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ABSTRACT Battery energy storage systems (BESSs) have been widely used in power grids to improve
their flexibility and reliability. However, the inevitable battery life degradation is the main cost in BESS
operations. Thus, an accurate estimation of battery aging cost is strongly needed to cover the actual cost of
BESSs. The existing models of battery life degradation either are not fully accurate to estimate the actual cost
or are not solved easily because of their computation nonlinearity. In this paper, a piece-wise linear battery
aging cost model with an accurate estimate of battery life degradation for BESSs is proposed to extend battery
life and improve battery profits. In our method, the widely-used Arrhenius law is modified to quantify the
battery life degradation affected by the depth of cycle. Further, a nonlinear battery cycle aging cost model
is developed by finding the derivative of battery life degradation with respect to discharging power, which
indicates the battery life degradation rate due to depth of cycle. To reduce the complexity of computation,
a piece-wise linearization method is proposed to simplify the battery cycle aging cost model. Finally, the
cycle aging cost model with an accurate estimation of battery life degradation is applied to the optimization
dispatch in the day-ahead energy and auxiliary service market. The results show that the error of estimating
the battery cycle aging cost of BESSs is less than 5% under proper piece-wise segment numbers. The profits
are increased by 27% and the battery life is extended by 11% than the fixed cost method.

INDEX TERMS Battery energy storage system, piece-wise linear model, cycle aging cost, state of health,
optimization dispatch.

I. INTRODUCTION
Due to dramatic cost reduction in wind and solar photovoltaic
(PV), renewable energy is being increasingly incorporated
into power grids [1], [2]. The uncertainty and intermittent of
renewable energy generation considerably affect the security
operation of power grids [3]. Energy storage technologies
are promising options to address these intermittency and
uncertainty problems of renewable energy generation through
daily and multi-day energy shifting under high penetration of
renewable energy [4]. BESSs are experiencing increasingly
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being used in various grid-scale applications due to tech-
nology development and incentive policies [5]–[8]. BESS
could furnish the deficit power in renewable energy power
forecasting because of the prediction error [9] and could be
applied to determine the best operating strategy of the cluster
of multi-hybrid wind farms [10]. Unlike traditional power
generation plants, the lifetime of BESSs resulting from aging
degradation is highly sensitive to BESS types and dispatch
strategies [11].

The aging of BESS mainly results from the formation of
the solid electrolyte interface (SEI), leading to an increase
in the internal resistance and battery life degradation of
BESSs [12], [13]. Two common BESSs aging methods
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quantify the BESS degradation process: calendar aging and
cycle aging [14]. Calendar aging of batteries primarily occurs
during the energy storage phase of the battery, mainly result-
ing from the state of charge (SOC) and the temperature of
the battery [15]–[18]. When the energy is stored in a battery,
the formation of SEI will generate due to the reduction of
electrolyte solvents such as ethylene carbonate [19], [20].
Cycle aging of BESS is affected by kinetic factors related to
charging and discharging cycle operating parameters includ-
ing charging/discharging rate, depth of cycle, cycle number,
and operating temperature [21]–[24]. Further, cycle aging
is primarily affected by the cycle number and the depth of
cycle [25], [26]. Incorporating an accurate battery cycle aging
estimation method into BESSs short-term operational deci-
sions is important to improve the longevity and profitability
of the battery.

There are two main semi-empirical aging models to esti-
mate the cycle aging of BESS. 1) Based on the semi-empirical
model of Arrhenius law, the relationship between battery
cycle aging and time is established by involving diffusion
and parasitic reactions leading to loss of active lithium [27].
It clearly indicates the correlation parameters in battery oper-
ations and is applied to calculate the cost of BESSs [28].
Fitting parameters are directly from the battery mechanism
data under given conditions. Additionally, this model could
apply to most kinds of BESSs through cell life experiments.
Hence, this model is used widely in battery mechanism
research. While the main weakness of the model based on the
Arrhenius law is that cycle aging is affected by two interactive
variables, which indicates that it could be not easily imple-
mented in the optimization dispatch. 2) Based on quadratic
cycle depth stress function, the relationship between the depth
of cycle and the degree of cycle aging is established through
the radius of active material degradation in the battery pro-
file [29]. In this case, the depth of cycle directly affects the
battery cycle aging. This model can be easily incorporated in
optimization dispatch. However, this method usually needs
numerous mechanism experiments to obtain fitting parame-
ters. The radius of active material is also difficult to measure
during the experiment [30]. Consequently, the models men-
tioned above either are not fully accurate to reflect the actual
cost of BESS or are not implemented in optimization dispatch
easily.

