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ABSTRACT This paper deals with the design problem of multivariable Proportional-Integral-Derivative
(PID) controllers for square and stable multivariable processes when a linear margin at the Nyquist plot
is considered as robustness specification for each closed loop. A tuning method is developed based on
the new concept of equivalent loop transfer function, which is proposed for centralized control and allows
an independent design for each loop considering the interactions with the other loops through an iterative
procedure. For the k-th loop, the PID parameters of the k-th column of the control matrix are calculated in
each iteration by a linear programming optimization that maximizes the integral gains while fulfilling the
robustness specification and achieving static decoupling. The method uses a frequency response array as
representation of the process, which allows its applicability to systems with multiple time delays without
requiring model reductions or approximations. The effectiveness of the method is illustrated by means of
two simulation examples with dimensions 2 × 2 and 3 × 3. Comparisons with other centralized control
methodologies show that the proposed approach achieves similar or greater performance and a remarkable
better disturbance rejection response.

INDEX TERMS PID controller, centralized control, multivariable control, frequency domain specifications.

I. INTRODUCTION
Despite most industrial processes are multiple inputs and
multiple outputs (MIMO) systems, most of the thousands
of works about design methods of Proportional-Integral-
Derivative (PID) control, which has been the preferred
one in industrial process control for decades [1], have
been developed only for single input single output (SISO)
loops [2]. The MIMO control design becomes more compli-
cated since it requires additional considerations to the SISO
case, such as the process interactions between inputs and
outputs or the presence of multiple time delays, to avoid
a serious deterioration of the control system performance.
Two control approaches are mostly used to cope with
multivariable systems: decentralized control and centralized
control.
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In the decentralized control scheme, the process inputs
and outputs pairing problem is firstly solved and then,
a SISO controller is designed for each loop. Consequently,
the resultant decentralized control, also called multiloop
control, is a diagonal matrix controller. This approach is
satisfactory for weakly coupled processes. By contrast,
for non-diagonally dominant systems with great couplings
decentralized controllers have a worse performance as they
cannot reduce enough the interaction level and important
transitory responses can arise in other loops when some
reference changes. To face such processes, a centralized
control scheme, which uses a full matrix controller, is rec-
ommended. Centralized control approach can be developed
in two ways: combining a decoupling compensator and
a diagonal controller or directly designing a full matrix
control. In the first one, the decoupler is calculated to reduce
the process interactions and obtain a diagonally dominant
apparent process; then, the elements of the diagonal controller
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are tuned with SISO methods [3]–[5]. Some authors combine
both blocks to form a full matrix control [6]–[8]. In a pure
centralized control scheme, the full matrix controller works as
the only block to reduce interactions and control the different
process outputs.

Literature provides methodologies for both decentral-
ized and centralized control schemes. Some decentralized
approaches are detuning methods [9], sequential loop closing
method [10], optimization procedures [11]–[13], direct
design [14], iterative methods [15], or intelligent control
techniques [16]. Thesemethods usually use PID elements and
obtain a multiloop PID controller. For centralized control,
some methodologies obtain non-PID elements in the con-
troller matrix and are based on the paradigm of decoupling
control [17], recursive least square optimization [18], H2
optimal performance requirements [19], or H∞ control
procedures [20]. Some authors propose to approximate the
resulting controllers to PID structures [21], unless they
cannot fully meet the imposed requirements [22]. Other
methods directly obtain a full matrix of PID controllers, that
is a centralized PID controller, and are based on convex
optimization [23], internal model control [24], or effective
open loop transfer functions [25]–[28]. Although multivari-
able control design can also be developed from state space
methodologies [29], they usually entail delay-free systems.
Conversely, many industrial processes have time delays [30]
and therefore, most of these centralized methods are based on
a transfer matrix approach.

One problem of most of these multivariable methodologies
is the increasing complexity of the elements for high
dimensional systems, where irrational or complicated transfer
functions can arise. They usually need model approximations
or controller reductions that affect the robustness of the
control system or can lead to conservative control designs.
To avoid these approximations, some authors use the
frequency response matrix representation of the system and
robustness specifications on the frequency domain such
as gain margin, phase margin, or modulus margin. These
margins provide good robustness performance with respect
to the uncertainties in both disturbance and process model,
and are well accepted by process control engineers [31].
In [32], Karimi proposes a linear margin that ensures lower
bounds for the previous classical margins, and develops
an associated design methodology of SISO PID controllers
based on linear programming. In [15], [33], this method is
extended to decentralized PID controllers for stable MIMO
systems by means of an iterative procedure.

