and extraction methods can be applied for feature fusion
(e.g., to combine features belonging to different sources and
modalities). Decision fusion approaches aims to combine the
results of different classifiers using major voting, min-max
score, etc.

A. MULTI-MODAL DATA FUSION

In literature, most of the studies proposed fusion frameworks
perform multi-modal fusion of different medical signals (e.g.,
ECG, EEQG, etc.) [7] or imaging modalities (e.g., MRI, PET,
CT, or CXR) [32], [33]. To resolve the issues of multi-source
data fusion a genetic algorithm was proposed to select data
from source having optimal information [34]. In a recent
study, Muhammad et al. [7] conducted a brief review of var-
ious studies from 2014 to 2020 that perform multi-modal
fusion of medical signals to develop efficient health man-
agement systems. A multi-modal data fusion strategy was
proposed to detect the progress of Alzheimer’s [35]. Author,
applied Spatial Group ICA was used to reduce the dimen-
sionality of imaging modalities and Canonical Correlation
Analysis (CCA) was used to fuse the features of fMRI and
sMRI. However, disease classification task was performed
with SVM and recurrent convolutional network.

In study [36], authors proposed a multi-modal fusion
framework to combine the features of image and speech for
smart health monitoring. A multi-sensor data fusion method-
ology was developed for blood pressure assessment system
for CVD management in ambulatory care [37]. For differ-
ent health informatics applications sensor data fusion frame-
works have been proposed in different studies [1], [38], [39].

For the collection of multi-source data from different medi-
cal sensors to develop a personalized health management sys-
tem, Korzun and Meigal introduced a fusion framework based
on semantic links to combine data from various sensors to
improve the performance [1]. Nweke et al. reviewed different
data fusion and features fusion strategies [31]. A taxonomy
of multi-sensor and multi-view features and data fusion has
been developed for human activity recognition. Both classical
DRTs and automatic deep learning methods were used for
multi-sensor and feature fusion based on multi-view fusion
approaches.

In another study, for the prediction of human personality,
Kampman et al. [8] proposed a multi-modal fusion frame-
work using major voting (ensemble) method to combine
text, audio, and video data that can be used in healthcare.
Majumder and Pratihar proposed a multi-sensor fusion via
fuzzy clustering for the prediction of heart diseases [21].
Vijayasarveswari et al. introduced a multi-phase feature
selection approach for cancer prediction [26]. Zhang et al.
introduced a multi-modal fusion framework based on Local
Linear Projection (LLP) [40]. Khan et al. proposed a feature
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fusion strategy to improve the prediction and classification
accuracy of Coronary Artery Disease (CAD) [41].

B. MULTI-MODAL FEATURE FUSION

During multi-modal feature fusion data belonging to dif-
ferent modalities, sources, and sensors either homogenous
or heterogeneous are collected and combined. For instance,
to enhance the heart disease management system via multi-
modal fusion, [42] applied PCA to reduce the dimensionality
and genetic algorithm for classification. For the prediction
of heart disease at an early stage, a multi-sensory-based
data and feature fusion framework have been proposed by
Muzammal et al. [18]. They extracted time domain and fre-
quency domain features after preprocessing of collected data.
Multi-sensor and multi-modal features were fused to develop
a decision support system for heart patients. They used a fog
cloud-based. A review of fusion implementation in health
informatics has been found in [43]. In this study, authors
discussed different fusion level used to fuse imaging and
Electronic Health Records (EHRs) data using deep learning
techniques. For automatic diagnosis of myocardial infarction
via ECG data, Wang et al. [19] introduced a multi-feature
fusion approach. The proposed approach performed fea-
ture fusion based on DRTs, statistical features, and entropy
features. Extracted features were classified using RF. The
proposed approach achieved a higher disease classification
accuracy than state-of-the-art approaches.

In clinical practice, the collection of multi-modal medical
imaging data has become common. To extract relevant and
reduced features and to overcome the issue of data sparseness,
different DRTs such as Sparse PCA, PCA, ICA, and CCA
have been applied by Yang et al. at preprocessing phase [44].
After preprocessing, they fused extracted features for brain
disease diagnosis. [45] proposed a multi-modal feature fusion
framework for the detection and classification of Arrhythmia
and Myocardial Infarction (MI) from ECG signals data col-
lected from MIT-BHI dataset using CNN layers for feature
extraction and SVM as a classifier. For the detection of
Atrial Fibrillation (AF), Shi et al. proposed a feature fusion
framework. Discriminative CCA was applied to reduce the
dimensionality of CMRI data [46].

To enhance the prediction accuracy of heart disease predic-
tion systems for smart health monitoring, Ali et al. proposed
a feature fusion framework to combine the structured and
unstructured data using the deep learning approaches [47].
In another study, Ali et al. [4] proposed an analytical engine
for efficient prediction of disease based on multi-source data.
They apply different data mining strategies to reduce the
context-aware dimensionality of data and train and test dif-
ferent ML models for disease prediction.

Terms used in the table: Multi-source Fusion (MSF),
Multi-modal Fusion (MMF), Feature Fusion (FF) Decision
Fusion (DF), Reduced Feature set Fusion (RFF), Knowl-
edge Fusion (KF), Information Fusion (IF) Tabular = Tab,
Image = Img, Text = Txt, and Signal = Sig.
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C. DECISION FUSION

Decision fusion is considered as the highest fusion level.
Decision fusion was implemented in various application of
health informatics. For the development of efficient disease
detection system, the authors in [55] preprocessed two dif-
ferent input modalities separately and than fused them at
classifier level (fuse the results of different classifiers). When
fusing multi-modal and HDD, completeness and quality of
data have a significant impact on fusion [5]. Deng et al.
introduced a classifier (decision) fusion framework based
on feature selection to overcome the issue of data incom-
pleteness and fusion of high dimensional and multi-modal
medical imaging modalities [14] used for the classification
of Alzheimer’s disease. The proposed feature selection-based
classifier fusion approach achieved higher accuracy with
incomplete datasets.

Smirnov and Levashova presented a review of knowledge
fusion patterns reported in different studies [30]. According
to this study, three kinds of fusion was performed, e.g.,
knowledge fusion for the knowledge stored in repositories
(e.g., accumulation of knowledge, problem-solving, multi-
source fusion, searching, concept, attribute or domain fusion),
knowledge fusion among knowledge workers (e.g., knowl-
edge sharing, problem-solving, decision making, or distri-
bution of knowledge), knowledge fusion among knowledge
workers and knowledge repositories (e.g., analysis and prob-
lem solving). In a recent study, Tariq et al. proposed a
COVID-19 disease prediction and resource management sys-
tem where decision level fusion of multiple classifiers was
performed [56]. To enhance the classification accuracy of
the COVID-19 patients a decision fusion method was intro-
duced [54].

D. MULTI-LEVEL FUSION

Some studies performed fusion at different stages /lev-
els to develop a dynamic and efficient systems for health
informatics. For instance, For the efficient diagnosis of
heart disease, Hassan et al. [49] introduced a multi-stage
fusion (e.g., feature and decision fusion) using generative
model and multi-variate process control method. The pro-
posed multi-stage fusion architecture used shared and sep-
arated ICA to overcome the issue of high dimensionality,
incompleteness, heterogeneity, due to multi-modal and non-
normalized features in data. A brief review study for different
data fusion (level) for healthcare enhancement was provided
in [57].