Despite the above documented two main semi-empirical
aging models, there exists no explicit or rigorous way to
incorporate the aging model into optimization dispatch.
BESS have different performance characteristics and grid-
scale applications, such as arbitrage and regulation service.
When participating in grid-scale applications, BESS opera-
tors need to optimize the daily charging/discharging power
dispatch to maximize profits. Besides, they need to account
for the cycle aging of BESSs to extend service life. For
instance, the threshold battery power level is set to avoid
a large number of charging and discharging cycles [31].
Based on the fuzzy multi-criteria decision-making tech-
niques, this operating strategy could avoid excessive battery

degradation significantly. Unlike traditional thermal gener-
ators that have variables to estimate the operating cost, the
aging cost of a battery is difficult to predict as it consumes no
fuel. An adaptive control law is developed to compensate for
the uncertain parameter related to the SOC and open-circuit
voltage [32]. The damage equivalent quantity (DEQ), which
indicates a depth of discharge value for the predefined num-
ber of battery cycles, could be applied to the suitable dispatch
regulator and forecasting scheme to minimize the operating
cost of hybrid wind energy systems [33]. The battery aging
cost of BESS is ignored in dispatch objective function in
many studies [34], [35], or is not explained or justified why
the cost function is implemented [36], [37]. Most researchers
have applied fixed cost in battery cost calculation [38], [39].
In those optimization dispatches implemented BESSs in
power systems, they assume that the battery degradation is
proportional to the cycle numbers roughly while considering
the degradation cost of BESS [40]–[42]. The main weakness
of this method is that it would underestimate the actual aging
cost of the battery, due to ignoring the fact that deep depth
of cycle would accelerate the cycle aging of the battery, and
resulting that battery reaches the end of life (EOL) too early.
Furthermore, researchers regard maximum battery life as the
optimization goal [43]. In this model, the profits could not be
maximized and the efficiency of BESSs would be reduced by
low depth of cycle.

This study proposed an improved cycle aging cost model
of BESS considering battery aging based on the Arrhe-
nius law to accurately estimate the BESS cycle aging cost.
Additionally, a piece-wise linear model is implemented to
approximate the actual battery aging model in order to
optimization dispatch. The proposed model was used in a
BESS dispatch problem to optimize battery longevity and
profitability. The main contributions of this paper are as
follows:

1) It proposes a single-variable battery cycle aging model
based on Arrhenius law to quantify the relationship between
the depth of cycle and battery capacity degradation. The
proposed method allows the cycle aging model could be
incorporated in optimization dispatch.

2) The battery capacity degradation is associated with the
discharging power, which is derived from the single-variable
model.

3) Since the nonlinear function above could not be simply
incorporated in optimization dispatch, the piece-wise linear
method is implemented into the battery cycle aging model to
approximate the actual battery cycle aging function.

4) The accuracy of the proposed model increases with
the increasing linearization segments. The results of BESS
optimization dispatch in energy and auxiliary service markets
demonstrated the improvements in profitability and longevity
of the battery.

The paper is organized as follows. Section II describes
the formulation of the cycle aging cost model of the BESS
based on the Arrhenius law. Section III details how this model
is incorporated in the economic optimization dispatch and
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the dispatch objective function and constraints. Section IV
discusses the accuracy and the improvement of the proposed
model. Section V draws the conclusion.