The literature review shows that research on MIMO PID
control design is still an important issue from an industrial
application point of view. New design methods are desired
to be simple, general, and robust. This work presents the
new concept of equivalent loop transfer function (ELTF) of
centralized control systems. The ELTF accounts for loop
interactions and allows to design separately each controller
matrix column in an iterative procedure when an initial
guess of the controller matrix is provided. Based on the

ELTF concept, a new iterative methodology for designing
centralized PID controllers for stable and square MIMO
systems is proposed and formulated for each loop as a linear
programming optimization that maximizes integral gains of
PID controllers subject to constraints on robustness linear
margin and static decoupling. The proposedmethod has some
advantages in comparison to other related methodologies:
• Since a frequency response array is used as repre-
sentation of the process, the method is applicable to
general square and stable systems with non-minimum
phase zeros, time delays or any order irrational transfer
functions without requiring any approximation or model
reduction.

• Lower bounds on robustness margins in the frequency
domain can be specified for each ELTF.

• With the static decoupling constraint, the process
interactions are reduced at low frequencies and the
method can be applied to non-diagonally dominant
systems.

• Compared to other centralized controllers, better distur-
bance rejection responses are obtained because of the
integral gain maximization.

The outline of the paper is as follows: section II describes
the concept of ELTF and its linear parametrization, the
problem formulation, and the proposed iterative procedure.
Although it is mainly expounded for 2 × 2 processes,
expressions for higher dimensional systems are also pro-
vided. Simulation results in comparison with other methods
are illustrated in Section III to verify the effectiveness
of the proposed method. Conclusions are summarized in
Section IV.

FIGURE 1. Centralized control scheme.

II. PROPOSED METHODOLOGY
A. EQUIVALENT LOOP TRANSFER FUNCTIONS IN
CENTRALIZED CONTROL SYSTEMS
Fig. 1 shows the unity feedback control scheme for a
centralized control system, where the n × n transfer matrix
G(s) represents the MIMO process, the n × n transfer matrix
K(s) is the full matrix controller, the process element gij(s)
is the transfer function between output yi and input uj, the
transfer function kij(s) is the control element between output
yj and control signal ui, and the signal ri is the reference for
process output yi. The difference between ri and yi is the error
ei. The loop transfer matrix L(s) is defined as the transfer
matrix around the loops as seen from the outputs when
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breaking all the loops. When unity feedback is assumed,
L(s) = G(s) ·K(s). Then, for the 2× 2 case, the L(s) elements
are calculated according to (1).

L(s)

=

(
l11(s) l12(s)
l21(s) l22(s)

)
=

(
g11(s)k11(s)+g12(s)k21(s) g11(s)k12(s)+g12(s)k22(s)
g21(s)k11(s)+g22(s)k21(s) g21(s)k12(s)+g22(s)k22(s)

)
(1)

FIGURE 2. Equivalent loop transfer function l1(s).

In Fig. 2, the proposed equivalent loop transfer function
l1(s) for the first loop is shown. This ELTF represents the
transfer function between output y1 and error signal e1
when the first loop is open and the other one is closed.
Unlike loop transfer functions lii(s) in (1), the ELTF captures
the effective dynamics of the corresponding loop transfer
function and interactions with other loops. The concept of
ETLF can be considered an extension for centralized control
of the equivalent open-loop process for decentralized control
in [15], [33]. For the 2× 2 case, the expressions of the ELTFs
l1(s) and l2(s) are given by (2).

l1(s) = l11(s)−
l21(s)l12(s)
1+ l22(s)

l2(s) = l22(s)−
l12(s)l21(s)
1+ l11(s)

(2)

From (1), the elements lij(s) of the j-th column of L(s)
depend on the controllers kij(s) of the j-th column of K(s).
This dependency by columns allows to represent the ELTF
lj(s) regarding the elements kij(s) of the j-th column of K(s)
when the other columns of K(s) are assumed to be known
(and consequently, the other non j-th columns of L(s) are
also known). For instance, by substituting the elements l11(s)
and l21(s) given in (1) into the expression of l1(s) in (2) we
obtain the new equation for l1(s) in (3). Therefore, the ELTF
l1(s) depends only on k11(s) and k21(s) if l12(s) and l22(s)
are assumed to be known. Then, k11(s) and k21(s), which are
the controller elements of the first column of K(s), must be
designed to achieve the desired loop specifications of the first

loop as well as the stability of the control system. The stability
is reached if right half plane zeros are avoided in each closed
loop characteristic equation: 1 + li(s) = 0.

l1(s) =
(
g11(s)− g21(s) ·

l12(s)
1+ l22(s)

)
· k11(s)