For the identification of different diseases (Alzheimer’s
and Cancer), based on multi-modal clinical data,
Viswanath et al. [48] proposed a fusion framework for
knowledge representation of multi-modal data via decision,
kernel, and low-dimensional representations. Knowledge
fusion based on weighting criteria was performed using
direct fusion, co-association matrix fusion, and structural
fusion. They presented results by combining multi-modal
interpreters. DRTs were used for data and feature fusion at
different levels.
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TABLE 1. Summary of fusion frameworks used predictive analytic in health informatics.

Fusion Level Modalities

Reference Purpose MSF [ MMF | FF | RFF | KF [ DF [ IF | Tab | Tmg | Tx{ | Sig DRTs Classifiers Accuracy
[48] Alzheimer’s and Cancer dis- - - - - + - - - + - - PCA SVM
ease Prediction
[14] Alzheimer’s disease - + - - - - + - + + - - Polynomial kernel 96.08
[49] Diagnosis of heart disease - - + - - + - + + Separated and shared ICA SVM 93.83
[8] Personality  prediction  for - - - - - - + - + + - CNN CNN 0.9033
health
[21] Heart disease prediction + - - - - - - + Clustering with fuzzy approach SVM, NN, and Version Space SVMs(VSSVMs) 100
[50] Survey of fusion strategies for - + - - + - - - + + DNN ML models -
healthcare
[31] Human activity detection for + - - - - + - + + PCA SVM, DT.KNN, and LR
[44] Brain disease classification + - - - - - - - + PCA, sPCA, CCA+ sCCA, and Parallel ICA No p=90
[19] Detection of Myocardial in- - - + PCA RF 99.71
fraction
[18] Heart disease prediction + - - - + - - - RF and Kernel RF 98
[41] CAD detection and classifica- - - - + - - - + ++ No KNN, SVM 88.4
tion
[45] Arrhythmia and MI classifica- + - - + + CNN SVM 99.2
tion
46, Heart disease detection - - + - - - - - + DCCA - -
51 COVID-19 diagnosis - - - - + - PCA SVM, CNN 94.7
52 COVID-19 detection - + + KNN, SVM, ANN 96.9
53 COVID-19 prediction - - + - - + - - + CNN CNN 89.84
54 COVID-19 ification - + + - + - - - + CNN SVM, KNN, RF 99.2

To explore the issues of the ageing population and the
spectrum of pandemics in the modern age, Cai et al. [50]
presented a survey of the top 10 countries publishing research
articles focusing on data-driven health management systems.
They explored various approaches and applications used for
multi-modal data and knowledge fusion in the data-intensive
healthcare domain. A fusion framework for two modali-
ties (image and text data) has been presented to perform
data and knowledge fusion for a Clinical Decision Sup-
port System (CDSS). SMOTE method was used for feature
fusion. In another study, Zhang et al. discussed multi-view
data fusion and feature fusion strategies using feature selec-
tion approaches [58]. For monitoring blood pressure using
ECG sensors, Smirnov and Levashova proposed a multi-level
fusion model that can perform multi-sensor fusion and infor-
mation fusion for the development of a predictive model [30].

To improve the COVID-19 diagnostic accuracy [53] pro-
posed feature fusion and decision fusion methodology. Mul-
tiple CNN architectures were used to extract features and
feature level fusion was performed to combine the features.
Different classifiers were trained and tested on the fused fea-
tures set. The Majority Voting method was used for decision
fusion to attain the optimal results for medical recommen-
dations to control the pandemic. Attallah er al. proposed a
diagnostic system for distinguishing COVID-19 and non-
COVID-19 cases [51]. The system was trained and tested
using CT images, where the CT image features were extracted
with four pretrained deep CNN models, and than were fused
for training SVM classifier. The authors experimented with
different fusion strategies to investigate the impact of feature
fusion on the diagnostic performance.

To overcome the challenges of uni-modal data for emotion
recognition, Jiang et al. proposed a multi-modal information
fusion approach [59]. The proposed approach was used to
extract relevant features from multi-modal data (e.g., ECG
signals, visual, audio, text data) and fuse them for emotion
recognition and health monitoring of patients. For dimension-
ality reduction and feature extraction, classical DRTs, such as
Linear Discriminant Analysis (LDA) and some deep learning
approaches, such as CNN, RNN, and DBN, were applied.
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They used feature and decision fusion. DRTs were applied
for feature fusion. For decision fusion, results of different
classifiers were combined via weighted sum to obtain the col-
lective decision. Other studies introduced multi-level fusion
such as fusion techniques suggested for health monitoring
via wearable sensors [60], fusion of text and images for
COVID-19 detection [52], decision and feature fusion for
COVID-19 data sets [53], feature and data fusion [61] etc.

Table 1 summarizes the reviewed literature along with
key findings concerning various fusion frameworks and the
significance of DRTs to improve the performance of various
ML models. It has been explored that most of the studies
focused on one or two types of fusion (e.g., multi-modal
feature and or knowledge fusion) for a particular situation,
which makes their scope limited. According to the reviewed
literature, to the best of our knowledge, no study has been
proposed which support fusion frameworks for multi-source,
multi-modal, multi-nature data and feature fusion to com-
bine reduced feature sets and decision or knowledge fusion
frameworks to combine the results of different ML models
for predictive analytics. Moreover, another contribution of
this study, we applied various combinations of DRTs and ML
models to select the best approach used for different fusion
frameworks.

IlIl. PROPOSED FUSION FRAMEWORKS FOR PREDICTIVE
ANALYTICS

This section illustrates the structure and functionality of
the proposed fusion frameworks in detail. The steps of the
uni-modal data processing pipeline are used as a baseline for
the development of disease prediction models and systems
(Figure 1). According to the existing studies, a uni-modal data
processing pipeline can work with one modality or one type
of data at a time and cannot handle the heterogeneous and
high-dimensional health informatics data for predictive ana-
lytics (e.g., disease prediction). In this study, different fusion
frameworks have been proposed to process heterogeneous
(e.g., multi-nature, multi-source, and multi-modal) and high
dimensional health informatics data to develop an efficient
and reliable disease prediction system (Figure 2 to 6).
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These steps include data acquisition from multiple sources
belonging to multiple modalities having different data types
(e.g., medical images, text, signals, and tabular data). Various
operations are performed at the data preprocessing and explo-
ration phase to prepare data for further processing. During the
dimensionality reduction phase, different DRTs are applied
to reduce the dimensionality of data and to extract precise
features for analysis. Then reduced feature set is forwarded
to the predictive analytics phase, where different ML models
are applied to predict disease efficiently. Finally, medical
treatments can be recommended based on the prediction and
classification of disease.

Moreover, due to variation in the significance of multiple
features for solving the specific issue, not all the features
of the data collected from multiple sources are useful for
analysis and decision making. To extract relevant features
from different modalities, DRTs according to the type and
nature of data can be applied. Extracted features belonging to
different sources and modalities can be combined (fused) for
analysis. These reduced feature sets hold more precise and
relevant features for disease prediction, hence, improving the
performance of the disease prediction system.

For example, data collected from multiple sources (e.g.,
patient conversation with physician, medical diagnostic
devices, lab test reports, other online and offline sources,
medical research, surveys, etc.). The data X belonging to
different sources S is combined in a uniform format for
analysis using fusion frameworks. Each dataset x; can have
fi features, where 1 < k < d. The fusion of multi-nature
datasets may result in duplication of data and features. The
data X is represented in the form of a matrix Z. The rows and
columns of matrix Z are obtained from x; and fi, respectively.