II. AGING COST MODEL OF BESS CONSIDERING
BATTERY LIFE DEGRADATION
A. BATTERY CYCLE AGING MODEL BASED ON
ARRHENIUS LAW
Arrhenius law could effectively reflect the chemical reaction
rate by factors in conditions of a small range of tempera-
ture [44]. The charging/discharging process of BESS is a
chemical reaction process, which can be solved by using the
Arrhenius law as follows [27]:

Qloss = A exp
(
−Ea
RT

)
µz (1)

whereQloss is the capacity fade of battery (%); A is the Arrhe-
nius constant; z is the reaction rate constant;R is the molar gas
constant (J/(mol·K)); Ea is the activation energy (J/mol); T is
the absolute temperature (K), and µ is chemical time (hr).
The variable Ah could be introduced instead of µ [19].
Ah is the Ah-throughput which allows us to correlate the
battery degradation with cycle numbers and depth of cycle:

Ah = Erate × n× h (2)

whereErate is the capacity of the battery (MWh); n is the cycle
number; h is the depth of the cycle. When the battery capacity
is fixed, Ah is affected by the two factors at the same time;
µ can be substituted from (2). Thus, the following cycle aging
model of the BESS is proposed:

Qloss (n, h) = A exp
(
−Ea
RT

)
Azh

= A exp
(
−Ea
RT

)
(Erate × n× h)z (3)

After battery material and operating environment are deter-
mined, two unknown coefficients A and z could be obtained.
To determine the fitting parametersA and z, (3) is transformed
as follows:

ln (Qloss) = ln (A)−
(
Ea
RT

)
+ z ln (Ah)

ln (Qloss)+
(
Ea
RT

)
= z ln (Ah)+ ln (A) (4)

where A and z could be obtained by linear programming.
The cycle number n and depth of the cycle h under different
operating temperatures could be obtained by materials stress
experiments. Then the regression function could be plotted
between ln(Ah) and ln(Qloss)+ Ea/RT. The value of A was
obtained from the intercept values of the best-fit nonlinear
regression function; z was obtained from the slope of the
curves [19]. Here, linear programming could be incorporated
to fix the model. Furthermore, Ah follows the Arrhenius
law because the generation of the aging layer is a chemical
reaction of the battery during thermal activation [45].

The degree of cycle aging of the battery in a period can be
estimated by using the state of life (SoH) [12], [46] formu-
lated as follow:

SoH = 1−
Qloss,t
Qrated

(5)

where SoH represents the life degradation of the battery
at various moments; Qloss,t is the capacity degradation of
the battery at t (MWh); Qrated is the initial capacity of the
battery (MWh).

B. CYCLE AGING COST MODEL CONSIDERING THE
BATTERY LIFE DEGRADATION
According to the BESS battery degradation in Section A, the
cycle aging of the battery is affected by both the depth of
cycle h and the cycle number n when the battery material and
operating environment are determined. Equation (3) could
not be implemented into optimization dispatch of BESSs,
because it cannot intuitively reflect the relationship between
cycle aging and the depth of cycle. To quantify the battery
cycle aging in one cycle, (3) could be transformed into a
single-variable formulation:

Qcycle (h) = A exp
(
−Ea
RT

)
(hErate)z (6)

where Qcycle(h) is capacity degradation for one cycle.
This study did not consider the battery capacity degrada-

tion caused by the battery during the discharging state of a
cycle, this assumption is reasonable because the amounts of
energy are almost identical due to the same initial and ending
SOC. Therefore, the cycle aging of the battery was assumed
to only occur during the battery discharging stage of a cycle.

The cycle depth is the amount of change in the SOC of the
battery during discharging [41]. During the battery cycle,
the stored energy is discharged from the start energy eup to
the end energy edn, then h is (eup- edn)/Erate. If the battery is
discharged at intervals t , then the relationship between ht and
Pdist at t can be expressed as follows:

ht =
1

ηdisErate
Pdist 1t (7)

where ηdis is the battery discharge efficiency (%); Pdist is the
discharging power of battery at t (MW), and ht is the depth
of cycle at t (%). To determine the relationship between dis-
charging power Pdist and battery capacity degradation Qloss,
the partial derivative can be calculated by (6) [26], and the
process can be expressed as follows:

∂Qloss (nt , ht)

∂Pdist
=
∂Qloss (nt , ht)

∂ht

dht
dPdist

=
1

ηdisErate

∂Qloss (nt , ht)
∂ht

(8)

where nt is the cycle number of the battery at time t;
dQloss (nt , ht)/dht is the derivative of battery capacity degra-
dation to the depth of cycle, that is, the rate of change of cycle
depth to battery life degradation, which can be considered

VOLUME 10, 2022 299



L. Zhang et al.: Improved Cycle Aging Cost Model for BESSs

as the effect of each unit depth of cycle on battery life
under a single cycle. Therefore, (6) can be used instead of
dQloss (nt , ht)/dht as follows:

∂Qloss (nt , ht)
∂ht

= Qcycle (ht) = A exp
(
−Ea
RT

)
(htErate)z

(9)

where the right side of (9) is the cycle aging caused by the
depth of the cycle under a single cycle, Table 1 shows the
fitting parameters of the LiFePO4 battery[19]. Thus, the rela-
tionship between the cycle life of the battery and the output
power can be obtained. The cost of a certain discharging
degradation of the battery can be expressed as follows:

ω =
C

ηdisErate
Qcycle (ht) (10)

where ω is the cost for battery cycle aging, Pdist is the
discharging power at time t (MW), and C is the replace-
ment cost ($). The cycle aging cost of the battery under
various cycle depths in a single cycle can be calculated
according to (10).

TABLE 1. Battery fitting parameters.

C. BATTERY PIECE-WISE LINEARIZATION MODEL
Equation (6) represents the calculation formulation of bat-
tery aging cost. However, solving the nonlinear function
Qcycle(ht ) is difficult. Conventional linearization methods
tend to exhibit large deviations. Therefore, this study pro-
posed a piecewise linearization model that enables the energy
storage degradation cost model to be embedded in the con-
ventional unit commitment or economic dispatch model to
improve the efficiency of the solution.

The independent variable is ht in nonlinear Qcycle(ht ).
Therefore, the depth of cycle is divided into segments, as dis-
played in Fig. 1.

In Fig. 1, the capacity degradation is plotted as a function of
the depth of cycle. The mid-value of each segment represents
the whole segment value. More segments make the approxi-
mate function closer to the original function (e.g., between S2
and S3). Thus, the piece-wise linear model can be expressed
as follows:

ω (ht) = ωi if ht ∈
[
i− 1
N

,
i
N

)
, i = 1, 2, . . . ,N (11)

ωi =
R

ηdisErate
ki (12)

ki =
1
2

[
Qcycle

(
i
N

)
− Qcycle

(
i− 1
N

)]
(13)

where N is the total number of segments; i is the number
of segments where the current depth of cycle is located;

FIGURE 1. Piece-wise linear model for cycle life degradation of energy
storage batteries.

ω is a piece-wise linear approximation function; k is the
mid-value in the current segment. In this paper, the depth
of cycle is calculated by segments in the optimization pro-
cess to reduce the deviation. Therefore, the output power
corresponding to the depth of cycle should be calculated by
segments.

III. BESS DISPATCH MODEL
This study implemented the established linear aging cost
model of the battery into the day-ahead energy and auxiliary
service market, which can be expressed as follows:

max
P,R

8 =
∑T

t=1
1t
[
σPt

(
Pdist − P

ch
t

)
+ σ

Q
t Rt

]
−W (14)

W =
∑T

t=1

∑N

i=1
1tωipdist,i (15)

where 1t is the time interval, T is the number of time
intervals in optimization index by t; 8 is the revenue of the
battery in optimization dispatch ($); σPt and σQt are the energy
and reserve price at t ($/MW), respectively; W is the cycle
aging cost in a single optimization dispatch cycle, N is the
segments of piece-wise linear aging cost model of battery
index by i; ωi is the mid-value in the segment i; Pdist and Pcht
are the discharging and charging power of battery at t (MW),
respectively; Rt is the reserve power of battery at t (MW); pdist,i
and pcht,i are the discharging and charge power of the battery
in segment i at t (MW), respectively.
Constraints can be expressed as follows:
(1) Battery power constraints are as follows:

Pdist =
∑N

i=1
pdist,i (16)

Pcht =
∑N

i=1
pcht,i (17)

0 ≤ Pdist ≤ xt,1P
dis
max (18)

0 ≤ Pcht ≤ xt,2P
ch
max (19)

xt,k ∈ {0, 1} (20)∑3

k=1
xt,k = 1, ∀t (21)
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where Pdismax and Pchmax are the maximum discharging and
charging power of the battery (MW), respectively; xt,k is
the logical variable; k represents discharging, charging, and
reserve when it is 1, 2, and 3 respectively. Constraints (16)
and (17) state that BESS power is the summation of
the discharging/charging power associated with each cycle
depth segment, respectively; Constraints (18) and (19) are
for battery discharging and charging power, respectively.
Constraints (20) and (21) indicate that energy storage can
only be charged, discharged, and reserved at a certain time.

(2) Battery energy storage constraint

Et,i = Et−1,i + pcht,iη
ch1t −

pdist,i1t

ηdis
(22)

Emin ≤
∑N

i=1
Et,i ≤ Emax (23)

Et =
∑N

i=1
Et,i (24)

E1 = EN (25)
Et,i ≥ 0 (26)
ERt ≤ βEt (27)
0 ≤ Rt1t ≤ ERt (28)
0 ≤ β < 1 (29)

where Et,i is the energy storage in segment i at t (MWh);
Emin andEmax are themaximum andminimum energy storage
of battery (MWh); Et is the energy storage at t (MWh);
ηdis and ηch is the efficiency of battery discharging and
charging (%), respectively;ERt is reserve energy at t (MWh);
β is the ratio of energy for reserve at t . Equation (22) is the
constraints on the evolution of the energy stored in each cycle
depth segment between t and t-1; Equation (23) is energy
storage constraint; Equation (24) is sum constraint for energy,
the sum of the energy of the battery under each cycle depth
i at t is equal to the total energy at t; Equation (25) is the
initial and final capacity constraints of the battery. In this
study, the initial power of the battery in a period is set to be
the same as the final power at the end of optimization dis-
patch. Equation (27) indicates the reserve energy constraints.
Equation (28) indicates the reserve energy constraint of the
battery at t .

Fig. 2 is the illustration of BESS incorporated in opti-
mization dispatch. For BESS optimization dispatch, first,
an improved single-variable cycle aging function of the bat-
tery should be established based on the fitting parameters
provided by the battery manufacturer or the battery param-
eters. Second, the battery model is improved according to
the piece-wise linear method proposed in this paper. Third,
the dispatch is optimized based on day-ahead energy and
auxiliary service market. Finally, dispatch profile and profit
analysis are conducted.

IV. CASE STUDY
The proposed cycle aging cost model of the battery was
incorporated in the day-ahead energy and auxiliary services
market to prove the effectiveness of the model. In this case,
BESS will charge/discharge frequently to energy arbitrage or

reserve, so different segments of the piece-wise linear aging
cost model were implemented to verify the accuracy of the
proposedmodel. The results also indicate the model proposed
improves the profitability and longevity of BESS.

A. DATA DESCRIPTION
In this case study, the day-ahead locational marginal price
(LMP) and auxiliary services price was derived from the
Pennsylvania—New Jersey—Maryland (PJM) day-ahead
market. All simulations were modeled and solved in the
MATLAB platform using YALMIP and CPLEX in one year.
BESS operating parameters are displayed in Table 2 [26].

TABLE 2. The battery operating parameters.