+

(
g12(s)− g22(s) ·

l12(s)
1+ l22(s)

)
· k21(s) (3)

In the general case of n× n processes, the elements lij(s) of
L(s) are given by (4). The ELTF lj(s) is calculated according
to (5), which shows that the ETLF lj(s) can be expressed again
involving only the controller elements of the j-th column of
K(s) when the other columns of K(s), and therefore also of
L(s), are known.

lij =
n∑

k=1

gik (s)kkj(s) (4)

lj(s) = ljj(s)−
n∑
i=1
i 6=j

lij(s)lji(s)
1+ lii(s)

=

n∑
k=1

gjk (s)kkj(s)−
n∑
i=1
i 6=j

n∑
k=1

lji(s)
1+ lii(s)

gik (s)kkj(s)

=

n∑
k=1

gjk (s)− n∑
i=1
i 6=j

lji(s)
1+ lii(s)

gik (s)

 kkj(s) (5)

The design of the controller elements of a same column
must be performed simultaneously to achieve the desired
specifications of the corresponding loop. It can be developed
independently of the other loops and columns of K(s).
However, the modification of any column of K(s) will
affect the other loops, and consequently, the tuning of
the corresponding controllers must be updated. Therefore,
the proposed methodology performs an iterative tuning
procedure until the design requirements are achieved in all
loops, as explained later.

To obtain a centralized PID controller, the elements of
the control matrix K(s) are proposed with the parallel
PID structure given in (6), where KPij, KIij and KDij are
the proportional gain, integral gain, and derivative gain,
respectively, of kij(s). With the parallel structure, every
control element kij(s) can be parameterized as shown in (7),
where ρij denotes the vector of control parameters of kij(s)
and ψ(s) is a vector that depends only on s. Then, the product
of the process element gkm(s) and the controller element kij(s)
is parameterized as follows in (8).

kij(s) = KPij +
KIij
s
+ KDijs (6)

kij(s) =
[
1,

1
s
, s
] KPij

KIij
KDij

 = ψT (s)ρij (7)
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gkm(s) · kij(s) = gkm(s)
[
1,

1
s
, s
] KPij

KIij
KDij


=

(
gkm(s)ψT (s)

)
ρij (8)

For the case 2 × 2, the PID parameter vectors of
each column of K(s) are defined by ρ1 and ρ2 in (9).
By substituting (8) into (1) and using (9) we express L(s)
according to (10), where ϕij(s) is a vector of six elements that
depends only on s and is used to shorten notation. Note that,
as shown in (10), the elements of the j-th column of L(s) are
parameterized on ρj.

ρ1 =
(
ρT11 ρT21

)T
=
(
KP11 KI11 KD11 KP21 KI21 KD21

)T
ρ2 =

(
ρT12 ρT22

)T
=
(
KP12 KI12 KD12 KP22 KI22 KD22

)T
(9)

L(s) =
( [

g11(s)ψT (s) g12(s)ψT (s)
]
ρ1[

g21(s)ψT (s) g22(s)ψT (s)
]
ρ1[

g11(s)ψT (s) g12(s)ψT (s)
]
ρ2[

g21(s)ψT (s) g22(s)ψT (s)
]
ρ2

)
=

(
ϕT11(s)ρ1 ϕT12(s)ρ2
ϕT21(s)ρ1 ϕT22(s)ρ2

)
(10)

Combining (10) with (2) gives a linear parameterization
of the ELTFs l1(s) and l2(s) as shown in (11). For instance,
in l1(s) the elements l11(s) and l21(s) in (2) are interchanged
by those in (10) whereas l12(s) and l22(s) are assumed to
be previously known. In the case of l2(s), the elements of
the second column of L(s) are replaced and those of the
first column are considered known. Note that the ELTF lj(s)
depends only on the parameter vector ρj, which is associated
to the j-th column of K(s), while χ j(s) is a vector of six
elements that depends only on information from the process
G(s) and a previous matrix L(s), which implies a previous
control matrix K(s).

l1(s) =
(
ϕT11(s)− ϕ

T
21(s)

l12(s)
1+ l22(s)

)
ρ1

=

([
g11(s)ψT (s) g12(s)ψT (s)

]
−
[
g21(s)ψT (s) g22(s)ψT (s)

] l12(s)
1+ l22(s)

)
ρ1

= χT1 (s)ρ1

l2(s) =
(
ϕT22(s)− ϕ

T
12(s)

l21(s)
1+ l11(s)

)
ρ2

=
([
g21(s)ψT (s) g22(s)ψT (s)

]
−
[
g11(s)ψT (s) g12(s)ψT (s)

] l21(s)
1+ l11(s)