In this study, a collection of DRTs are applied to
eliminate redundant features. The new collective source
obtained after fusion can offer a uniform representation of
data. Data from multiple modalities M is denoted by m;
where j = 1,2,---,g. Modalities indicate different for-
mats of data found in healthcare, such as structured (e.g.,
patient demographic information, hospital visit history, and
billing information), semi-structured (e.g., clinical notes),
and unstructured (e.g., signal, images). In this study, we cat-
egorized these modalities (data types) as tabular/structured,
signals, images, and text formats. These modalities can hold
information, such as patient demographic information, risk
factors, and medical reports (e.g., lab tests and ECG reports).
Each modality m; stores data in the form of features that are
represented as matrix Z. The preprocessing phase P for each
modality m; is p; to develop a standardized representation of
features. These features may comprise of patient information
gathered from multiple sources S and modalities M. Next,
DRT are applied to transforms the HDD Z € R**? having
d dimensions and [ rows into lower dimensions ¥ € R/*"
where r < I < d in an ideal case.

Features extracted for analysis via DRTs will be repre-
sented as f; where 1 < ¢ < r. Moreover, the reduced
feature set for each modality m; is represented by &, where
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1 < u < r. The reduced representations after applying DRTs
can be quite different from original data. For example, after
applying PCA on a dataset, reduced data will be presented in
the form of Principal Components (PCs) based on the func-
tion used for calculation of these components, e.g., covari-
ance or variance, etc. The reduced feature set 4, belonging to
multiple modalities m; can be fused and sent to the selected
ML models/ classifiers c,,. Results of different ML models
can be combined to make a collective decision which is
also called decision fusion. Different frameworks have been
proposed in the following subsections, which represent the
fusion of data and features at different phases of a standard
data processing pipeline used for predictive analytics.

A. MULTI-SOURCE DATA FUSION FRAMEWORK

Data belonging to a single source may not hold suffi-
cient information for effective medical decision-making [62].
To overcome this issue, data from multiple sources can be
acquired and combined using a multi-source data fusion
framework (Figure 2). The main objective of the multi-source
data fusion framework is to increase the accuracy and reliabil-
ity of data to improve the accuracy of the results. According
to Figure 2, the proposed multi-source data fusion framework
combines data from multiple sources and preserves them in
EHRs. During the data acquisition phase, different datasets x;
belonging to multiple sources S; are specified for analysis.

x=>x (1)
i=1

where x; € S;

At the preprocessing phase P, various preprocessing oper-
ations such as imputation missing values, outlier detection
and removal, and class balance are performed to remove
anomalies. The preprocessed data X, is obtained by imputing
missing values and balancing the class. The preprocessed data
may be greater then or equal to original data.

X,>X 2)

The dimensionality reduction phase reduces the dimen-
sionality of data and extracts relevant features for analysis.
DRTs are applied according to the type and nature of data.
DRT is applied to obtain reduced data Y.

Y = DRT(X,) A3)

In this study, a serial of methods including graph-based,
decompositions, clustering, and embedding are used to gener-
ate the low dimensional representation of linear and nonlinear
data Y. This can improve the overall performance of the pre-
dictive analytics. Reduced feature sets belonging to different
modalities are used as input to ML models (classifier) C for
disease prediction and classification tasks (Figure 2).

Results = C(Y) 4

A multi-source data fusion framework can collect and inte-
grate data and information collected from multiple sources S;
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FIGURE 2. Proposed paradigm of multi-source data fusion framework. First, data x; from different sources
S; are combined and stored in EHR. Then, data X is processed using different preprocessing techniques P.
Next, DRT is applied on preprocessed data Z. At the end, predictive analytics model is applied on data Y to

attain the results.

to understand the phenomena of interest. For example, data
collected from multiple sources, such as patient’s demo-
graphic information, lab test reports, and the medical images
(e.g., X-rays, CT scans, ECG reports), and signals data (e.g.,
ECG recording, cough or breathing, and other real-time
monitoring systems) can help for the prediction of disease.
Instead of making decisions manually for each patient, the
proposed multi-source fusion framework can fuse (combine)
and process data X from multiple sources S; for efficient
disease prediction systems. These systems can assist the
physicians for efficient decision making for the medical
recommendations.

The main problem with this framework is the diversity of
data that needs different strategies for preprocessing, dimen-
sionality reduction, and ML models for the efficient uti-
lization of the most relevant features belonging to multiple
sources S; and modalities M.

B. MULTI-MODAL FEATURE FUSION FRAMEWORK
Uni-modal approaches can only process one type of modality
at a time, which restricts their use in the presence of multi-
modal data. Multi-source fusion approaches offer an oppor-
tunity to work with data belonging to different sources §;. It is
difficult to apply any specific data preprocessing mechanism
to data collected from multiple sources S; belonging to vari-
ous modalities M and data types. To overcome the limitations
of the multi-source fusion framework (Figure 2), we proposed
a multi-modal feature fusion framework to improve predic-
tive analytics (Figure 3).

Feature level fusion of multiple modalities M is a challeng-
ing task, as each modality m; can have various types of issues
like missing values, high dimensionality, sparse datasets, data
redundancy, noise, missing or lost signals, quality of signals,
lingual issues, lexical and semantic problem, class imbalance
etc. To overcome these issues, separate preprocessing p; of
data belonging to each modality 7z;, and data type is essential
before applying any technique for analysis. The proposed
multi-modal data and feature fusion framework comprises
of the standard data processing pipeline including the acqui-
sition of data from multiple sources §; and modalities m;,
and categorize them as tabular/structured, signals, medical
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images, and clinical notes (Figure 3).

n m
X = Z Zx,-, j (®)
i=1 j=1
where x; € §; derived from source S; having modality m;.

At the preprocessing phase p;, different preprocessing and
data exploration strategies are applied for each data type
belonging to multiple modalities and sources separately to
normalize and standardize data for further processing.

Xpj = Xj (6)

Then relevant features belonging to various types of data
and information collected from multiple sources and modali-
ties are fused in common space at the feature fusion phase to
understand the phenomena of interest.

m
Xy = prj )
m=1

Next, DRT is applied to obtain reduced dimensions of
data X), ;.

Y,; = DRT(X, ) 8)

The reduced feature set(s) Y, ; are forwarded to the pre-
dictive analytics phase, where ML models are applied for
disease prediction and classification tasks. Finally, classifier
C is employed on reduced dataset to attain results.

Results = C(Y, ) ©)

The use of suitable DRTs can improve the performance
of the ML models. Standard evaluation techniques can be
applied to evaluate the results.

C. KNOWLEDGE FUSION FRAMEWORK

The downside of feature fusion is that all the features fused in
a common space may not be further processed with common
DRTs and ML models to enhance the performance. More-
over, the fundamental challenge in the fusion (combining)
of disparate modalities lies in reducing the dimensionality
of data and exploring potential features. Simple methods
just concatenate the feature vectors to fuse multiple images.
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FIGURE 3. Structure of proposed multi-modal data fusion framework. In this paradigm, data x; ; from
different sources S; and modalities m; are processed using different preprocessing techniques p; according
to type of data. Then, DRT is employed to fused preprocessed data to acquire reduced feature set Y. The
results are obtained after applying appropriate predictive analytics approach.
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FIGURE 4. Architecture of knowledge fusion framework. The proposed framework transforms the data x; ;
into reduced feature set y; ; after preprocessing. Then, different machine learning models are employed for
each reduced feature set y; ;. The results of these models are combined to obtain knowledge fusion.