B. RESULTS OF CYCLE AGING COST MODEL UNDER
DIFFERENT SEGMENTS
To demonstrate the profitability and longevity of the cycle
aging cost model under piece-wise linear aging cost models
with various segments, this study implemented 1-segment,
8-segment, 64-segment, and models with zero operating cost
of BESS into the optimization. Assumption of the model
with zero operating cost indicates BESSs have no cost due
to discharging/charging phase. The 1-segment model is the
widely used fixed cost model of battery. Fig. 3 (a) shows
the optimization dispatch curve of the piece-wise linear cycle
aging cost model under different segments in a certain day.
Fig. 3 (b) shows the LMP and reserve price in a certain day.
It illustrates that various segments model of BESSs both tend
to charge at low LMP in a period of 6:00-10:00 to increase
the SOC of battery, then reserve the energy to provide the
auxiliary services with stable SOC. Whole numbers of seg-
ments model of BESSs both tend to discharge at high LMP
in period 20:00-22:00 to arbitrage. The SOC of BESS ramps
most aggressively under the model with zero operating cost.
The maximum SOC of BESS under the 1-segment model
is less than those of the zero operating cost model because
arbitrage will be limited by cycle aging cost. In addition, the
maximum SOC of BESS decreases as the increasing numbers
of segments due to a more accurate estimation of cycle aging
cost, which results in more cycle aging costs at the same
discharging/charging power. Consequently, as the numbers
of segments increase, BESS will arbitrage conservatively, the
maximum SOC of BESS will decrease at the same time.
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FIGURE 2. The illustration of BESS incorporated in optimization dispatch.

FIGURE 3. (a) The optimization dispatch curve of piece-wise cycle linear
aging cost model. (b) LMP and reserve price in a certain day.

C. ANALYSIS OF RESULTS
1) METRICS OF COMPARISON
In order to quantify the approximation to the accurate cycle
aging cost of BESSs, we compute the relative error as follows

ε =

∣∣∣Q̃loss − Qloss∣∣∣
Qloss

(30)

where ε is the relative error, Qloss is the accurate cycle aging
cost of BESS by (3), Q̃loss is the actual cycle aging cost
estimated by the proposed model in this paper.

The piece-wise linear cycle aging cost model can esti-
mate the cycle aging cost of BESS accurately with enough
numbers of segments because more numbers of segments
make the approximate function closer to the original function
(e.g., between S2 and S3) in Fig. 1. Fig. 4 shows the errors of
the piece-wise linear model versus the accurate estimation,
regarding the accurate cycle aging cost as the benchmark.

The error decreases from 77.8% under 1-segment model to
0.02% under 288-segment model. The results indicate that
the proposed model achieved the best cost approximation.
Notably, more segments may reduce the efficiency of solving.
The BESS operator should minimize the number of segments
under the premise of meeting the relative error requirement
in practice because the relative error is only 2% under the
64-segment model.

FIGURE 4. Error comparisons of simplified BESS cycle aging cost model
under different numbers of segments.

2) BESS PROFITABILITY ANALYSIS
The cycle aging cost of the battery has an impact on the
profits of BESS. Table 3 shows the profits and costs of BESS
under different numbers of segments in the day-ahead energy
and auxiliary services market. The annual arbitrage profit
of the model with zero operating cost is $368.1 thousand
which is far beyond other situations considering the cycle
aging cost. The actual annual cycle aging cost of this model
reaches $2320.0 thousand, which is 20∼40 times than situa-
tions considering the cycle aging cost. Although the arbitrage
profits of this model are maximum, the total profits of that are
the minimum. The annual total profit is $-1929.6 thousand.
The BESS with zero operating cost is the most aggressive
dispatch and the BESS tends to arbitrage as much possible

302 VOLUME 10, 2022



L. Zhang et al.: Improved Cycle Aging Cost Model for BESSs

as the fluctuation of LMP with the rated power. This leads
to the largest cycle aging cost of BESS. With the number of
segments increasing, the cycle aging cost model proposed of
BESS can effectively improve the profits in optimization dis-
patch. The annual total profits increased from $42.4 thousand
under the 1-segment cycle aging cost model of BESS to
$53.9 thousand under the 64-segment model. Specifically,
the annual arbitrage profits decreased from $136.1 thousand
under the 1-segment model to $93.4 thousand under the
64-segment model due to the more conservative arbitrage
choices with the increasing numbers of segments. The annual
auxiliary services profits decreased from $24.7 thousand
under the 1-segment model to $18.6 thousand under the
64-segment model due to the smaller discharging/charging
power. The smaller power reduces the energy storage of
BESS. The actual annual cycle aging costs can be esti-
mated by (15) decreasing from $118.4 thousand under the
1-segment model to $58.1 thousand under the 64-segment
model. Thus, the proposed model can effectively reduce the
cycle aging costs of BESSs by 50% and improve the total
profits by 27% than the 1-segment model.