)
ρ2

= χT2 (s)ρ2 (11)

For higher dimensional systems, a similar procedure can be
performed by expressions (4) and (5) to obtain the elements
of L(s) and the ELTFs as linear parameterizations in the
vectors of PID parameters of each column of K(s). For
instance, in the case of 3 × 3 processes, the elements l11(s)
and the ELTF of loop 1 are parameterized as shown in (12)
and (13), respectively, where the vector ρ1 is defined as
( ρT11 ρT21 ρT31 )

T and has nine parameters, ϕi1(s) and
χ1(s) are vectors of nine elements, and the loop transfer
functions l12(s), l13(s), l22(s) and l33(s) are assumed to be
known.

l11(s) = g11(s)k11(s)+ g12(s)k21(s)+ g13(s)k31(s)

=
[
g11(s)ψT (s) g12(s)ψT (s) g13(s)ψT (s)

]
ρ1

= ϕT11(s)ρ1 (12)

l1(s) = χT1 (s)ρ1

=

(
ϕT11(s)− ϕ

T
21(s)

l12(s)
1+ l22(s)

−ϕT31(s)
l13(s)

1+ l33(s)

)
ρ1

(13)

According to (2) and (5), the ELTF li(s) of a MIMO
process can result in a very complicated transfer function,
even irrational as happens when there are time delays. For
some design methodologies, this fact may require model
reductions or complicated tuning procedures. In view of this
fact, the proposed method uses a frequency response array of
G(s) in the frequency range of interest, and thus, it can be
applied to any arbitrary order system or time delay processes
without requiring approximations. Therefore, every point at
frequency ωk of the Nyquist diagram of the ETLF lj(jωk) is
stated as a linear function of the vector ρj and is decomposed
into real and imaginary parts, as shown in (14) for l1(jωk) in
the 2 × 2 case. A similar procedure is performed for n × n
systems.

l1(jωk ) = <e
(
ϕT11(jωk )− ϕ

T
21(jωk )

l12(jωk )
1+ l22(jωk )

)
ρ1

+=m
(
ϕT11(jωk )− ϕ

T
21(jωk )

l12(jωk )
1+ l22(jωk )

)
ρ1

= <e
(
χT1 (jωk )

)
ρ1 + =m

(
χT1 (jωk )

)
ρ1 (14)

B. OPTIMIZATION BY LINEAR PROGRAMMING
Since the proposed methodology is based on a frequency
response representation, frequency domain specifications on
the Nyquist diagram are preferable as design requirements,
and specifically, the robust linear margin described in [32]
is selected in this work. This margin is determined by the
line r that intersects the negative real axis at the point
(−1 + `, 0) with an angle α, as shown in Fig. 3. For stable
processes, closed loop stability is guaranteed if the critical
point (−1, 0) is not encircled; therefore, the Nyquist diagram
must be positioned below this line providing stability and
lower bounds on the phase margin φm, gain margin Am, and
modulus margin Mm, which are represented by points A,
B, and C, respectively. The lower bounds provided by the
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FIGURE 3. Linear margin in the Nyquist diagram.

linear margin are given in (15) and are represented in Fig. 4
as functions of ` for different angles α. From this figure,
it is observed that robustness increases with ` and α within
their typical range of [0.5, 0.85] for ` and [35◦, 90◦] for
α [32]. If lower bounds for two conventional margins are
specified, the values of α and ` that ensure such bounds
can be calculated from (15) or from Fig. 4. As the values
of α or ` increases, the system becomes better damped with
less overshoot, less control effort, and better robustness;
however, generally the bandwidth decreases and the settling
time increases.

φm ≥ φl

= arcos
(
(1− `) sin2 α + cosα

√
1− (1− `)2 sin2 α

)
Am ≥ Al = 1/(1− `)

Mm ≥ Ml = ` sinα (15)

When this linear margin is used as design specification
for the ELTF lj(jω), the PID controller parameters of the j-
th column of K(s), that is, the vector ρj, can be calculated
by a linear programming optimization if initial guess values
for the other columns of K(s) are defined, and therefore,
the corresponding columns of L(s) are also determined.
Specifically, this work focuses on stable and square processes
and uses PID controllers; consequently, each ELTF lj(s)
does not contain unstable poles, and therefore, closed loop
stability is guaranteed if the critical point (−1, 0) is not
encircled by the Nyquist diagram of lj(jω). Given a linear
margin specification for loop j defined by the line r with
parameters `j and αj, the PID gains of the j-th column of
K(s) must be designed in such a way that every point of
the frequency response array lj(jω) to be placed below this
line. This condition is defined by inequality (16) at each
frequency ωk.