However, these methods do not consider the varying data
types (e.g., image, text, signals) which need further consider-
ation to improve the quality of multi-source and multi-nature
data. In this regard, a knowledge fusion framework has been
proposed in this study (Figure 4).

The proposed knowledge fusion framework comprises
various phases of the standard data processing pipeline
(Figure 4). It starts from acquiring data from multiple sources
S and modalities M and categorizes them according to data
types, such as tabular/structured, signals, medical images, and
clinical notes. At preprocessing phase P, different preprocess-
ing and data exploration strategies are applied (as shown in
Figure 3) for each data type belonging to multiple modalities
and sources separately to normalize and standardize data
before further processing. Instead of using common feature
space for features F' belonging to different modalities M and
data types, separate steps are performed for each modality m;.

Next, DRT is applied to obtain reduced data Y.

DRTs transform the input data X to a low-dimensional
representation Y while preserving the original context of
information and pairwise relationships between data points.
Typically, these pairwise relationships can be preserved via
similarity measure or distance-based approaches when com-
bining data from multiple datasets x; [30]. However, different
calculations such as variance and covariance are considered
for ICA, PCA, and other DRTs depending on their function-
ality [11]. Similarly, different DRTs, according to the type

collected from multiple sources S and modalities M, a col-
lection of DRTs according to the type and nature of data was
applied for each data type separately.

X, > X

Y, = DRT(X[,J)

To reduce the dimensionality of data and extract relevant
features F belonging to various types of data and information
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Xpj = Xij

and nature of data are selected to enhance the performance
of ML models used for predictive analytics. Then reduced
and relevant feature sets y;; belonging to each data type
from multiple sources S and modalities M are generated.

(10)
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The reduced feature set(s) y; ; belonging to each data type is
forwarded to the predictive analytics phase. ML models are
applied for disease prediction and classification tasks for each
data type separately at this phase.

Results = C,(Y) ;) (13)

Finally, the results of different classifiers are analyzed as
individual classifier and a combination of classifiers can be
fused at knowledge fusion phase.

KyResults = C,y(Yy)) (14)

Most of the disease prediction models are constructed
using a single ML model. However, the selection of an
appropriate ML model is often problematic [63]. Further-
more, the absence of a standardized evaluation techniques
for the performance of the classifier also complicates the
decision-making process. In addition, multi-modal features,
when used as input, may lead to different combinations
between features and ML models. This has further increased
the complexity of the problem. Different ML models may
decode different information. One should select a more reli-
able model by maximizing the utilization of attained informa-
tion rather than selecting an optimal one from the available
classifiers.

A suitable combination of DRTs and ML models improves
the accuracy of results generated using different ML models.
Results generated by different ML models for different data
types are combined in the knowledge fusion phase, which
improves the reliability of knowledge gained for predic-
tive analytics and decision-making. The proposed knowledge
fusion framework combines the decision of multiple ML
models and utilizes this information for effective decision-
making. However, the fusion (mixing) of multi-source, multi-
nature, and multi-modal data having high dimensionality is
also a big challenge. It is dependent on approaches used
for fusion (combining data). Despite all the challenges, the
knowledge fusion framework can offer better results when
compared with uni-modal and multi-source fusion frame-
works to process HDD found in the health informatics
domain.

D. REDUCED FEATURE SETS FUSION FRAMEWORK

For the efficient utilization of multi-source, multi-modal, and
multi-nature data X found in different data types, a reduced
feature sets fusion framework is proposed (Figure 5). It com-
prises phases of standard data processing pipeline starting
with the acquisition of data from multiple sources S and
modalities M. This framework also applies separate data
preprocessing and exploration operations for each data type
at preprocessing phase P similar to the multi-modal feature
and knowledge fusion frameworks. After preprocessing and
exploring data and features belonging to different modalities
and data types, there can be multiple possibilities for fur-
ther processing data to obtain the reduced representation of
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multi-nature data Y.
X = Z in, j (15)

For each x; j, preprocessing was performed where

Xpj = Xj (16)

=y (17)
XpsJ

X, > X (18)

There are two possibilities either apply DRTs or combine
the features (fusion) according to the problem statement.

DRT is applied to preprocessed features p belong to s; € m;
to obtain reduced dimensions of data Y as A,,.

Y = DRT(X,) (19)

Fusion F = X,, ; (20)
Apply DRTs on fused feature set F'

Y' = DRT(F) (21)

Multiple classifier Cw where w = 1tob can be employed
on different reduced datasets belonging to different modali-
ties to attain results. The results of different classifiers can be
combined using majority voting method.

Results = Cw(Y") (22)

Features in different modalities can be combined in dif-
ferent ways. One possibility is to combine the features of
multiple modalities found in different data types (e.g., tabular
and signals data) (Figure 5). This representation is similar to
the multi-modal feature fusion framework (Figure 3). Then
apply DRT or a combination of DRTs to reduce the dimen-
sionality of data and fuse it in the reduced feature set fusion
phase. Another way is to apply different DRTs to reduce
the dimensionality of data having different data types (e.g.,
medical images and clinical notes) as shown in Figure 5 and
then fuse it in the reduced feature set fusion phase. Feature
sets reduced in both steps are fused (combined) in the reduced
feature set fusion phase and forwarded to the predictive
analytics phase for prediction and classification tasks. For
instance, if the feature sets of modalities cannot be combined
before applying DRTS, then the same DRT cannot be applied
to the specific data type. According to the problem under
consideration, it may require different DRTs for different
modalities and data types to reduce the dimensionality of the
selected data or combine two or more modalities for DRTs.

Moreover, this framework offers better representations of
features in lower dimensions if different DRTs are applied
separately to each type of data or combine two or more
modalities, according to the problem under consideration.
The proposed reduced feature set fusion framework perform
the preprocessing for all modalities separately to achieve
this objective. Then the features of two or more modalities
having different data types (e.g., image and text data) can be
combined before applying DRTs.
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FIGURE 5. Proposed reduced feature set fusion framework. Data x; ’é can be preprocessed using different

preprocessing techniques p; depending on the modality of data. Re

uced features set can be obtained and fused

before or after applying DRTs depending on modality m; of data. Finally, machine learning model is employed to

obtain the results.

The proposed reduced feature set fusion framework offers
an opportunity to fuse data before or after applying DRT
and combine the reduced feature set to explore the best
results. It is considered that the ML model applied on the
optimal (reduced) feature set can improve the performance of
ML models. This fusion framework needs extra attention for
exploring data. Data comprises multiple modalities, sources,
or data types can be combined before and after applying
DRTs to get the optimal feature sets for analysis and pre-
dictive analytics. Moreover, a common ML model applied
on multi-source, multi-modal, and different data types and
reduced representations may not improve the performance of
the specific ML model. Despite all these improvements and
flexibility to develop reduced feature sets and their fusion,
this framework faces challenges for the fusion of multiple
reduced features sets, their representations, and the selection
of a common ML model for different reduced feature sets.