TABLE 3. The annual profits and costs of BESS under different numbers
of segments in the day-ahead energy and auxiliary services market.

3) BESS LONGEVITY ANALYSIS
Fig. 5 shows the SoH of BESS under different numbers of
segments in the energy and auxiliary service market over
one year. It is noted that a one-year simulation is divided
into 12-month simulations due to computation complexity.
After one year of operation, the SoH of BESS decreased from
100% to approximately 99.0% under the 64-segment model,
compared with the value of 97.8% under the 1-segment
model. Thus, the increasing number of segments can reduce
the battery life degradation and improve the longevity of
BESS. Additionally, the SoH of the model with zero oper-
ating cost decreases fastest in the simulation. Consequently,
the proposed model can extend the battery life to reduce the
replacement cost and prevent BESS from reaching the EOL.

It is worth emphasizing that the high segments lead to
a conservative arbitrage choice of BESS. Fig. 6 illustrates
the discharging/charging power profiles of BESS in the
energy and auxiliary service market. Themaximum charging/
discharging power under the model with zero operating cost

FIGURE 5. The SoH of BESS under different numbers of segments in the
energy and auxiliary service market over one year.

is the largest. The BESS would arbitrage more aggressively
with full power at zero cost, but it would lead to a higher
cycle aging cost in actuality. After integrating the proposed
model, BESS would not tend to arbitrage at full power
to reduce the battery life degradation. Further, the maxi-
mum discharging/charging power of the 1-segment model
is higher than the 8-segment and 64-segment model, which
is bound to the larger arbitrage and auxiliary service prof-
its. However, the larger cycle aging cost caused by greater
discharging/charging power could not cover the cycle aging
cost of BESS sufficiently. BESS under the proposed model
would ensure that the marginal cost of cycle aging does
not exceed the marginal market profits from arbitrage and
reserve. Accordingly, the annual total profits are more and
cycle aging are less as the number of segments increases.
The differences between 8-segment and 64-segment could be
ignored because the increasing number of segments estimates
cycle aging cost accurate enough.

In order to analyze the impact of the proposed method on
battery expectancy life, the battery expectancy life can be
formulated [26]:

L =
QLoss

Qcal + Qcycle
(31)

where L is the battery expectancy life;QLoss is the total aging
percentage when the battery reaches EOL. Generally, it is set
to 80% [12]; Qcal is the annual calendar aging of battery;
Qcycle is the annual cycle aging of the battery. For example,
the shelf life of BESS is assumed to be 10 years and QLoss is
assumed to be 80%. Therefore, the Qcal is 8% per year. After
introducing the Qcycle, the expectancy life would be smaller
than the situation when only considering the annual calendar
aging of the battery.

Table 4 shows the battery expectancy life under different
numbers of segments in the energy and auxiliary service
market. The findings observed from Fig. 6 are still held.
The proposed model can effectively improve the longevity
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FIGURE 6. (a) The discharging/charging power of BESS in the energy and
auxiliary service market. (b) The discharging power in the same axis. The
positive and negative value represents discharging and charging power,
respectively.

TABLE 4. Battery expectancy life under different numbers of segments in
the energy and auxiliary service market.

of BESS by approximately 7.5%∼11% than the fixed cost
model of the battery.