=m
(
lj(jωk )

)
− tanαj ·

(
<e
(
lj(jωk )

)
+ 1− `j

)
≤ 0 ∀ωk

(16)

FIGURE 4. Lower bounds on classical robustness margins as a function of
linear margin.

This inequality must be parameterized on ρj, which is the
vector of the decision variables, to be used as a constraint into
the linear programming problem. Combining (14) with (16)
for j = 1 we can rewrite this constraint as follows in (17).
Dividing by tangent of α1 and moving to right the term
− (1− `1) provides the desired parameterization, as shown
in (18).

=m
(
χT1 (jωk )

)
ρ1 − tanα1 ·

(
<e
(
χT1 (jωk )

)
ρ1 + 1− `1

)
≤ 0 ∀ωk (17)[
cotα1 · =m

(
χT1 (jωk )

)
−<e

(
χT1 (jωk )

)]
ρ1

≤ 1− `1 ∀ωk (18)

This work proposes maximizing the integral gain of
the PID controllers to optimize the closed loop perfor-
mance in terms of load disturbance rejection, since the
corresponding integrated error is minimized when integral
gains are maximized [34]. Then, for the 2 × 2 case, the
optimization problem for loop 1 is formulated as the linear
programming problem shown in (19); the same can be
defined for loop 2. It is assumed that a previous control
matrix K(s) is available to determine l12(jωk) and l22(jωk),
and subsequently, χ1(jωk) can be calculated. The inequality
constraint in (19-a) corresponds to that in (18).

maximize
[
0 1 0 0 1 0

]
ρ1

subject to:

(a)
[
cotα1 · =m

(
χT1 (jωk )

)
−<e

(
χT1 (jωk )

)]
ρ1

≤ 1− `1 ∀ωk
(b)

[
g21(0) g21(0) g21(0) g22(0) g22(0) g22(0)

]
ρ1 = 0

(19)

1444 VOLUME 10, 2022



J. Garrido et al.: Iterative Design of Centralized PID Controllers Based on ELTF and Linear Programming

The equality constraint (19-b) involves static decoupling
for this loop, which implies that non-diagonal elements
lij(0) must be zero at zero frequency. This condition can
be parameterized on ρ1 from (4). In presence of reference
changes, static decoupling reduces process interactions at
low frequencies to some extent. Furthermore, this constraint
considerably improves the convergence of the proposed
iterative procedure explained in the next section, since
the degrees of freedom are decreased and the search
space is narrowed. Other centralized methodologies are
mainly focused on obtaining a complete dynamic decoupling
performance forcing non-diagonal elements of L(s) to be
close to zero at all frequencies. Such imposition usually
produces slower disturbance rejection than that achieved with
static decoupling [17].

Another issue to note is that the maximization in (19)
assumes that the integral gains KI are positive. If this is not the
case, the negative signs must be previously removed from ρ1
and added to the corresponding elements of the χ1(jω) array.
After optimization, these negative signs must be restored.
It is proposed that the signs of the controller elements are
derived from the corresponding ones in the inverse of the
static gain G(0) of the process. Since the resulting centralized
control K(s) achieves static decoupling, K(s) is proportional
to G−1(0), which maintains sign dependency.
The problem in (19) is formulated to obtain PID elements

for the control matrix K(s); however, if a PI structure is
preferred for some element, its corresponding value of KD
in the parameter vector ρ1 must be set to zero.

C. ITERATIVE PROCEDURE
The optimization problem in (19) is performed independently
for each ELTF lj(jω) of the multivariable system to calculate
the PID parameter vector ρj of the j-th column of the
control matrix K(s) and to achieve the desired linear margin
specification. As it is shown in (14), each ELTF lj(jω)
assumes some known elements lij(jω) of the non j-th columns
of the loop transfer matrix L(s), which were calculated from
a previous matrix K(s). Therefore, the proposed algorithm
needs to define an initial control matrix K0(s). Since the
optimization problem for each ELTF modifies one column
of K(s), the other ELTFs are affected and thus the actual
performance obtained by all loops must be verified; if this
is not successful, the controller parameters must be updated.
Consequently, an iterative tuning procedure is performed.
It ends when the design requirements are fulfilled in all loops,
or when controller parameters converge within a specified
tolerance.

The flow diagram of the proposed algorithm is depicted in
Fig. 5. It consists of the initialization of K0(s), the calculation
of initial open loop transfer functions l0ij(jωk), and the iterative
loop through a set of steps performed by each control loop
j: calculating each vector χ j(jωk) at each frequency ωk,
tuning of each PID parameter vector ρj by the optimization
in (19), recalculating of all lij(jω) with the new control matrix
K(s), and analysis of a cost index J that checks the design

FIGURE 5. Flow diagram of the proposed iterative methodology.

specification achievement. In these steps, the subscript j
denotes the loop number from 1 to n, while the superscript
m indicates the iteration number.

