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ABSTRACT In this paper, we investigate the interval observer problem for a class of discrete-time nonlinear
systems, in absence or presence of external disturbances and parametric uncertainties. The interval observers
depend on the design of two preserving order observers, providing lower and upper estimations of the state.
The main objective is to apply the stability radii notions and cooperativity property in the estimation error
systems in order to guarantee that the lower/upper estimation is always below/above the real state trajectory
at each time instant from an appropriate initialization, and the estimation errors converge asymptotically
towards zero when the disturbances and/or uncertainties are vanishing. For the disturbed case, the estimation
errors practically converge to a vicinity of zero, while the lower/upper estimations preserve the partial
ordering with respect to the state trajectory. The design conditions, that are valid for Lipschitz nonlinearities,
can be expressed as Linear Matrix Inequalities (LMIs). A numerical simulation example is provided to verify
the effectiveness of the proposed method.

INDEX TERMS Stability radii, interval observers, discrete-time systems, linear matrix inequalities.

I. INTRODUCTION
Observer design for nonlinear systems, which consists
in reconstructing the values of the state from available
measurements, is a fundamental problem in control [1]–[8].
There exist many kinds of observers, for example, Dissipative
observers, Adaptive observers, Sliding-Mode observers,
High-Gain observers, H∞ observers, Unknown Input
observers, etc. In recent years, the design of the so-called
interval observers for nonlinear systems has been an
attractive research topic in control theory for coping with
uncertainties and disturbances [9]–[17]. These interval
observers appeared as a solution of a highly uncertain
bioreactor problem, reported in [9] and [18], providing
the bounds (lower and upper estimations) of the uncertain
state. The interval observers can be built by two preserving
order observers, given as a lower and an upper observer,
whose estimations satisfy (i) the preservation of a partial
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ordering with respect to the real state trajectory at each
time instant from an appropriate initialization, and (ii) the
assurance of a practical convergence to a vicinity of
the real state values, given by the effects of bounded
disturbances/uncertainties [12], [19]. When uncertainties
and/or disturbances are absent in the system dynamics, the
lower and upper estimations asymptotically converge to their
real state values, preserving the partial ordering between the
estimations and the state. Generally, the interval observer
design methods are developed for continuous-time systems
[9], [12], [18]–[23]. They are based on the properties of
cooperative systems [24], [25] with the purpose of ensuring
the partial ordering between the estimations and the state,
taking into account the knowledge of bounds of uncertainties
and disturbances. Such properties are considered in the
estimation error dynamics. Since the cooperativity property
depends on the coordinates, several methods as in [26]–[33]
include state (similarity) transformations to relax the design
conditions of the interval observers for some classes of
continuous-time systems.
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Some works have been dedicated to the interval observer
design for discrete-time systems [34]–[43]. They have been
encouraged by the use of sample-data systems in pres-
ence of disturbances, for which the cooperativity property
holds [44]. Most of these works are focused on the
interval observer design for some classes of linear discrete-
time systems. For instance, an interval observer design
method is developed in [34] for Linear Time-Invariant (LTI)
discrete-time systems, obtaining the observer gain by a
solution of Linear Matrix Inequalities (LMIs). Addition-
ally, a method makes use of a static transformation for
designing interval observers for LTI Nonnegative discrete-
time systems. These methods are extended in [35] for Lin-
ear Time-Varying discrete-time systems. In [37] an interval
observer design approach is proposed for uncertain linear
discrete-time systems, using the H∞ theory to attenuate
uncertainties, in order to obtain accurate interval estima-
tion, formulating the design conditions in terms of LMIs.
Moreover, the work [38], based on the Sylvester equa-
tion, has proposed an algebraic method to compute a con-
stant state transformation and an observer gain, in order
to design interval observers for linear descriptor discrete-
time systems with both unknown inputs and measurement
noise.

In general, the interval observer design for nonlinear
discrete-time systems is clearly more difficult compared to
the interval observer design theory for linear discrete-time
systems. For example, one of the most crucial and difficult to
check assumptions for the interval observer design deals with
cooperativity property of the estimation error dynamics. The
work [42] combines the dissipativity and cooperativity prop-
erties to design interval observers, based on the preserving
order observers, for a class of nonlinear discrete-time systems
with perturbations and uncertainties, requiring the solution
of a finite set of LMIs, which depend on the types of the
nonlinearities in the system.

From [12] and [42], the motivation of this study is to
investigate the interval observer design problem for a class of
nonlinear discrete-time systems in presence of disturbances
and/or uncertainties. Specially, the results reported in [19]
are extended to the discrete case. Thus, the main objective
of this work is to design interval observers by making use
of the stability radii notions and cooperativity property in
the estimation error dynamics. The cooperativity property
produces the partial ordering between the estimations and
the state, while the stability radii theory defined for posi-
tive discrete-time systems in [45] and [46], determines the
asymptotic convergence of the observer when the system
disturbances are vanishing, through a simple formula that
depends on the observer matrices. This design method is
extended for the disturbed case, so the estimations (i) achieve
practical convergence to their real values, and (ii) preserve
the partial ordering with respect to the state trajectory. From
the combined theories, a trade-off exists between preserv-
ing the partial order of the estimations with respect to
the state trajectory and decreasing convergence velocity.

The preserving order and interval observer design conditions,
valid for Lipschitz nonlinearities, can be formulated as a finite
set of iterative LMIs to find the observer matrices. The results
of this work can be seen as a particular case of the proposed
method in [42], since Lipschitz nonlinearities belonging to
the [−K , K ]-sector with K = γ I , considered in the present
paper, can be always expressed by the dissipativity conditions
used in [42], i.e. it is (Q, S, R) − D = (−I , 0, γ 2I )-
Dissipative. Finally, our approach in the present paper has the
benefit of being simpler, since it requires the calculation of
only two observer matrices expressed from some LMIs for
the design of preserving order and interval observers, instead
of the five (matrix) variables needed in the nonlinear matrix
inequalities in [42].