E. DECISION FUSION FRAMEWORK BASED ON A HYBRID
APPROACH
A decision fusion framework based on a hybrid fusion
approach is proposed in this study to overcome the issues
and challenges found for the fusion of multi-source, multi-
modal, and different data types of multi-nature health infor-
matics data (Figure 6). Hybrid fusions increase the flexibility
by offering an opportunity to dynamically applying DRTs
on different data types, combine features of multi-source,
multi-modal, HDD before and after applying DRTs. Reduced
feature sets are forwarded to the predictive analytical phase,
where most efficient ML models are applied to reduced fea-
ture sets of different data types to explore effective decisions.
Decisions generated via different ML models are fused to
make a collective decision (in some situations, it may look
like the knowledge fusion framework (Figure 4). However,
multiple combinations of data X and features F belonging
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to multi-source, multi-modal, HDD, and multi-nature require
a mechanism for selecting the most suitable and compatible
techniques to improve the accuracy of decisions. The fusion
of decisions generated by multiple ML models needs human
interaction to get a common decision to improve the accuracy
of decisions for disease prediction and management. Mul-
tiple ML models are typically used when combining data
from multiple sources S to get a uniform representation in
a common decesion space. The proposed decision fusion
framework can represent the results generated by different
ML models (Figure 6).

Next, DRT is applied to obtain reduced data Y. There
are two possibilities either apply DRTs or combine the fea-
tures (fusion) according to the problem statement. DRT is
applied to preprocessed features p belong to s; € m; to obtain
reduced dimensions of data Y as h,. Apply DRTs on fused
feature set F Individual or multiple classifiers CorCw can be
employed on different reduced datasets belonging to different
modalities to attain results. The results of different classifiers
can be combined using majority voting method.

The results generated by different ML models using fused
features or independent data sources are fused (combined)
to improve the accuracy and reliability of decisions. The
decision fusion framework offers an opportunity to diagnose
disease based on the preserved information to detect new
patients with similar symptoms in less time. For this purpose,
computation of probabilities decides how different imaging
(medical imaging) and non-imaging (patient demographic
information and diagnostic history) modalities M can be used
for decision fusion to improve the performance.

However, selecting the right fusion level depends on fusion
strategy and data complexity to achieve the required results.
A mechanism is needed to ensure dynamic updates when new
data arrives for analysis. DRTs works well to eliminate the
redundant and non-significant features before and after the
fusion of multi-modal, multi-source, multi-nature data.
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FIGURE 6. Structure of proposed decision fusion framework based on hybrid approach. Preprocessed data
x; j for each modality m; can be fused and transformed into reduced feature set before or after applying
DRT. Then, decision of different predictive analytics models can be used to obtain decision fusion.

IV. EXPERIMENTAL EVALUATIONS OF THE FUSION
FRAMEWORKS AND DISCUSSION

In this study, we explore the efficiency of the proposed fusion
frameworks for the detection of COVID-19 cases. Experi-
mental work was performed using COVID19 Chest X-ray
dataset [64]. The dataset holds 178 normal and 95 COVID-19
cases. The dataset comprises three modalities, e.g., X-ray
images, patient information as tabular data, and clinical notes,
which are helpful for the prediction of COVID cases. Dataset
consist of tabular, image, and text data which hold different
information for the detection of COVID-19 cases. To explore
the significance of each modality (data type) for disease
detection different combinations of these modalities were
used according to the proposed fusion frameworks.

During the preprocessing phase P, discrepancies from data
X are removed for each modality m; to ensure the complete-
ness of data. This step is necessary before applying any anal-
ysis technique and achieving the optimal outcomes (results).
Moreover, it improves the efficiency of ML models used
for classification and prediction. In this phase, we applied
a filter to identify the missing values and use the majority
vote method [65], to impute the missing values. To overcome
the imbalanced class issue, we eliminated the classes of data
having five or fewer samples. The diversity of data caused
due to multiple labeling were identified and converted into
a uniform format, such as categorical data is converted into
numeric data to prepare it for analysis. Then we split the
whole dataset into train and test sets.

Figure 7 represent the significance of features. Different
features are ranked according to their significance for disease
detection. Highly correlated and least significant features
have been eliminated using DRTs.

A collection of DRTs like PCA, SVD, LSA, PP, ICA, LPP,
LDA, KPCA, LLE, SOM, LVQ, and t-SNE are applied to
reduce the dimensionality of the data. It also helps to explore
the best suitable DRTs according to the nature and type of
data. Different classifiers and ML models are trained and
tested on reduced feature sets. The prediction accuracy of
the ML model indicate the performance accuracy and the
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best combination of DRTs and ML models for prediction
and classification task. Moreover, different ML models were
trained and tested to develop an efficient disease prediction
model. The compatibility of DRTs and ML models should
be kept in view when selecting a combination of DRTs and
ML models to achieve the highest performance accuracy.
Accuracy of the models is calculated as number of right
predictions divided by total predictions.

Table 2 presents the result where collection of DRTs were
used to reduce the dimensionality of various data types
and reduced feature set were sent to KNN (ML model).
PCA achieved highest accuracy score 97% for Tab data.
For Img data Isomap achieved accuracy score of 96% and
LSA achieved 95% accuracy for Txt data. Similarly, bold
value indicate highest accuracy for different fusion levels and
modalities. These results are obtained for normalized dataset.
However, the results of the DRTs and performance of of ML
model can change according to the problem statement (e.g.,
number of reduced dimensions used for analysis) or type and
nature of data.

For different fusion levels, modalities, and DRTs SVM
attain different accuracies have been shown in Table 3. In uni-
modal for tab data SVM with PCA achieved highest accuracy
of 94%. Isomap achieved highest accuracy of 96% for img
data, and for txt data LSA achieved an accuracy of 92%.
Similarly, accuracies of different modalities and fusion level
after applying DRTs for SVM have been shown. Bold values
indicate the highest accuracy.

Table 4 represents different accuracies CNN model
achieved after applying a collection DRTs for different
modalities. In unimodal CNN for tab data with PCA achieved
highest accuracy of 95%. t-SNE d highest accuracy of 97%
for img data, and for txt data LSA achieved an accuracy
of 95%. Accuracies attained for different modalities and
fusion level after applying DRTs with CNN have been shown
(Table 4). Bold values represent the highest accuracy value.

After applying a collection of DRTs, Table 5 indicates
the different accuracies of RF with different modalities and
fusion levels. RF with PCA attained the highest accuracy of
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94% for tab data. t-SNE attained the highest accuracy of 97%
for img data, and LSA attained an accuracy of 95% for txt
data. In the same way, accuracies for different modalities and
fusion level after applying DRTs with RF have been shown.
Bold values indicate the highest accuracy.

The performance accuracy of DT has been presented in
Table 6 which shows the different accuracy levels of DRT
and ML models for the specified fusion level. For tab data
DT achieved highest accuracy of 94% with PCA. Isomap
achieved highest accuracy of 97% for img data, and for txt
data LSA achieved an accuracy of 95%. Similarly, accuracies
for different modalities and fusion level after applying DRTs
with DT have been shown. Bold values shows the highest
accuracy.

Another purpose of these tables is to present different com-
binations of DRTs and ML models for the proposed fusion
frameworks. Similarly, accuracies of different modalities and
fusion level after applying DRTs for the selected model helps
in selection of best combination.

In knowledge fusion framework, a combination of multiple
ML models were analyzed for fusion framework including
SVM, RF, CNN, KNN, and DT. Grid search and cross valida-
tion techniques were applied to tune the hyper parameters for
DRTs and ML models. This combination helps to explore the
actionable insights from the HDD, multi-nature, multi-modal,
and multi-source health informatics data for efficient predic-
tive analytics (disease prediction and management systems).