First, the iteration variable m is set to zero and an initial
control matrix K0(s) is chosen to calculate the open loop
frequency responses l0ij(jωk) before entering the iteration
loop. Although the initial K0 may affect the number of
iterations, we have obtained practically the same final control
parameters in the analyzed examples when different guesses
of K0(s) have been used. In this work, the inverse of G(0)
is used as the guess for K0 since it is easily computed,
is related with the static decoupling imposed as constraint on
the optimization problem, and the procedure seems to reach
convergency in fewer iterations when compared with other
initial guesses.

Then, for each control loop j and iteration m, the
vector χmj (jωk) is calculated according to section II.B at
each frequency. Next, the corresponding vector ρmj of PID
controller parameters is obtained by the linear programming
optimization in (19) to achieve the desired linear margin
specification defined by `j and αj. Then, the frequency
responses lm+1ij (jωk) of the new open loop transfer functions
are recalculated at every frequency with the new PID
parameters, the frequency responses of the updated ELTFs are
computed, and the fulfillment of the desired specifications in
all loops is evaluated by a cost index Jm. If this index is below
a user-defined tolerance for three consecutive iterations, the
requirements are assumed to be achieved and the design is
accepted; otherwise, the iteration variable m is incremented,
and the iterative procedure continues calculating the new
χm+1j (jωk).

When the desired linear margin requirement for a ELTF
lj(jω) is evaluated, two possible situations can arise, as shown
in Fig. 6: a) all points of lj(jω) are below line r or b) some
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FIGURE 6. Distance to the Nyquist plot: (a) all points below line r;
(b) some points are above line r.

points are above it. In both cases, the Nyquist diagram must
be placed as close as possible to the line r; however, the
distance to measure this proximity is calculated differently.
In the first case, the shortest distance dmin to the line r is
selected as the minimum one between the distances of each
point lj(jωk). On the other hand, when some points of lj(jω)
are placed above the line r, as depicted in Fig. 6b, the greatest
distance dmax to the Nyquist plot is selected as the distance.
To consider both situations in Fig. 6, the fitting distance D
of lj(jω) to line r is defined according to (20). Then, the cost
index J for the iterative procedure is proposed as the sum of
the fitting distancesDj of all the loops, as shown in (21). If this
value is below a user-defined tolerance (0.005 per loop), the
centralized PID design is accepted.

The main limitation of the proposed methodology lies
in not ensuring the convergence. Therefore, the procedure
also exits the iterative loop if a maximum number of
10 iterations is achieved, and then, the design associated
to the smallest cost index J is selected. Nevertheless, the
procedure has worked properly in all tested examples of
different dimensions converging after less than ten iterations.
Note that there will be always three iterations at least in the
proposed procedure.

Dj =



dmin = min
ωk

(
lj(jωk ), r

)
if tanαj ·

(
<e
(
lj(jωk )

)
+ 1− `j

)
− =m

(
lj(jωk )

)
≤ 0 ∀ωk

dmax = max
ωm

(
lj(jωm), r

)
if ∃ ωm : tan αj ·

(
<e
(
lj(jωm)

)
+ 1− `j

)
− =m

(
lj(jωm)

)
> 0

(20)

J =
n∑
j=1

Dj (21)

III. SIMULATION EXAMPLES
Two multivariable processes of different dimensions
(2 × 2 and 3 × 3) are simulated to test the proposed
methodology. They are classical testbenches from literature
presenting multiple time delays and without diagonal

dominance, which makes the control design more difficult.
The results are compared with those achieved by other works.
The design procedure and simulations are performed with
MATLAB R© software.

A. EXAMPLE 1: INDUSTRIAL-SCALE POLYMERIZATION
REACTOR
This 2 × 2 process [35] is given by the transfer function
matrix in (22), where the time scales are in hours. A frequency
response array of 1000 logarithmically spaced elements is
computed from (22) within the frequency range of interest
[10−4, 102] rad/h.