The remainder of the paper is structured as follows.
In Section II we present the stability radii theory and coop-
erativity property for nonlinear discrete-time systems, and
several results that will be useful in developing the approach
in the following sections. The preserving order and interval
observer design for a class of nominal systems is given in
Section III, while the same design is extended for a class
of disturbed/uncertain nonlinear discrete-time systems in
Section IV. The design conditions are formulated in terms
of LMIs in Section V. A numerical example is presented in
Section VI to illustrate the behavior of the proposed observers
and the solution algorithm. Section VII draws some final
conclusions.

A. NOTATIONS
Rn represents the n-dimensional Euclidean space. We rep-
resent the partial ordering between two vectors/matrices
through the symbol�: For vectors x, y ∈ Rn, if xi − yi ≥ 0 ,
∀i = 1, . . . , n, then x � y, and for matrices A, B ∈ Rn×n if
aij − bij ≥ 0 , ∀i, j = 1, . . . , n, then A � B. In particular,
we define the nonnegativity for vectors/matrices, for exam-
ple, if x � 0 then x is a nonnegative vector, i.e. xi ≥ 0,
∀i = 1, . . . , n, and A � 0 states a nonnegative matrix iff
aij ≥ 0 with ∀i, j = 1, . . . , n. Similarly, it can expressed
as Rn

+ or Rn×m
+ , which are given by the set of all vectors or

matrices with nonnegative entries. It is important to discern
that a positive definite matrix P (resp. positive semi-definite)
is expressed by P = PT > 0 (resp. P = PT ≥ 0).
Additionally, P = PT < 0 (resp. P = PT ≤ 0) is a
negative definite matrix P (resp. negative semi-definite). For
x ∈ Kn and M ∈ Kn×m with K = R or C, the nonnegative
vector |x| ∈ Rn

+ and the nonnegative matrix |M | ∈ Rn×m
+ are

defined as |x| = (|xi|) and |M | =
(∣∣mij∣∣), respectively. ‖ · ‖

is the Euclidean norm for the vector space Kn. The induced
matrix norm ‖M‖ is given as the spectral norm. The spectral
radius of A is expressed as ρ (A) = max {|λ| ; λ ∈ σ (A)},
where σ (A) ⊂ C. I is the identity matrix with a
proper dimension. Dxk f (xk , uk ) = ∂f (xk , uk )/∂xk stands
for the Jacobian matrix of f (xk , uk ) with respect to xk ,
Duk f (xk , uk ) = ∂f (xk , uk )/∂uk is the Jacobian matrix with
respect to uk .
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II. PRELIMINARIES
Before stating the main contributions of this work, we recall
in this section some important notions on cooperativity and
stability radii of positive discrete-time systems.

A. PARTIAL ORDERING ON THE STATE TRAJECTORIES
Cooperative systems define a partial ordering on the state and
output trajectories at every time instant, based on the partial
ordering on the inputs and the initial conditions [24], [25],
[44]. We recall briefly some definitions and characterizations
of cooperativity for discrete-time systems.
Definition 1 ([42]): Consider the following nonlinear

discrete-time system

6NL :

{
xk+1 = f (xk , uk) , x (k0) = xk0,
yk = h (xk , uk) ,

(1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input, and
yk ∈ Rp is themeasured output. The discrete-time system6NL
is cooperative if whenever the initial conditions and inputs are
partially ordered, i.e.,

x2k0 � x
1
k0, u2k � u

1
k , ∀k ≥ 0,

then the state and output trajectories preserve the partial
ordering at every time instant, i.e., ∀k ≥ 0

x
(
k, x2k0, u

2
k

)
� x

(
k, x1k0, u

1
k

)
y
(
k, x2k0, u

2
k

)
�

(
k, x1k0, u

1
k

)
.

The following propositions characterize cooperative
discrete-time systems.
Proposition 2 ([42], [44]): The nonlinear discrete-time

system 6NL in (1) is cooperative iff the following conditions
hold:

1) Dxk f (xk , uk ) � 0,
2) Duk f (xk , uk ) � 0, and
3) Dxkh(xk , uk ) � 0.
Proposition 3 ([42], [44]): Consider the linear discrete-

time system described as follows,

6L :

{
xk+1 = Axk + Buk , x (k0) = xk0,
yk = Cxk ,

(2)

where the state, the input and the output are defined as
xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp, respectively. Moreover, A,
B, and C are constant matrices.6L is a cooperative discrete-
time linear system iff the following conditions hold:

1) A � 0,
2) B � 0, and
3) C � 0.
Remark 4: Particularly, 6L in (2) is a positive linear

discrete-time system if the state and output trajectories are
non-negative, i.e., x (k, xk0, uk) � 0 and y (k, xk0, uk) � 0
from the non-negativity on the initial conditions and inputs,
i.e., xk0 � 0 and uk � 0. It is important to mention
that a positive linear discrete-time system shares the same
conditions that have been provided for a cooperative linear
discrete-time system (see Proposition 3).

B. STABILITY RADII CONDITIONS FOR POSITIVE
DISCRETE-TIME SYSTEMS
This method states the stability conditions for linear positive
discrete-time systems taking into account linear or nonlinear
disturbances [45], [46]. We present some important results
that will be used in the design of the preserving order and
interval observers, specially such outcomes will be applied in
the estimation error dynamics, in the following sections.

1) POSITIVE DISCRETE-TIME SYSTEMS
WITH LINEAR DISTURBANCES
Let the linear positive discrete-time system, given by the
equations

0L :
{
xk+1 = Axk , x(k0) = xk0 , k ∈ N, (3)

where xk ∈ Rn is the state vector and A ∈ Rn×n
+ is a

non-negative matrix. The positive discrete-time system 0L in
(3) is Globally Asymptotically Stable (GAS) iff the matrix
A is Schur stable, that is, all eigenvalues of the matrix A
are located into the unit circle of the complex plane, i.e.,
|λi (A)| < 1, i = 1, 2, . . . , n, which can be also expressed
as ρ (A) < 1.
If the linear discrete-time system 0L in (3) is affected by a

linear output feedback disturbance, A→ A+B1C , the linear
perturbed system is given as follows

0LD : {xk+1 = (A+ B1C)xk , ‖1‖ < ρ, (4)

taking into account B � 0, C � 0, and 1 stands for an
unknown disturbance matrix. Moreover, ‖1‖ determines the
size of the perturbation and ρ > 0 is a bound of the
perturbation. We next recall some definitions and theorems
of the stability radii for ensuring the asymptotic stability for
0LD in (4), which depend on the matrix space of 1 [45].
Definition 5: The stability radius for 0LD is defined by

rK (A;B,C)= inf
{
‖1‖ : 1 ∈ Km×p, ρ (A+ B1C) ≥ 1

}
(5)

whereK= C, R, R+ stands for the complex, real or nonneg-
ative matrix space.