For the decision fusion, best results of different ML
models and DRTs are combined to ensure the accuracy of
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decisions for disease prediction and management. In this
study, we follow major voting method [66] to combine the
results of different ML models(KNN, SVM, CNN, RF, DT).
Parameters of individual ML model were decided using grid
search approach. To best of our knowledge, only few studies
proposed decision fusion framework for disease prediction.
In this study we proposed a decision fusion framework to
enhance the accuracy of prediction system. According to
the study [67], structure of different classifiers may generate
ambivalent results. Due to the limitations of conceptual
framework and Dieterich’s reasons (statistical, computa-
tional, and representational) which indicate the need of novel
mechanisms to improve the accuracy of the disease prediction
system [66]. In this study, we justify how multiple classifiers
may offer better decision than a single one classifier.

With the aim to improve the decision for disease prediction
we proposed a decision fusion framework. To evaluate the
advantage of using multiple classifiers for decision fusion
versus a single classifier approach for disease detection. The
proposed framework is a justification of concept that for
multi-source and multi-modal HDD no single classifier can
be suggested. As different classifiers generate varying results
and have different capabilities which can be best utilized via
decision fusion to enhance the performance and reliability of
disease prediction systems. For this purpose, we attain result
for both scenarios apply 5 classifiers (KNN, SVM, CNN, DT,
and RF) for different modalities and apply a collection of
DRTs and fuse the results of multiple classifiers (KNN, SVM,
CNN, DT, and RF) via majority voting method. This fused
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TABLE 2. Accuracy score of KNN with multiple DRTs in different fusion frameworks.

Type of Fusion Modalityused PCA SVD ICA LDA LSA PP LPP KPCA Isomap MDS LLE SOM LVQ t-SNE

Tab 97 .79 .81 .69 18 .67 .60 .89 .87 .60 .73 .88 .67 .86

Unimodal Img .94 5 79 .63 .69 57 .62 83 96 74 93 .86 15 .90

Txt .83 .81 .62 .70 92 64 .81 83 .84 .63 .67 .64 .60 .82

Tab+Img 96 .87 .76 .70 .59 71 .69 81 .83 78 71 .81 .69 94

Multi-source fusion Tab+Txt 88 5 66 .73 .86 57 .62 81 93 .82 .73 .76 .85 .87

Txt+Img .85 .84 .63 94 .63 .62 .61 .83 .64 73 .86 .90 .87 .84

Tab+Img+Txt 95 .84 78 79 .67 .68 71 .86 .81 .73 .76 78 .67 .90

Tab+Img 94 .59 .81 .69 18 78 .66 .87 .64 .90 93 91 92 .90

Multi-modal fusion Tab+Txt .89 5 59 .63 .80 57 .62 81 .82 92 .83 .86 .85 .89

Txt+Img 91 .70 .64 .73 .86 .90 .65 .64 94 .90 .63 .62 .87 .84

Tab+Img+Txt .94 .65 .64 .63 94 .63 93 96 95 .82 61 .90 .57 .84

Tab+Img 95 .89 .87 .69 18 .85 .84 .63 .80 .83 81 18 67 91

Knowledge fusion Tab+Txt 91 .87 67 .63 .69 57 .62 .89 .86 79 .83 .87 .65 .87

Txt+Img 93 .64 .63 94 .63 .62 61 .87 .84 73 .86 .90 .87 81

Tab+Img+Txt 96 78 .63 .64 .63 .58 71 .88 74 .83 .76 81 .66 .84

Tab+Img .87 79 .61 .69 18 76 .68 .59 .64 90 .63 71 .62 .80

Reduced feature set fusion Tab+Txt .84 5 69 .63 .69 87 .62 1 .64 .63 74 .63 .62 .80

Txt+Img .83 71 .60 .64 .73 .86 .80 77 .83 .64 .63 .58 .83 .89

Tab+Img+Txt .86 .64 .63 .76 .63 62 .61 83 91 .86 .73 .87 .65 .89

TABLE 3. Accuracy score of SVM with multiple DRTs in different fusion frameworks.

Type of Fusion Modalityused PCA SVD ICA LDA LSA PP LPP KPCA Isomap MDS LLE SOM LVQ t-SNE

Tab 94 .59 .81 .69 NE .76 79 .84 18 .80 .83 17 .62 .80

Unimodal Img .92 .81 69 .83 .69 57 .62 1 95 .94 93 96 75 .89

Txt .83 .90 .63 .84 92 .62 71 .80 .84 .83 .86 .70 .57 .84

Tab+Img 96 .79 .81 79 18 .68 .69 .87 .65 79 .83 71 .52 .90

Multi-source fusion Tab+Txt .89 75 69 .33 .76 57 75 72 .82 74 .83 .86 15 90

Txt+Img 91 .84 .73 .67 75 .62 71 .67 94 .80 .81 .89 7 .83

Tab+Img+Txt 97 74 .76 .89 .73 .82 71 .87 .89 .83 .86 75 71 .84

Tab+Img 93 .86 81 18 .76 .88 18 .83 .81 .70 .83 .82 .62 91

Multi-modal fusion Tab+Txt .89 .86 .88 .69 79 .87 72 81 92 .84 .83 .86 .65 .89

Txt+Img 90 .84 75 .84 .76 .82 a7 74 .84 73 .86 .87 7 .84

Tab+Img+Txt 95 .84 .73 .84 75 78 .83 .87 74 .81 .82 .85 .67 .89

Tab+Img 91 .89 .82 18 81 17 18 .82 92 .89 .83 71 .62 .87

Knowledge fusion Tab+Txt .88 .85 79 .83 .89 78 .67 79 .87 74 .83 .76 78 91

Txt+Img .85 .81 .83 .84 .73 .82 75 .70 74 73 .81 .88 .87 .84

Tab+Img+Txt 94 .86 .83 .79 .81 .80 .84 .80 .78 .83 .96 75 .84 .93

Tab+Img .86 .59 81 79 .76 75 .67 79 .68 .79 .83 81 72 90

Reduced feature set fusion Tab+Txt .88 .76 79 73 .69 .67 .62 71 .82 .84 .87 .76 .65 .86

Txt+Img .85 .64 .63 94 .63 .62 61 .70 .64 73 .86 90 .87 .84

Tab+Img+Txt I1 .84 .83 .74 .65 .66 71 .70 74 73 .87 .85 77 .88

TABLE 4. Accuracy score of CNN with multiple DRTs in different fusion frameworks.

Type of Fusion Modalityused PCA SVD ICA LDA LSA PP LPP KPCA Isomap MDS LLE SOM LVQ t-SNE

Tab 95 .79 .81 .89 .87 78 .85 74 .83 .89 .82 .89 .82 .90

Unimodal Img 91 .85 69 .83 .69 .87 .82 71 .82 74 .86 75 93 97

Txt .92 .64 .83 .84 95 .76 .61 .70 .64 .83 .86 .84 .82 .89

Tab+Img .90 .79 .88 79 18 78 79 .87 .64 .90 93 91 92 .90

Multi-source fusion Tab+Txt .87 5 .84 73 90 .87 .62 .81 .82 .79 .83 .86 75 .89

Txt+Img 92 .64 .83 .89 .82 .86 .81 .87 94 .83 .86 .89 71 .84

Tab+Img+Txt 95 .84 .73 .84 .73 .68 71 .93 91 .83 .78 .95 .67 .93

Tab+Img 94 .87 .81 .69 81 78 .86 81 .84 78 .83 .81 .88 .90

Multi-modal fusion Tab+Txt .90 .86 69 .83 91 .87 .62 1 92 .84 73 .86 75 .87

Txt+Img .82 .64 .73 .84 73 .86 .76 .70 89 73 .86 .70 .67 .86

Tab+Img+Txt 96 .84 .83 .81 77 .82 .80 .78 .89 .83 .86 .85 .67 .84

Tab+Img 93 .89 .81 .83 .88 .87 18 .69 .86 .80 .83 .81 .82 .90

Knowledge fusion Tab+Txt 91 .85 89 78 .89 78 .82 71 .73 .84 .83 .86 .66 92

Txt+Img 91 .84 .83 .79 .83 .76 .81 78 94 .81 .85 .83 .87 .89

Tab+Img+Txt 96 .86 .81 .78 .81 .68 77 .87 94 .93 .90 .85 77 91

Tab+Img .86 .79 .81 .69 18 71 18 .59 .84 .80 .76 .81 2 89

Reduced feature set fusion Tab+Txt .89 5 69 .63 .69 57 .62 .81 72 74 93 .76 .65 .79