GR(s) =


22.89 · e−0.2s

4.572s+ 1
−11.64 · e−0.4s

1.807s+ 1
4.689 · e−0.2s

2.174s+ 1
5.80 · e−0.4s

1.801s+ 1

 (22)

The desired linear margins are defined with `1 = 0.64,
α1 = 79◦, `2 = 0.72, and α2 = 85◦ to guarantee
lower bounds of 2.75 for Am and 0.63 for Mm in the first
loop, and 3.5 for Am and 0.72 for Mm in the second loop.
The proposed procedure obtains the centralized PID control
in (23). Different initial guesses of K0(s) have been tested:
the inverse of the process static gain GR(0), the zero matrix
02×2, the process transfer matrix itself GR(s), the negative all-
ones matrix divided by s, and the multiloop PI controller of
Vu [14]. Fig. 7 shows the progression of the PID parameter
values for each controller element kij(s) and the cost index J
through the iteration procedure for different K0. The inverse
of the static gain of the process only needs five iterations
for convergence whereas the other guesses require seven
iterations. Although these cases differ in the first steps and
the number of iterations needed to convergence, all of them
achieve the same final control design. Therefore, the initial
guess of K0 has no important effect in the resultant design.
However, K0

= G−1R (0) usually involves a faster convergence
with parameters very close to the final ones after three
iterations.

K(s)

=

 0.232+
0.098
s
+ 0.04s 0.142+

0.083
s
+ 0.019s

−0.187−
0.079
s
− 0.032s 0.28+

0.164
s
+ 0.037s


(23)

The final resultant Nyquist diagrams of the obtained ELTFs
l1(jω) and l2(jω) are depicted in Fig. 8. Table 1 collects the
achieved classical robustness margins and the phase margin
crossover frequency ωcp, which is considered close to the
loop bandwidth. The proposed method obtains the greatest
loop bandwidth.

Fig. 9 shows the closed loop system response of
the proposed centralized PID control in comparison with
other methods, specifically, the centralized PI control of
Ghosh [31], the decoupling PID controller of Jin [7], and
the multiloop PI controller of Vu [14]. The simulations
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FIGURE 7. Progression of PID parameters and cost index through
iterations in example 1 for different K0.

FIGURE 8. Nyquist diagrams of ELTFs l1(s) and l2(s) with the proposed
control in example 1.

are performed with unit step changes at t = 1 h in the
first reference and at t = 15 h, in the second one. There
is also a load disturbance at t = 30 h that consists of a
0.5 step change in both process inputs. The derivative action
of the PID controllers in (23) is filtered by a first order
term 1/(|KD/KP|s/N + 1) with N = 20 [34] to achieve
realizable implementation and perform the simulation. With
this N value, the filter effect can be neglected into the
frequency range of interest. Since the proposed methodology
does not consider the input sensitivity function, the resultant
designs can give large control signals when sudden changes

FIGURE 9. Controlled variables and control signals of the step responses
in example 1.

TABLE 1. Robustness and performance indices in example 1.

are applied in the references. In these cases, a first order
filter on the references is recommended, such as the filter
1/(0.33s + 1), which is used in this example.
From the simulation, the integrated absolute errors (IAE)

and the total variation (TV) of control signals for each
loop are calculated according to (24) and collected in
Table 1. They are used as performance indices of the control
system response for comparison with other methods. The
response of the proposed controller shows similar settling
times and decoupling performance to set-point changes than
other methods that are designed specifically for decoupling.
In addition, its load disturbance response is superior since
the integral gains of the PID controllers are maximized into
the optimization procedure. This better disturbance rejection
makes the IAE values of the proposed method smaller than
those achieved by the other methods while it has slightly
higher TV values. Only the Jin’s control obtains a lower IAE
value in the first output at the expense of a very conservative
response in the second loop with the highest IAE value.

IAEi =
∫
|ei(t)| dt TVi =

∫ ∣∣∣∣dui(t)dt

∣∣∣∣dt (24)

B. EXAMPLE 2: DEPROPANIZER COLUMN
This process [36] is modeled by the 3 × 3 transfer matrix
in (25) where time units are in seconds. Its frequency response
is approximated by an array of 1000 elements calculated in
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FIGURE 10. Progression of the PI parameters and cost index through
iterations in example 2.

the frequency range [10−6, 100] rad/s.

GD(s)

=


−0.26978e−27.5s

97.5s+ 1
1.978e−53.5s

118.5s+ 1
0.07724e−56s

96s+ 1
0.4881e−117s

56s+ 1
−5.26e−26.5s

58.5s+ 1
0.19996e−35s

51s+ 1
0.6e−16.5s

40.5s+ 1
5.5e−15.5s

19.5s+ 1
−0.5e−17s

18s+ 1

 (25)

In this example, the obtained performance by the proposed
methodology is better when the elements of K(s) are forced
to be PI controllers instead of PID, and hence KD values are
set to zero. The linear margin of each loop is specified by
`1 = 0.84 and α1 = 70◦ for the first loop, `2 = 0.66 and
α2 = 68◦ in the second one, and `3 = 0.75 and α3 = 67◦

for the third loop. These values are selected according to (15)
to obtain similar robustness margins than those achieved by
others works for this process. The proposed methodology
achieves the centralized PI controller in (26) after five
iterations using the inverse of GD(0) as initial guess of K0.
Fig. 10 shows the progression of the PI parameter values
for each controller element kij(s) and cost index J through
the iterative procedure. Although this second example is
a higher dimensional system than the 2 × 2 process of
example 1, the iteration procedure converges quickly and
after two iterations the final design is almost achieved. The
same resultant controller is obtained with different K0.