The stability radii rK in (5) stand for the minimal bound
of the (complex, real, nonnegative) disturbance 1, which
produce the destabilization for 0LD. Considering the matrix
spaces in the stability radii rK, the next inequalities hold

0 ≤ rC (A;B,C) ≤ rR (A;B,C) ≤ rR+ (A;B,C) .

In particular, the stability radii for the positive linear discrete-
time system 0LD can be expressed by a unique formula.
Theorem 6 ([45]): The stability radii for the positive lin-

ear discrete-time system 0LD in (4) are given by the formula

rC (A;B,C) = ‖ G(1) ‖−1 =
∥∥∥C (I − A)−1 B∥∥∥−1 , (6)

with rC = rR = rR+ .
It is important to mention that the formula of theorem 6

is determined when ‖G(s)‖ attains its maximum value on the
unit circle at s = 1, with G(s) = C (sI − A)−1 B.
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2) POSITIVE DISCRETE-TIME SYSTEMS WITH NONLINEAR
DISTURBANCES
The notion of stability radii is extended to the class of linear
positive discrete-time systems connected in feedback with a
static time-varying (disturbance) nonlinearity.

We consider the nonlinear discrete-time system

xk+1 = Axk + B ξ (Cxk , k), k ∈ N,

that is decomposed as a linear discrete-time subsystem con-
nected, in feedback, with a static time-varying nonlinear-
ity [46]. Then, this latter system can be written as follows

0ND :


xk+1 = Axk + Buk , x(k0) = xk0 ,
yk = Cxk ,
uk = ξ (yk , k) ,

(7)

where ξ (yk , k) : Rp
× N → Rm is the static time-varying

nonlinear function that fulfills
1) ξ (0, k) = 0, k ∈ N, and
2) ξ (yk , k) is Lipschitz in yk , such that

‖ξ (yk , k)‖ ≤ γ ‖yk‖ , ∀yk ∈ Rp, ∀k ∈ N, γ > 0. (8)

Remark 7: Note that the condition in (8) can be equiv-
alently expressed as belonging to the symmetric sector
[−K , K ], with K = γ I ∈ Rm×m, i.e. the following inequality
is fulfilled

γ 2 yTk yk − ξT (yk , k)ξ (yk , k) ≥ 0, ∀k ∈ N. (9)

In addition, we consider that the size of the nonlinear function
is given by

‖ξ‖= inf
{
γ ∈ R+; ∀yk ∈Rp, k ∈ N : ‖ξ (yk , k)‖≤γ ‖yk‖

}
.

Considering the previous suppositions, the following result
provides the asymptotic stability conditions for 0ND in
terms of the stability radii for the positive discrete-time sys-
tems [45], [46].
Lemma 8: Let Proposition 3 hold. Assume that ρ (A) < 1

and ξ (yk , k) satisfies (8). The discrete-time system 0ND is
Globally Exponentially Stable (GES) if the next inequality

ρ < ||C (I − A)−1 B||−1 (10)

holds with ‖ξ‖ ≤ ρ. In that case all solutions of the system
satisfy

‖xk‖ ≤ α
∥∥xk0∥∥ exp(−%k) ,

for k ∈ N, α > 0, % > 0.
Lemma 8 is a key result that will be used in the asymp-

totic stability analysis of the preserving order and interval
observers for nominal nonlinear systems in Section III. A
similar result can be found for the class of non-positive linear
discrete-time systems.
Lemma 9 ([45]): Let the system 0ND where the matrices

A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, and |A| is a Schur stable
matrix. If f : Kp

× N→ Km fulfills the following inequality

‖f (yk , k)‖ < || |C| (I − |A|)−1 |B| ||−1, (11)

thus 0NP in (7) is a GES discrete-time system.

Next, we will develop the practical stability property for
the class of discrete-time systems 0ND with an external input,
connecting the stability radii theory and the Input-to-State-
Stability (ISS).
Definition 10: Lets us consider the discrete-time system

0NE :


xk+1 = Axk + Buk + bk , x(k0) = xk0 ,
yk = Cxk ,
uk = ξ (yk , k) ,

(12)

where bk represents the external input. 0NE is (globally)
Input-to-State Stable (ISS) with respect to bk if there exist a
KL-function β and K-function δ such that, for each initial
condition xk0 ∈ Rn and each locally essentially bounded
function bk : N→ Rm, the next inequality is fulfilled

||xk || ≤ β(||xk0 ||, k)+ δ
(
sup
k∈N
||bk ||

)
,

where δ is the ISS-gain for 0NE.
The following lemma summarizes the result of the practical

stability for 0NE.
Lemma 11: Let us suppose that the conditions of

Lemma 8 are fulfilled, then the discrete-time system 0NE is
exponentially - ISS with respect to bk .
It is important to mention that Lemma 11 will be applied

in the practical stability analysis of the preserving order and
interval observers for uncertain/perturbed nonlinear systems
in Section IV.

