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ABSTRACT Deep neural networks (DNNs) are powerful learning models, yet their results are not always
reliable. This drawback results from the fact that modern DNNs are usually overconfident, and consequently
their epistemic uncertainty cannot be straightforwardly characterized. In this work, we propose a new tech-
nique to quantify easily the epistemic uncertainty of data. This method consists in mixing the predictions of
an ensemble of DNNs trained to classify One class versus All the other classes (OVA) with predictions from
a standard DNN trained to perform All versus All (AVA) classification. First of all, the adjustment provided
by the AVA DNN to the score of the base classifiers allows for a more fine-grained inter-class separation.
Moreover, the two types of classifiers enforce mutually their detection of out-of-distribution (OOD) samples,
circumventing entirely the requirement of using such samples during training. The additional cost involved
by the construction of the ensemble is offset by the ease of use of our proposed strategy and by its enhanced
generalization potential, as it does not bind its performance in a given context to specific OOD datasets. The
extensive experiments confirm the wide applicability of our approach, and our method achieves state of the
art performance in quantifying OOD data across multiple datasets and architectures while requiring little
hyper-parameter tuning.

INDEX TERMS Uncertainty estimation, DNN ensembles, one vs all classification, all vs all classification.

I. INTRODUCTION
Anomaly detection is the task of detecting data that deviate
from the training distribution. Deep neural networks (DNNs)
have reached state-of-the-art performance on machine learn-
ing [20], [45], and computer vision tasks [40], [70]. Signifi-
cant progress has raised interest in adopting them in a wide
range of decision-making systems, including safety-critical
ones. Yet, one of the main weaknesses of these techniques is
that they tend to be overconfident [22] in their decisions, even
when they are wrong [22], [25], [63]. This leads to DNNs
that might miss detecting anomalies. This issue is difficult to
tackle, as the high inner complexity of DNNs results in a poor
output explainability.

Anomaly or outlier detection is a wide thematic of
research [66]. The objective is to detect rare or corrupted data,
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that are different from what we consider to be normal data.
This research topic has multiple practical applications, such
as risk management [81], safety [69] or automatic inspection
and non destructive control [38]. Anomalies can also be
linked to the knowledge uncertainty [27] of the DNNs. The
precise identification of anomalies in DNN predictions is
crucial for improving the reliability of such models, and a key
step towards their deployment in practical settings.

In order to address this important problem, we propose to
leverage a finer quantification of the uncertainty of DNNs.
In contrast to most Bayesian DNN techniques [4], [17],
[18], [35], [56], or to frequentist techniques such as Deep
Ensembles [43], our approach relies onOne versus All (OVA)
training. In the statistical learning community, ensembles
of OVA or One versus One (OVO) base classifiers for
multi-class prediction have been particularly popular in asso-
ciation with Support Vector Machines (SVM), due to SVM
being essentially a binary classifier, and to the simplicity of
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FIGURE 1. Distribution of values of prediction score on correct (in blue) or incorrect (in orange) predictions and OOD (in yellow) samples
for different approaches. (a) Maximum Class Probability (MCP) [28], (b) Deep Ensembles [43], (c) OVNNI. All runs use Resnet50 [24] trained
on CIFAR-10 and tested on CIFAR-10 and SVHN. Our proposed algorithm OVNNI generates very low prediction scores for OOD data,
outperforming Deep Ensembles (current state-of-the-art) and MCP (baseline) on detecting OOD data.

the aggregation rules supported by fundamental theoretical
results [37], [41], [79]. The most popular rule in case of
OVA ensembles, winner-takes-all (WTA), assigns the test
sample to the class for which the membership score is the
highest. For a binary output, the WTA rule creates in the
input space multiple unclassifiable regions, for which the
class assignment is not unique, and the standard solution is to
rely on continuous membership scores. In contrast to SVM-
based learning, nowadays the OVA approach has been mostly
discarded when training deep classifiers, in favor of All vs All
(AVA) learning.

The predictive uncertainty of DNNs is commonly cat-
egorized into aleatoric uncertainty and epistemic uncer-
tainty [30]. The former is related to randomness, typically due
to the noise in the data. The latter concerns finite size training
datasets. The epistemic uncertainty captures the uncertainty
in the DNN parameters and their lack of knowledge on
the model that generated the training data. In this paper,
we propose to use OVA learning in order to improve the
quantification of the epistemic uncertainty of the DNN. The
underlying idea of our approach is that the score of a base
classifier should be adjusted by a factor which approximates
its local reliability in the input space from which the test sam-
ple originated. Initially for SVM learning, the reliability has
been linked to the average value of the local objective func-
tion [53], which is approximated using the closest training
samples belonging to the respective class. Here we propose
to adjust the OVA scores by the score provided by an AVA
DNNwhich will play thus the role of approximating the local
class-specific objective function. This strategy allows for a
particularly effective detection of out-of-distribution (OOD)
samples in the test data, as we can discriminate between sam-
ples belonging to unclassifiable regions equally close to some
classifiable regions, and samples belonging to unclassifiable
regions far from all classifiable regions.
Figure 1 presents the distribution of the scores provided

by the baseline, Deep Ensembles (the current state-of-the-
art) and our method, respectively. The baseline is the single
AVA classifier, for which the class assignment is performed
based on the Maximum Class Probability (MCP) [28].