K(s)

=


0.6+

0.0062
s

0.36+
0.0072
s

0.718+
0.0312
s

0.143+
0.0015
s

0.0226+
0.0005
s

0.082+
0.0036
s

2.292+
0.0236
s

0.681+
0.0136
s

0.406+
0.0177
s


(26)

FIGURE 11. Nyquist diagrams of l1(s), l2(s) and l3(s) with the proposed
control in example 2.

Fig. 11 shows the resultant Nyquist diagrams of the three
ELTFs l1(jω), l2(jω) and l3(jω), where the fulfillment of the
linear margin is verified. In Table 2, the classical robustness
margins obtained for each loop are listed.

TABLE 2. Robustness and performance indices in example 2.

FIGURE 12. Controlled variables and control signals of the step responses
in example 2.

The proposed centralized PI control is compared with
other two centralized designs: the centralized PID control of
Garrido [17] and the non-PID control of Wang [36], which
are based on decoupling control. The closed loop system
responses of the three methodologies are shown in Fig. 12.
The simulation is performed with unit step changes in the
references at t= 0 s in the first one, at t= 2000 s in the second
one, and at t= 4000 s in the third one; there is also a 0.1 step
in all process inputs at the same time as load disturbance at
t= 6000 s. The proposed control obtains faster responses for
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reference tracking and load disturbance rejection, particularly
in the third loop, where a greater bandwidth is achieved
according to the related ωcp value of 0.025 rad/s of Table 2.
In addition, the proposed method provides the smallest IAE
values with similar or lower TV values than those obtained
by the other methods. These values are listed in Table 2.
Only the decoupling performance obtained in y1 and y2 with
the proposal is a bit worse than that achieved by the other
two methods, which are specially intended for decoupling
performance. Furthermore, the PI controllers of the proposed
design are much simpler than the elements ofWang’s control,
which are fourth order transfer functions with time delays.

IV. CONCLUSION
A new centralized PID controller design is formulated as an
iterative linear optimization problem. The methodology is
based on the developed concept of equivalent loop transfer
function (ELTF) for centralized control, which allows to
design separately the columns of the controller matrix
considering the interactions with the other loops through an
iterative procedure. The design of each controller column
is based on loop shaping for the corresponding ELTF in
the Nyquist diagram to satisfy a robustness linear margin.
The multivariable PID control design optimizes the load
disturbance rejection response of the closed loop system
subjected to the robustness linear margin constraint and static
decoupling for each loop. The effectiveness of the proposed
methodology has been supported by two simulation examples
with dimensions 2 × 2 and 3 × 3. Comparisons with other
works have illustrated that the proposed method achieves
similar or greater performance. The main advantages of the
proposed method are the following:
• No approximation or model reduction is performed
through the iterative procedure, even when the MIMO
process has multiple time delays, non-minimum phase
zeros or irrational transfer functions.

• The linear margin constraint ensures lower bounds on
classical robustness margins in the frequency domain for
each ELTF.

• The static decoupling constraint reduces process inter-
actions at low frequencies and allows the method to be
applied to non-diagonally dominant systems.

• The method achieves better disturbance rejection
responses compared to other centralized controlmethod-
ologies, such as those based on dynamic decoupling.

However, the methodology has some limitations that
require further research:
• It is restricted to stable processes since the linear
margin cannot be applied to unstable systems, where the
Nyquist plot must encircle the critical point (−1, 0).

• The convergence of the method cannot be guaranteed,
either because of the process characteristics or because
the design specifications are not achievable. Neverthe-
less, the procedure has converged in all tested examples
in less than 10 iterations. The static decoupling condition
aids considerably to this rapid convergence. The initial

guess of the control matrix that is needed to initialize
the iteration procedure has little impact on the final
design and only affects the number of iterations before
convergence.

• The magnitude of the control signals is not considered
in the formulation of the method, and consequently, the
obtained controller can produce high control values due
to sudden changes in the references. In such cases, the
references can be filtered with a first order filter.
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