III. PRESERVING ORDER AND INTERVAL OBSERVERS
FOR NOMINAL DISCRETE-TIME SYSTEMS
In this section we consider the problem of preserving order
and interval observer design for a class of nonlinear discrete-
time systems where the asymptotic convergence of the esti-
mates is guaranteed through stability radii theory, while the
partial ordering is stated by the cooperativity property. These
conditions are applied to the estimation error systems.
Consider the following class of nonlinear discrete-time

systems, described by

0S :


xk+1=Axk + Gψ (σk ; k, yk , uk)+ ϕ (k, yk , uk) ,
σk=Hxk , x (k0) = xk0 ,
yk=Cxk ,

(13)

where the state, the input, and the measurement output are
defined as xk ∈ Rn, uk ∈ Rm, and yk ∈ Rq. A ∈ Rn×n,
G ∈ Rn×m, C ∈ Rq×n, H ∈ Rr×n are known matrices and
ψ(σk ; k, yk , uk ) ∈ Rm is a continuous function that depends
on a linear function of the (unmeasured) state σk and on the
measured vectors (yk , uk ). Finally, ϕ (k, yk , uk) ∈ Rn is a
nonlinear continuous function depending on (yk , uk ).
Assumption 12: The initial state x0 ∈ Rn is bounded as

follows

x+k0 � xk0 � x−k0, (14)

where x−k0 and x+k0 are known lower and upper bounds,
respectively.
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Let us consider the following state observer for the system
0S, having the form

0O :


x̂k+1 = Âxk + L (̂yk − yk)+ ϕ (k, yk , uk)

+Gψ (̂σk + N (̂yk − yk) ; k, yk , uk) ,
σ̂k = Hx̂k ,
ŷk = Cx̂k ,

(15)

where the estimated state is denoted by x̂k with the initial
condition x̂ (k0) = x̂k0 . One has to select the observer matri-
ces, L ∈ Rn×q and N ∈ Rr×q, such that the estimated state
x̂k converges asymptotically to xk and preserves the partial
ordering with respect to xk . Notice that there are two injection
terms in0O: the linear one L (̂yk−yk ), is the original term used
in the Luenberger observer, and another linear termN (̂yk−yk )
appears in the nonlinear function ψ (·).
The state estimation error is defined as ek = x̂k − xk . The

error dynamics can be computed as

0E :


ek+1 = ALek + Gvk ,
zk = HN ek ,
vk = −ξ (zk , σk ; k, yk , uk) ,

(16)

with the initial error e(k0) = ek0 = x̂k0 − xk0 and the matrices
AL , A + LC and HN , H + NC . Taking into account the
relation, σ̂k + N (̂yk − yk ) = Hxk + (H + NC)(̂xk ) − xk ) =
σk +HN ek = σk + zk in ξ (·) of the observer, the incremental
nonlinearity ξ (·) is defined by

ξ (zk , σk ; k, yk , uk) = ψ (σk ; k, yk , uk)

−ψ (σk + zk ; k, yk , uk) . (17)

It is our objective to design state observers for 0S, inspired
by [12], [19], whose estimates converge to the actual state val-
ues and preserve the partial ordering with respect to the state
trajectory. These conditions are established in the following
definition.
Definition 13: 0O is a lower (upper) preserving order

observer for 0S, if the next conditions are fulfilled:
(i) The lower/upper estimated state x̂k asymptotically con-

verges to the state trajectory xk , i.e.,

lim
k→∞
‖̂xk − xk‖ → 0, ∀k ∈ N.

(ii) Given a partial ordering on the initial state, the (lower)
upper estimated state x̂k preserves the partial ordering
with respect to xk , i.e.,

If xk0 � x
−

k0 � x̂k0
(̂
xk0 � x

+

k0 � xk0
)

⇒ xk � x̂k (̂xk � xk) , ∀k ∈ N.

Notice that a couple of observers, consisting of an upper
and a lower preserving order observers, given by 0O+ and
0O− , respectively, constitutes an interval observer for 0S,
fulfilling

x̂ +k � xk � x̂
−

k , ∀k ∈ N.

A. CONVERGENT OBSERVER
The following theorem gives sufficient conditions to guaran-
tee the asymptotic convergence property of the state observer
0O, applying the stability radii theory to the system 0E.
Theorem 14: Let the observer 0O in (15) be applied to the

system 0S in (13). Suppose that G � 0 and ξ (·) in (17) fulfills
(8). Assume that there exist matrices L and N such that the
following conditions

ρ (AL) < 1, (18)

AL � 0, (19)

HN � 0, (20)

ρ < ||HN (I − AL)−1G||−1, (21)

are fulfilled. Then 0O is a globally and exponentially conver-
gent observer for the nominal discrete-time system0S in (13).

Proof: The proof of the observer convergence is the
same as that for Lemma 8 and is omitted here. �

It is important to mention that the exponential convergence
of the observer 0O, given by the Theorem 14, can be also
obtained in terms of the dissipatitivy approach [8], making
use of a storage function V (ek) = eTk Pek with P = PT > 0
and a quadratic supply rate, expressed as follows

ω(vk , zk ) = zTk Qzk + 2zTk Svk + v
T
k R vk

for Q = QT ≥ 0, R = RT ≥ 0. The so-called discrete-time
dissipativity inequality

V (ek+1)− V (ek) ≤ −εV (ek)+ ω(vk , zk )

is fulfilled by selecting (Q, S, R) =
(
−R, ST , −Q

)
. Since

ξ (zk , σk) fulfills the Lipschitz condition in (8), which can be
similarly expressed as (Q, S, R) =

(
−I , 0, ρ2I

)
, then we

write

1V = V (ek+1)− V (ek)

=

[
ek
vk

]T [ATPA− P ATPB
BTPA BTPB

] [
ek
vk

]
≤

[
ek
−ξ (·)

]T [
−ρ2HT

NHN 0
0 I

] [
ek
−ξ (·)

]
− εV (ek)

≤ −εV (ek) .

This result is similar to the one obtained by the stability
radii in (43). The main difference is that the dissipativ-
ity approach requires some variables (L, N , ε, P, and θ )
to check the exponential convergence of the observer 0O,
while the stability radii theory only depends on the observer
matrices (L, N ).
Using the Lemma 9, the same exponential convergence

for the class of non-positive estimation error systems 0E is
provided in the next Theorem.
Theorem 15: Suppose that (AL ,G,HN ) ∈ Cn×n

×Cn×m
×

Cp×n. Additionally, assume that |AL | is a Schur stable matrix.
If there exist matrices L and N, such that the incremental
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nonlinearity satisfies the following inequality

‖ψ (zk , σk)‖ <
∥∥∥|HN | (I − |AL |)−1 |G|∥∥∥−1 , (22)

then 0O in (15) is a globally and exponentially convergent
observer for 0S.