Txt+Img 92 .64 .63 94 .63 .62 .61 .70 .64 93 .86 .70 a7 74

Tab+Img+Txt 91 .76 71 .94 .73 .64 .67 .70 94 .66 .62 .58 .63 .70

decision is more accurate and reliable for disease prediction.
Moreover, the results based on reduced feature set attained
after applying DRTs. In this study, the prediction accuracy of
the model is used to weight the vote. The accuracy of the ML
model was calculated using sensitivity, specificity, the Area
Under Curve (AUC), and Receiver Operating Characteristics
(ROC) [68]. To weight the vote, the participation of decision
got increase with high sensitivity and specificity score.
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The results of SVM, CNN, KNN, DT, and RF are compared
and fused for decision fusion. For instance, highest accuracy
of different individual classifiers for Tab data are as follow
KNN with PCA is 97%, SVM with PCA is 94%, CNN with
PCA is 95%, RF with LPP is 90%, and DT with PCA is 92%,
respectively. For Img data accuracy of individual classifier
KNN with Isomap is 96%, SVM with SOM is 96%, CNN
with t-SNE is 97%, RF with PCA is 91%, and DT with
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TABLE 5. Accuracy score of RF with multiple DRTs in different fusion frameworks.

Type of Fusion Modalityused PCA SVD ICA LDA LSA PP LPP KPCA Isomap MDS LLE SOM LVQ t-SNE
Tab .89 .79 .86 .87 18 .88 90 .84 .87 .83 .76 78 .82 .87
Unimodal Img 91 .85 79 .63 .69 17 .86 .79 .87 .81 .83 .86 .83 .85
Txt .84 .76 77 .84 .63 72 .76 78 .88 72 .76 .79 .66 .86
Tab+Img .90 .87 .81 .79 .83 .88 .79 92 .64 78 .83 81 .80 87
Multi-source fusion Tab+Txt .93 75 69 .63 .69 .87 .62 71 .92 .94 .93 96 .85 .89
Txt+Img 91 .86 .83 44 .83 .88 71 .70 .84 93 .86 .90 77 .90
Tab+Img+Txt .92 .64 63 .94 .63 .62 .61 .70 94 93 .89 85 .87 .92
Tab+Img 90 .79 .81 .69 8 78 .66 87 .64 .90 .83 81 .62 92
Multi-modal fusion Tab+Txt .90 .85 89 73 .86 17 .62 71 92 .84 .79 .86 .65 91
Txt+Img .65 .64 63 94 .63 .62 61 .70 .64 .83 .86 .90 .87 .89
Tab+Img+Txt .90 .64 63 .89 .63 .62 .61 .70 94 .93 .88 85 77 .84
Tab+Img .76 .59 .81 .69 18 .87 .78 .69 .64 .90 93 91 .82 .90
Knowledge fusion Tab+Txt .88 75 69 .63 .69 57 .62 71 I1 .94 .93 .96 .95 .89
Txt+Img .85 .64 63 .84 .63 .62 61 .70 .64 93 .86 .90 .87 .84
Tab+Img+Txt .89 .64 63 .94 .63 .62 .61 .70 .89 93 .92 85 77 .84
Tab+Img .90 .59 .81 .69 78 86 78 .59 .64 .90 93 91 .76 .90
Reduced feature set fusion Tab+Txt .89 75 69 .63 79 57 .62 71 .92 94 91 .86 .67 .89
Txt+Img .92 .64 63 .94 .63 .62 61 .70 .64 93 .86 .90 .87 .84
Tab+Img+Txt .93 .64 63 .94 .63 .62 61 .70 .89 93 .86 88 77 94
TABLE 6. Accuracy score of DT with multiple DRTs in different fusion frameworks.
Type of Fusion Modalityused PCA SVD ICA LDA LSA PP LPP KPCA Isomap MDS LLE SOM LVQ t-SNE
Tab 92 .89 .81 .79 78 .88 .79 .64 .87 .90 .90 .88 .62 .90
Unimodal Img .90 75 69 .63 .69 .57 .62 71 92 .84 .90 .86 .65 .89
Txt .85 .64 .76 .84 73 .67 .61 .70 .64 .90 .76 .70 57 .84
Tab+Img 93 .79 .81 .69 79 78 .82 87 .84 .90 .83 91 .62 .90
Multi-source fusion Tab+Txt .89 75 69 .63 .69 57 .62 71 92 94 .83 .86 .65 .89
Txt+Img 91 .87 .83 .89 78 .83 .81 87 .64 92 .86 .90 .67 .84
Tab+Img+Txt .90 .64 77 .84 .82 .86 .76 70 91 .93 .89 .85 .67 92
Tab+Img .86 .79 .83 .85 77 .87 .86 81 .84 .89 .83 .81 .62 90
Multi-modal fusion Tab+Txt .89 5 69 .63 .69 .57 .62 .87 .82 91 .88 .76 .57 .89
Txt+Img .80 .76 .73 89 .66 .62 61 .70 .64 .88 .86 .80 .65 .84
Tab+Img+Txt 90 .84 .63 74 .63 .62 .61 .70 74 78 .76 75 .50 .84
Tab+Img .90 .79 77 .80 18 .87 78 .69 94 .90 .93 .89 .62 .90
Knowledge fusion Tab+Txt .90 .85 89 .83 79 .87 82 71 .81 .84 .80 .86 .65 92
Txt+Img 91 .93 .63 94 .63 .62 61 .70 .64 73 .86 .90 .87 .90
Tab+Img+Txt 96 .64 .63 .84 .68 .62 .61 .70 94 .93 .76 .85 .87 .94
Tab+Img 92 .59 .81 .69 18 86 .78 .59 .64 .90 .93 91 92 .90
Reduced feature set fusion Tab+Txt .89 5 69 .63 .69 .57 .62 71 .92 .94 93 .86 5 .89
Txt+Img .90 .64 .63 92 .63 .62 .61 .70 .64 73 .86 .90 .87 .88
Tab+Img+Txt 90 .64 73 .83 73 62 .61 87 .84 93 .86 .83 .66 .84

Isomap is 92%, respectively. For Txt data highest accuracy
of individual classifier KNN and SVM with LSA is 92%,
CNN with LSA is 95%, RF with Isomap is 88%, and DT
with MDS 90%, respectively. According to majority voting
method KNN with PCA generate best result for tab data, CNN
with t-SNE achieved highest score for image data, and CNN
with LSA generate best results. Decision of these classifiers
are considered more significant for decision fusion.