4) SENSITIVITY ANALYSIS
a: THE NUMBER OF SEGMENTS
The increment segments make the estimation of cycle aging
cost more accurate. However, the profits and cycle aging cost
of BESSs also depend on the initial SOC. While BESS with
lower initial SOC hasmore capacity to arbitrage, the arbitrage
profits may increase. The profits from auxiliary service may
increase when the initial SOC of BESS is high due to more
energies has been stored in the battery. The trend of total
profits is uncertain, because the cycle aging cost may increase

with the arbitrage. To test the robustness of the conclusions
for some key assumptions. We conduct sensitivity analysis
for two critical parameters on the overall profits and cycle
aging: a) we vary the initial SOC of BESS from 15% to 95%
by an interval of 10%, b) we vary the number of segments
from 1 to 144. The comparisons of overall profits and cycle
aging are summarized in Fig. 7, Fig. 8, and Table 5.

FIGURE 7. The annual profits with different initial SOC of BESS under the
proposed model.

As expected, more segments lead to the increase of profits
in the same initial in Fig. 7. This is also true for BESSs during
the optimization dispatch. Larger energy capacity for BESS
to arbitrage with lower SOC, which improves the profits.
Oppositely, profits are lower as the decreasing initial SOC of
BESS. Moreover, the cycle aging cost of BESS is increasing
as the initial SOC decreases in Fig. 8. Additionally, too high
initial SOC decreases the ability of BESS to arbitrage despite
it can reduce the cycle aging of the battery.

Table 5 shows the annual profits and cycle aging with
different initial SOC and numbers of segments comparedwith
15% SOC under the fixed cost battery model. It is necessary
to select proper numbers of segments depending on the actual
optimization requirement

b: THE REPLACEMENT COST
The replacement cost determines the aging cost derived from
arbitrage and reserve. Higher replacement costs would make
BESSs tend to arbitrage more conservative. While BESSs
are with lower replacement costs, the aging cost in the same
discharging/charging power would also be lower. However,
the battery life aging would also be accelerated with lower
replacement costs. The results under different replacement
costs need to be explored.

To test the influence of replacement costs, we con-
duct the simulation with different replacement costs under
the 64-segment model. The comparisons of profits and
expectancy life of the battery are shown in Fig. 9 and Table 6.
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TABLE 5. The annual profits and cycle aging with different initial SOC and numbers of segments compared with 15% SOC under fixed cost battery model.

FIGURE 8. The annual cycle aging with different initial SOC of BESS under
the proposed model.

FIGURE 9. The annual cycle aging cost and arbitrage and reserve profits
with different replacement costs of BESS under the 64-segment model.

The arbitrage and reserve profits decreased from $319.41
thousand under $ 100 thousand/MW to $88.33 thousand
under $ 450 thousand/MW. The BESS would arbitrage more

TABLE 6. The annual total profits and battery expectancy life with
different replacement costs of BESS under the 64-segment model.

aggressively because of the lower replacement costs. Further,
the total profits are also higher at lower replacement costs.

The total profits increased from 40.47 with
$450 thousand/MW to $ 219.91 thousand/MW. However,
frequently discharging/charging would lead to more aging of
battery as expected. The battery expectancy life decreased
from 9.1 years to 4.4 as the replacement increased. Conse-
quently, lower replacement costs would have an increment on
the annual total profits but would accelerate the degradation
of the battery, which may result in more payments in long-
time-scale optimization dispatch.

V. CONCLUSION
This study proposed a cycle aging cost model of the ESS con-
sidering battery life degradation. First, based on the Arrhe-
nius law, the single-variable battery cycle aging model was
proposed by eliminating the cycle number to easily estimate
one-cycle battery degradation. Second, the cycle aging of
the battery was associated with discharging power, which
is derived from the single-variable model. Third, the piece-
wise linear model was used to linearize the ESS cycle aging
cost model. Based on the optimization simulations on the
day-ahead energy and auxiliary service market, the various
numbers of segments demonstrated the effectiveness and
accuracy of the proposed model, the relative error is less than
5% between the estimation and actual cycle aging of BESS
under small numbers of segments. Next, the annual profits
and SoH revealed that the proposed cycle aging cost model
of the battery can considerably improve ESS profitability by
27% and longevity by 11% at least.
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The proposed method in this study is easy to implement
and suitable for calculating the battery cycle aging cost for
various types of batteries. Based on this battery degradation
model, further research on multi-scenario real-time ESS dis-
patch should be performed in the future.
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