Proof: Applying Lemma 9 in 0E, the exponential con-
vergence is achieved in 0O. �

B. PRESERVING ORDER AND INTERVAL
OBSERVERS DESIGN
In order to guarantee the partial ordering between the esti-
mate x̂k and the state trajectory xk , we apply the cooperativ-
ity property to the estimation error dynamics 0E using the
Proposition 2.

In this case, 0E is a cooperative nonlinear discrete-time
system if the Jacobian matrix

Dek f
∗(ek ) = AL − GDek ξ (zk , σk ; k, yk , uk ) � 0

is nonnegative ∀zk ∈ Rr ,∀k, σk , yk , uk . This condition is
equivalent to the Cooperativity Inequality [42]:

AL − GDzk ξ (zk , σk ; k, yk , uk )HN � 0, ∀zk ∈ Rr ,

∀k, σk , yk , uk . By setting Dzk ξ (zk , σk ; k, yk , uk ) =

−Dσkψ(σk + zk ; k, yk , uk ), thus the Cooperativity
Inequality is written as follows

AL + GDσkψ (σk + zk ; k, yk , uk)HN � 0, (23)

∀zk ∈ Rr , ∀k, σk , yk , uk .
The main result of this section is stated in the follow-

ing theorem summarizing the design approach of preserving
order and interval observers for the nominal discrete-time
systems 0S.
Theorem 16: Consider the discrete-time nonlinear system

0S in (13) under Assumption 12. Assume that G � 0. More-
over, ψ (·) in (17) fulfills (8). If the matrices L and N exist,
such that the following conditions:

1) (18)-(21) of the Theorem 14, and
2) the Cooperativity Inequality in (23),

hold. Thus, the observer 0O in (15) is said to be a GES -
(lower/upper) preserving order observer for0S. Furthermore,
an interval observer is composed by a lower and an upper
preserving order observer for 0S.

Proof: Applying the Lemma 8 in0E, it is guaranteed the
exponential convergence property in 0O. Moreover, we use
the Cooperativity Inequality condition (23) to ensure that the
state trajectory is bounded by the lower/upper estimations. �

IV. INTERVAL OBSERVERS FOR DISTURBED SYSTEMS
In this section, we propose preserving order and interval
observers for the nonlinear discrete-time system in presence
of disturbances and/or uncertainties. The robust observers are
also achieved by integrating of the radii stability approach
with cooperativity property. The proposed design represents
the extension of the continuous method in [19] to the discrete
representation.

In this section, we assume that the nonlinear discrete-time
system 0S is affected by uncertainties and/or disturbances.
The system is now described by the set of equations

9S :


xk+1 = Axk + Gψ (σk ; k, yk , uk)+ ϕ (k, yk , uk)

+w(k, xk , uk ), x (k0) = xk0 ,
σk = Hxk ,
yk = Cxk ,

(24)

where wk ∈ Rn is a disturbance/uncertainty term such that
satisfies the next Assumption.
Assumption 17: The disturbance/uncertainty vector is

bounded by the interval

w+k = w+(k, yk , uk ) � wk � w
−

k = w−(k, yk , uk ), (25)

∀k ∈ N, where w+(k, yk , uk ) and w−(k, yk , uk ) are known
upper and lower (bound) functions.

As pointed out in [12] the disturbances/uncertainties are
not partially ordered inputs, we can then preserve the partial
ordering between the estimates and the uncertain/disturbed
state trajectory, incorporating a couple of observers for the
disturbed discrete-time system 9S:

9O+ :



x̂ +k+1= Âx
+

k + L
+
(̂
y +k − yk

)
+ ϕ(k, yk , uk )

+Gψ
(
σ̂ +k +N

+
(̂
y +k − yk

)
; k, yk , uk

)
+w+ (k, yk , uk) ,

σ̂+k =Hx̂
+

k ,

ŷ +k =Cx̂
+

k ,

(26)

9O− :



x̂ −k+1= Âx
−

k + L
−
(̂
y −k − yk

)
+ ϕ(k, yk , uk )

+Gψ
(
σ̂ −k +N

−
(̂
y −k − yk

)
; k, yk , uk

)
+w− (k, yk , uk) ,

σ̂−k =Hx̂
−

k ,

ŷ −k =Cx̂
−

k ,

(27)

where x̂ +k and x̂ −k stand for the upper estimate and the lower
estimate, respectively, with the initial conditions x̂ +(k0) =
x̂ +k0 � x

+

k0
and x̂ −(k0) = x̂ −k0 � x

−

k0
. The matrices L+, L− ∈

Rn×q and N+, N− ∈ Rr×q are appropriately selected.
Denoting e+k , x̂+k − xk and e

−

k , xk − x̂
−

k , we can compute
the upper and lower estimation error dynamics,

9E+ :


e+k+1 = A+L e

+

k + Gv
+

k + b
+

k ,

z+k = H+N e
+

k ,

v+k = −ξ
+
(
z+k , σk ; k, yk , uk

)
,

(28)

9E− :


e−k+1 = A+L e

−

k + Gv
−

k + b
−

k ,

z−k = H−N e
−

k ,

v−k = −ξ
−
(
z−k , σk ; k, yk , uk

)
,

(29)

with the nonnegative initial errors e+ (k0) = e+k0 � 0
and e− (k0) = e−k0 � 0. b+k = w+(k, yk , uk )−w(k, xk , uk ) �
0 and b−k = w(k, xk , uk ) − w−(k, yk , uk ) � 0
are nonnegative external inputs that act in the systems
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9E+ and 9E− . The incremental nonlinearities are described
by ξ+

(
z+k , σk ; k, yk , uk

)
= ψ(σk ; k, yk , uk ) − ψ(σk +

z+k ; k, yk , uk ) and ξ−
(
z−k , σk ; k, yk , uk

)
= ψ(σk −

z−k ; k, yk , uk )− ψ(σk ; k, yk , uk ).
The preserving order and interval observers design for

the disturbed/uncertain discrete-time system 9S in (24) is
summarized in the following definition and theorem.
Definition 18: The system 9O−

(
9O+

)
is said to be a

lower (upper) preserving order observer for 9S, if the fol-
lowing conditions are fulfilled:
(i). w(k, xk , uk ) is bounded as (25),
(ii). the partial ordering between the lower (upper) estimate

x̂ −k
(̂
x +k

)
and the state trajectory xk is given as follows

If xk0 � x
−

k0 � x̂ −k0
(̂
x +k0 � x

+

k0 � xk0
)

⇒ xk � x̂
−

k

(̂
x +k � xk

)
, ∀k ∈ N.