The knowledge and decision fusion frameworks are prac-
tically useful when data comprises highly heterogeneous,
multi-dimensional, and high-dimensional healthcare data.
The proposed fusion frameworks will undoubtedly be a
milestone for developing dynamic disease prediction and
management systems utilizing multi-modal, multi-source,
multi-nature, and high-dimensional health informatics data.

V. OPPORTUNITIES AND CHALLENGES OF
DIMENSIONALITY REDUCTION AND FUSION
APPROACHES FOR USED PREDICTIVE ANALYTICS IN
HEALTH INFORMATICS

Despite all the achievements and successful implementations
of DRTs for DR and fusion approaches used for combining
multi-modal, multi-sources, high dimensional healthcare data
for predictive analytics, these techniques (DRTs and fusion)
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still face many issues in their adoption and implementation.
This section highlights the opportunities and challenges of
DRTs and the fusion approaches used for health informat-
ics data. These challenges indicate new opportunities for
improvement to research communities.

A. HEALTHCARE DATA REPRESENTATION AND
TRANSFORMATION

Data fusion approaches can select the most relevant fea-
tures from the most effective modality having an appropriate
amount of features for disease prediction. In the real world,
most of the healthcare data collected from multiple sources
often found in different modalities (format /data types) and
has high dimensionality [5], [40]. DRTs can reduce the
dimensionality of data and present it in lower dimensions.
Many DRTs can work with a specific type of data, e.g., image,
text, or signals. Similarly, when fusing data from these diverse
kinds of modalities, several issues have been found, such as
converting data type, measuring scales, and formats (quali-
tative and quantitative). In such a situation, fusion and pro-
cessing of multi-nature data become a challenging task [1],
[3]. In some situations, humans can easily perceive such
variations in data and make decisions accordingly. While for
the same situation, when relying on DRTs and data fusion
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tools, it may require many computations and coding even to
solve a simple problem. Despite such issues, the development
of the ML model that can automatically perform fusion and
integration of multi-modal data has become the need of the
hour. It will save time for manual interpretation each time
new data evolves; furthermore, it also reduces the error rate.

B. MANAGEMENT OF STREAMING DATA

Another key challenge with data fusion approaches is dealing
with multi-nature health-related data [59]. In the healthcare
domain, a massive volume of data is originating at a rapid
pace every hour. The main benefit of the evolving data is that
medical experts can get assistance from automatic disease
prediction systems. Data in healthcare collected from differ-
ent devices and sensors and their integration has become a
challenging issue [32]. Fusion approaches should be capable
of dynamically combine data belonging to multiple formats
and sources [69]. Although, some fusion approaches have
been proposed in the literature to manage continuous stream-
ing data. Yet, some challenging and unsettled issues regarding
the effective analysis of the large scale and continuously
growing data are missing values, blind sources, and noise.

C. COMPLEXITY AND COMPUTATION

An increase in healthcare data and the diversity found in data
has become a big challenge. Similarly, the fusion process is
also complex and computationally expensive [3]. To over-
come, such issues DRTs offer an effective solution by provid-
ing a low-dimensional representation of the data. DRTSs also
has data interpretation issue after transforming data in lower
dimensions. In some situations, using a simple classifier is
not enough to meet the requirements of multi-nature data
and needs modification. There is a need to improve the ML
algorithm to handle complex and varying nature healthcare
data.

D. FUSION STRATEGY

Data fusion approaches are often affected by subsequent
phases such as data gathering, preprocessing, and DR. The
advantages and disadvantages of fusion may also depend on
the strategy used for fusion. Similarly, environmental factors,
especially in healthcare, matter a lot [21]. A paper-based
approach is in practice in some healthcare organizations, due
to which required data may be left from the analysis. Sim-
ilarly, the selection of suitable fusion strategy according to
given requirements is also a big challenge because of varying
needs of healthcare data as well as variations in treatments
and diagnostic process [5], [31].

E. HEALTHCARE DATA ANALYTICS

To obtain compact and precise healthcare data for analysis
and decision making, selecting reliable data sources with
few errors, noise, and missing values is a big challenge. For
predictive analytics in healthcare, time-frame, correctness,
and reliability of health status measuring devices (e.g., glu-
cometer, ECG device, blood pressure measuring instruments,
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etc.) and correct recording are essential. Particularly, health
informatics data collection, storage, process, and transmis-
sion have become challenging and may affect the reliability,
consistency, and accuracy of data quality [70].

F. MEASUREMENT AND EVALUATION OF PERFORMANCE
Fusion of data belonging to multiple sources and modalities
measurement and evaluation of performance after applying
fusion strategies (feature and knowledge fusion) is another
challenging area to consider [59]. More dependency on IoT
devices and technology has made performance evaluation
more complex. In healthcare, there are many approaches to
measure performance based on improved accuracy, reduce
computation time, reduce error rate, reduce response time,
and significance and reliability of results. Others such as
F-measure, Area Under the Curve (AUC), Mean Squared
Error (MSE), and Correlation Coefficient (COR) etc [68].
The selection of a suitable measuring approach to improve
performance is also a challenging task.

G. VARIATION IN TERMS AND CONCEPTS

When combining data from different sources, variations often
found in terms, abbreviations used, and concepts [71]. Varia-
tion in terms such as physician and doctor represent the same
entity, while Fly and fly similar words may be used for differ-
ent purposes (context) such as Fly as a noun and fly as a verb.
Such variations are common in health informatics data and
need modification according to the concepts and their use.
Although Natural Language Processing (NLP) approaches
play an influential role in overcoming this issue, it is still
a big issue, especially when combining data from different
modalities and sources [5].

H. DIMENSIONALITY REDUCTION AND FUSION OF
REDUCED REPRESENTATIONS

When applying DRTs for DR, it may be challenging to answer
the key questions: how much dimensionality for the given
data set can be reduced? The decision regarding the number
of components to use for analysis and decision making. Simi-
larly, how many features or components should be eliminated
to avoid or eliminate the noisy data? [72]. Although, most
of the time, these questions vary according to the problem
statement and nature of the data. It became complicated
and time-consuming to evaluate the effects of reduction.
Variation in feature selection and extraction methods also
affects data representation and aspects used to measure the
performance [31]. Moreover, combining the results of dif-
ferent DRTs having different representations, such as PCA
represent reduced feature set as PCs. In contrast, ICA as ICs
in such situation fusing the reduced representations becomes
a challenge.

VI. CONCLUSION

To combine multi-source, multi-modal healthcare data for
predictive analytics, we proposed multi-modal, multi-source,
knowledge, and decision fusion frameworks in this study.
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We applied a collection of DRTs to reduce the dimensionality
of data while preserving the original aspects of HDD. Differ-
ent ML models were used for disease prediction. The pro-
posed frameworks offer more reliable and authentic results,
as it predicts the disease after combining the features of
data and the results (outcomes) at different phases. It can
be helpful for the development of effective and reliable sys-
tems for health informatics. Moreover, fusion approaches
with reduced feature sets presented in this work can provide
considerable support for developing CDSS, prediction sys-
tems, and intelligent health monitoring systems. No doubt,
the proposed fusion frameworks offer a clear representation
of different fusion levels. The experimental results show that
the proposed methodology achieved better accuracy when
compared with individual modalities and the state-of-the-art
fusion approaches. However, an apt problem for future study
is to explore a comprehensive approach to identify the rela-
tionships among features influence during data and feature
fusion. So, novel approaches can be explored in future.
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