(iii). the lower (upper) estimated state x̂ −k
(̂
x +k

)
practically

converges to a vicinity of xk , i.e.,

lim
k→∞
‖̂x ±k − xk‖ → β±.

Additionally,9O+ and9O− form an interval observer for9S.
Hence, the partial ordering between the state trajectory and
estimates is always preserved, satisfying,

x̂ +k � xk � x̂
−

k , ∀ k ∈ N,

with the final bound

lim
k→∞
‖̂x +k − x̂

−

k ‖ → β.

The main result of our paper is established in the follow-
ing Theorem for designing the preserving order and interval
observers for the perturbed discrete-time systems 9S, using
the conditions of the Lemma 11 and Proposition 2 in the
estimation error dynamics 9E−

(
9E+

)
.

Theorem 19: Consider the perturbed discrete-time nonlin-
ear system 9S in (24) under Assumption 12 and 17. Suppose
that ψ− (·)

(
ψ+ (·)

)
satisfies the Lipschitz condition in (8).

Assume that G � 0. If the matrices L− and N− (L+, N+)
exist, such that the next conditions:
• (18)-(21) of the Theorem 14, and
• the Cooperativity Inequality in (23),

hold. Hence, 9O−
(
9O+

)
is a globally ISS - lower (upper)

preserving order observer for the disturbed system 9S. Fur-
thermore, 9O− and 9O+ compose an interval observer
for 9S.
Notice that the interval observers can be obtained by the

(lower or upper) preserving order observer design, taking the
same matrices L = L+ = L− and N = N+ = N−, which
do not depend on the uncertainties/disturbances.

V. LMI FORMULATION
The results in LMIs formulation provide the advantage that
can be easily solved by standard convex optimization algo-
rithms. In this section, we formulate the design conditions of
the interval and preserving order observers, presented in the
Theorems 16 and 19, in terms of the LMI tools.

A. CONVERGENCE CONDITIONS
The convergence conditions of the interval and preserving
order observers, for a class of nonlinear discrete-time sys-
tems, in presence or absence of disturbances-uncertainties,
have been provided by stability radii theory in the
Theorems 16 and 19. These conditions can be expressed,
in some cases, by means of LMIs in the variables L and N .
We then analyze the conditions (18)-(21) of the

Theorem 16 and 19 in the following paragraphs:
1) ρ(AL) < 1 can be similarly rewritten as

ATL PAL−P < 0,

which represents a quadratic Matrix Inequality (MI) in
(P, L), adding the variable P = PT > 0. Applying the
Schur’s complement, the previous MI becomes an LMI
in the variables (PL, P), given as follows:[

−P −PAL
−ATLP −P

]
< 0, (30)

Thus, the observer gain is computed as L = P−1PL.
2) The non-negativity conditions: AL � 0 and HN � 0

are linear in L and N , respectively.
3) The condition ρ <

∥∥HN (I − AL)−1G∥∥−1 becomes
written as

ρ−2I − GT (I − AL)−T HT
NHN (I − AL)

−1G > 0.

If we use the Schur’s complement, we get the following
MI:[

ρ−2 I HN (I − AL)−1 G

GT (I − AL)−T HT
N I

]
> 0.

(31)

which is an LMI in N when L is fixed.
Based on the above conditions, we can construct an LMI

algorithm to obtain convergent observers, which is given by
the following schematic form.
Algorithm 1: The procedure to guarantee the convergence

properties of the observers, in terms of LMIs, is summarized
as follows
• Step 1: The variable L can be found solving the follow-
ing conditions:

(i). The expression in (30) is an LMI in (PL, P).
(ii). AL � 0 is a linear inequality in L.

• Step 2: The variable N can be found, fixing the matrix
L, if the following conditions are simultaneously solved:

(i). HN � 0 is a linear inequality in N .
(ii). The inequality in (31) is an LMI in N .

Notice that the expression in (30), taking the variables
(P, L), is used as a substitute for (18) of the Theorem 14.
In particular, P is not a required matrix for ensuring the
convergence properties of the observers, but it can be utilized
to find the matrices (L, N ).
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B. COOPERATIVITY CONDITION
The Cooperativity Inequality in (23), which has been con-
sidered in [42], determines the partial ordering between the
estimated states and the real state trajectory. In general, the
cooperativity condition in (23) can be expressed as a problem
of solving an infinite number of LMIs in (L, N ), since they
are checked for each value of the Jacobian matrix Dσ ξ (σ +
z; t, y, u). The main challenge in this problem is to find
a finite set of LMIs, based on convex approximations, that
verify the condition in (23). Let us recall the following useful
results, taking into account the Lipschitz nonlinearities on the
radii stability theory.

Let the following set:

J =
{
0 ∈ Rm×r ∣∣0=Dσkψ (σk ; k, yk , uk) ,∀k, σk , yk , uk},

(32)

which includes all values of Dσ ξ (σ + z; t, y, u). Hence, the
inequality in (23) is now given by

AL + GJHN�0, ∀ J ∈ J . (33)

In addition, we consider that J is bounded, which implies
that the Lipschitz-type nonlinearity ψ (σk , zk ; k, yk , uk) is
in the symmetric sector [−K , K ] with K = γ I , satisfying

[ξ (σ, z; t, y, u)− (−K ) z]T [Kz− ξ (σ, z; t, y, u)]≥0.

(34)

Making use of the Mean Value Theorem, we can easily
demonstrate that J is in the convex set ϒ , expressed as
follows

ϒ ,
{
0 ∈ Rm×r ∣∣ [0 − K ]T [K + 0] ≤ 0

}
. (35)

Due to the convexity of the function (33), we can evaluate
the boundary points of J on (33), reducing significantly the
number of LMIs that validate the cooperativity property in the
estimation error dynamics. Sufficient LMI conditions which
guarantee (33) will be provided in the next proposition.
Proposition 20: Let ψ(zk ; k, yk , uk ) : Rr

→ Rm. Sup-
pose that ξ (σk , zk ; k, yk , uk) is in the symmetric sector
[−K , K ]. The cooperativity condition in (23) is satisfied
∀zk ∈ Rr , and for all k, yk , uk , if the following condition:

AL + G1HN�0 (36)

hold for each point 1 ∈ ϒf of the boundary set

ϒf =
{
0 ∈ Rm×r ∣∣ (0 + K1)

T (K2 + 0) = 0
}
. (37)

Remark 21: If we consider the scalar case, i.e. σk →
ξ (σk ; k, yk , uk ) : R → R, the matrix set (36) is just
given by two points of J ⊂ ϒf , which are represented by the
maximum and minimum values of the sector ϒf = {K1, K2}.
The diagonal case, i.e. σk → ξ (σk ; k, yk , uk ) : Rm

→ Rm,
taking σk,i→ ξi(σk,i; k, yk , uk ) : R→ R for i = 1, . . . ,m,
defines a finite number of points of ϒf .
The detailed proof is omitted here for brevity, but it is anal-

ogously proved in Proposition 4 of [42]. Notice that the result

in the proposition 20 roughly decrease the number LMIs, but
in the general case they are still described by infinite LMIs.
Making use of a geometrical (vectorial) representation with
r = 1, which is easily extended to matrix case, the set ϒ can
be characterized as an ellipsoid in Rm [47],

ϒ = {0 ∈ Rm
| 0TQ0 − 20T S + R ≥ 0} (38)

with Q < 0. Let us consider a pair of polytopes for ϒ :
• An inscribed polytope in ϒ

PI =

{
k∑
i=1

αi1i ∈ Rm

∣∣∣∣∣αi ≥ 0,
k∑
i=1

αi = 1, i = 1, . . . , k

}
(39)

where 1i ∈ ϒf are the vertices of PI , which are
increased for having an adequate approximation to ϒ as
in [42]

• A circumscribed polytope in ϒf ,

PC=

{
κ∑
i=1

αi�i ∈ Rm

∣∣∣∣∣αi ≥ 0,
κ∑
i=1

αi = 1, i = 1, . . . , κ

}
(40)

where�i, i = 1, . . . , κ are the vertices of PC , which can
be depend on the vertices 1i..

In consequence, the cooperativity condition in (23) is ful-
filled iff (33) is checked for a set of points, determined by the
vertices of two polytopes PI and PC . This is stated in the next
paragraph.
Remark 22: PI and PC define the necessary and suffi-

cient conditions, respectively, for verifying (33). Suppose that
PI ⊂ ϒ and ϒ ⊂ PC , the cooperativity inequality (33) is
satisfied iff the next conditions hold:
(i) If AL + GJHN � 0 is fulfilled ∀J ∈ J , then

AL + G1iHN � 0, i = 1, . . . , k, is fulfilled for every
1i of PI .

(ii) If AL + G�iHN � 0, i = 1, . . . , k, is fulfilled of PC ,
then AL + GJHN � 0 is fulfilled ∀J ∈ J .

The cooperativity inequality (33) is then reduced to a finite
set of LMI’s in the design variables L, N . We can iteratively
verify the cooperativity inequality.

VI. EXAMPLE
In this section, a numerical example is presented to show the
validity and effectiveness of the proposed design approach.
We consider the model for the electromechanical servo sys-
tem [48], which can be used to control an inverted pendu-
lum [49], described by the nonlinear discrete-timemodel with
a sampling time of Ts 0.1 s,

0G :

 xk+1 =

[
0.0468 0.1564
0.2083 0.8154

]
xk +

[
39.2076
11.5999

]
uk

+ 8(xk)+ w (k) ,

(41)

where x1, k is the load angular position, x2, k is the shaft speed,
uk is the input voltage, 8(xk) =

[
0, 0.005 sin(x1, k )

]> is
the nonlinear term that depends on the variable x1, k , and
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w (k) is the bounded disturbance vector. Moreover, the output
measurement is given by yk = x2, k .

The goal is to develop the interval observers, using the
preserving order observer design given in the Theorems 16
and 19, for 0G in order to estimate the state from the mea-
surement on x2, k .

A. DESIGN FOR THE NOMINAL SYSTEM
In this case, we consider that w (k) ≡ 0 . To use the proposed
design approach, we write the discrete-time system 0G as in
(13) with the matrices

A =
[
0.0468 0.1564
0.2083 0.8154

]
, G = C>

[
0
1

]
, H =

[
1 0

]
,

ϕ(k, yk , uk ) =
[
39.2076
11.5999

]
uk ,

andψ (σk) = 0.005 sin (σk). Furthermore, it is easy to verify
that

ξ (zk , σk ) = 0.005 (sin (σk)− sin (σk + zk))

fulfills the Lipschitz condition in (8), and taking
‖ξ (·) ‖ = 0.005. According to Theorem 16, we get
an interval observer with the following matrices

N = 0.075, L =
[
−0.1534
−0.7452

]
,

and ρ (AL) = 0.0861. In the simulation results, the proposed
interval observer is compared with that presented in [42]
using ε = 0.0303, θ = 1, N = −1.6827× 10−4,

P =
[

1.7850 − 0.0002
−0.0002 0.0004

]
, L =

[
−0.1551
−0.6770

]
.

Figure 1 shows the interval estimation results provided
by our approach x̂ ±, srk and the estimates given by the
interval observer in [42] x̂ ±, dk from the initial conditions
xk0 = [0, 0]>, x̂ ±, srk0 = [± 800, ± 800]>, and x̂ ±, dk0 =

[± 800, ± 800]>. Both strategies present a similar behavior
in the nominal case. It is evident that the estimations (bounds)
preserve the partial ordering with respect to the state trajec-
tory while they converge asymptotically to the real state val-
ues. The estimation errors converges towards zero. However,
the calculations in the interval observer design proposed are
easier than in the work [42].

B. DESIGN FOR THE DISTURBED SYSTEM
We now consider the interval observer design for system 0G
affected by the bounded disturbance

w(k) =
[
39.2076
11.5999

] (
w− + w+

2
+
w+ − w−

2
sin (15k)

)
,

where the known upper and lower bounds are w+ = 2 and
w− = 1, respectively. For this case, we use the same matrices
of the above design, taking L+ = L− = L and N+ =
N− = N , such that the conditions of the Theorem 19 hold.

FIGURE 1. The trajectories of nominal system states xk and its interval
estimations of the states. (a) x1, k , x̂ ±, sr

1, k , and x̂ ±, d
1, k . (b) x2, k , x̂ ±, sr

2, k ,

and x̂ ±, d
2, k .

FIGURE 2. The trajectories of disturbed system states xk and its interval
estimations of the states. (a) x1, k , x̂ ±, sr

1, k , and x̂ ±, d
1, k . (b) x2, k , x̂ ±, sr

2, k ,

and x̂ ±, d
2, k .

Figure 2 provides the simulation results for disturbed states
of the system 0G and their estimations proposed by the inter-
val observers

(
9O+ , 9O−

)
and that presented in [42]. The ini-

tial conditions are taken from the nominal case. Asmentioned
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in Definition 18, the estimations are converging to a neigh-
borhood of the uncertain state, while they preserve the partial
ordering with respect to the uncertain trajectory. It can be
noted that the two interval observers achieve the objective of
interval estimation, extending easily the proposed approach
to the uncertain/disturbed case.

VII. CONCLUSION
We have addressed the design problem of interval observer
and preserving order observers for a class of nonlinear dis-
crete time systems in absence or presence of external distur-
bances and parametric uncertainties. The approach is based
on the stability radii theory and the non-negativity conditions,
which are applied to the estimation error dynamics. The
proposed approach, applicable for Lipschitz nonlinearities,
represents an extension of the method developed in Literature
for the continuous-time systems. To derive design conditions
in terms of the Linear Matrix Inequalities (LMIs), several
mathematical tools are utilized to guarantee the convergence
and cooperativity properties of the proposed observers for the
discrete-time systems. A numerical example is included to
illustrate the effectiveness of the proposed design. Future
works will be devoted to the effect of measurement noise on
the estimation of the preserving order and interval observers.

APPENDIX A
PROOF OF LEMMA 8

Proof: Consider that ξ (·) satisfies the Lipschitz con-
dition in (8). Since ρ < ||C (I − A)−1 B||−1, there exist
a positive definite symmetric matrix D = DT < 0 and
a positive scalar ε > 0 such that the so-called Discrete
Algebraic Riccatti Equation (DARE) is satisfied [45], [50]:

D− ATDA+ εI + ρ2CTC

+ATDB(I + BTDB)−1BTDA = 0. (42)

By setting P = −D, P = PT > 0, the inequality in (42)
becomes

ATPA−P+ εI + ρ2CTC

−ATPB(−I + BTPB)−1BTPA = 0.

Using the Schur’s complement result, we have

3 ,

[
ATPA− P+ εI + ρ2CTC ATPB

BTPA − I + BTPB

]
≤ 0.

(43)

which implies the nonlinear discrete-time system 0NE is
GES. Furthermore, we can easily recover the same stability
result with a Lyapunov proof, taking a Lyapunov function
candidate of the form Vk , xTk Pxk . Thus, the Lyapunov dif-
ference satisfies 1V (xk ) , V (xk+1)− V (xk) = ẽTk 3ẽk ≤
−εV (xk) with ‖ξ‖ ≤ ρ, where ẽk , [eTk , ξ (·)

T ]T . From
the function difference, we can readily obtain

V (xk) ≤ (1− ε)kV (k0) ,

for any k ≥ 0, 0 < ε < 1. Using the Rayleigh inequality
λmin(P)‖xk‖2 ≤ V (xk) ≤ λmax(P)‖xk‖2, we write

λmin(P)‖xk‖2 ≤ V (xk) ≤ (1− ε)kV (k0)

≤ λmax(P)(1− ε)k‖xk0‖, (44)

where λmin,max(P) stand for the smallest and the greatest
eigenvalues of the matrix solution P, respectively. Thus, the
following inequality is satisfied

‖xk‖ ≤

√
λmax(P)
λmin(P)

‖xk0‖
(
1
ς

)− k
2

where ς = 1− ε. This concludes the proof. �

APPENDIX B
PROOF OF LEMMA 11

Proof: Consider the disturbed nonlinear discrete-time
system0NE. By choosing the same Lyapunov candidate func-
tion Vk , xTk Pxk for the proof of the Lemma 8, where P is
a positive definite matrix, then its Lyapunov difference along
the trajectories of the system 0NE is bounded as follows,

1Vk ≤ −εxTk Pxk + 2xTk A
TPbk + bTk Pbk

+ 2ξT (k, yk )BTPbk .

Since ||ξ (k, yk )|| ≤ α‖yk‖ ≤ β‖xk‖ for α > 0, β > 0,
we write

1V (xk ) ≤ −a ‖xk‖2 − b ‖xk‖2 + 2c ‖xk‖ ‖bk‖ + d ‖bk‖2,

where a = (1− η)ελmin(P), b = ηελmin(P), c = ‖ATP‖+
β ‖BTP‖, d = λmax(P). Considering a sufficiently large
value of ‖xk‖, we get

1V (xk ) ≤ −(1− η)ελmin(P) ‖xk‖2, ∀ ‖xk‖ ≥ γ ‖bk‖,

where γ = c+
√
c2+bd
b . Hence, 0NE is ISS with respect to bk .

This completes the proof. �
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