The baseline is unable to discriminate among in- and out-of-
distribution samples, illustrated in blue/yellow and orange in
the histograms, respectively. Deep Ensembles produces lower
scores for OOD samples, but the in-distribution membership
is still overestimated. Finally, OVNNI successfully assigns
low scores to the OOD samples, while keeping at the same
time the in-distribution scores high.

Our main contributions are the following: (1) We pro-
pose an effective non-Bayesian technique for uncertainty
quantification in OOD data classification, that reaches state
of the art results on calibration and on OOD data detec-
tion on a variety of datasets, and on all typical metrics.
(2) We conduct extensive evaluation experiments on mul-
tiple computer vision tasks (image classification, semantic
segmentation) and datasets (MNIST [46]/Not MNIST [1],
CIFAR-10 [39]/SVHN [62], Camvid [8], StreetHazards [27],
BDD Anomaly [27]) and compare with strong and recent
related methods. We show that OVNNI excels at detecting
OOD images and objects. (3) We shed a fresh light on
One vs All classifiers that have been so far rather ignored
in the context of DNNs and hope to rehabilitate them for
such approaches. Our conclusions are in line with less recent
findings, e.g. OVA classifier aggregation [71].

II. RELATED WORK
OOD detection is not a novel problem and has been stud-
ied before the deep learning revival in various branches of
machine learning under slightly different taks: anomaly [51],
outlier [7] or novelty detection [74]. In the last few years, this
task has seen increased attention from different communities
and has been addressed with: predictive uncertainty estima-
tion, ensemble methods, image reconstruction, etc. In the
following we review briefly some of the methods related to
our approach.

A. ANOMALY DETECTION
Anomalies are linked to abnormal data detection. As building
datasets for anomaly detection is a difficult task, we can
make different assumptions. Assumption 1: we consider that
we can collect data of anomalies; in this case, we assume
that normal and abnormal data are available. This case was
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studied in [21], [54]. We relate to this case as supervised
anomaly detection. Since it is hard to collect such data, lately
research has focused on unsupervised anomaly detection
that does not require any labeled training data [72], [73].
Then, semi-supervised anomaly detection approaches make
Assumption 2: training data contain no anomalies, and, during
inference, tests are performed on normal and abnormal data.
Finally, weakly supervised learning considers a set of labeled
normal training data, and also has no abnormal training data.
This is studied in [17], [28]. In this case, the anomalies
represent the lack of knowledge of the DNN and are related
to epistemic uncertainty (Assumption 1). Our paper focuses
on this kind of anomaly detection problem.

B. CLASSIFICATION WITH A BACKGROUND CLASS
In multiple computer vision tasks, e.g., object detection [52],
[70], it is common to use a background class in addition to
the known classes to classify. This leads to a better sepa-
ration of the classification space and a more discriminative
classifier. While this seems to be a reasonable and straight-
forward approach, for OOD detection, it is likely to suffer
from negative dataset bias [78] and thus not generalize to
other background objects not seen during training. In our
approach, we also use a part of the classes as background
when training the individual classifiers, however the overlap
of their decision boundaries, coupled with the AVA model,
better distinguishes in- from out-of-distributions samples.

C. ANOMALY DETECTION BY RECONSTRUCTION
Anomalies can be detected by training an autoencoder [2],
[12] or generative model [50], [73] on in-distribution data,
and use the quality of the reconstruction as a proxy OOD,
as the autoencoder is unlikely to decode accurately patterns
not seen during training. Training such models for accurate
and robust reconstruction requires large amounts of data.

D. BAYESIAN APPROACHES
Bayesian Neural Networks (BNN) [61] are elegant, intuitive
and easy to reason models, that can capture the epistemic
uncertainty through the exploitation of the distributions of
their weights. In spite of recent progress that makes them
more tractable [4], they are still limited to small or medium-
size networks, while most DNNs usually enclose millions of
parameters. Gal and Ghahramani [18] aimed for a method
to imitate BNNs. To this end they proposed Monte Carlo
Dropout (MC Dropout) to estimate the posterior predictive
network distribution by sampling different subsets of neurons
at each forward pass during test time and aggregate their
predictions. In computer vision, MC Dropout is the most
popular instance of BNNs due to its speed and simplicity.
It has been extended to other tasks, e.g., semantic segmen-
tation [33], pose estimation [34]. However, the benefits of
Dropout are more limited for convolutional layers, where
specific architectural design choices must be made [33], [60].
Recent OOD benchmarks for semantic segmentation [26],
[50] show thatMCDropout still induces many false positives.

E. ENSEMBLES
Ensemble methods are prominent techniques for measuring
epistemic uncertainty. They have the potential to encap-
sulate a true diversity in the weights of the composing
models, contrarily to the dispersion introduced by MC
Dropout [16], which ultimately focuses on a single mode.
Lakshminarayan et al. [43] propose training an ensemble
of DNNs with different initialization seeds. Vyas et al. [80]
train an ensemble of classifiers in a self-supervised way
on different subsets of the training data, using the left-out
data as OOD. Izmailov et al. [32] collect weight checkpoints
from local minima and average them or fit a distribution
over them and sample networks [56]. Franchi et al. [17] track
weights trajectories across training and compute their dis-
tributions, further used for sampling an ensemble of net-
works. Our approach also exploits ensembles, however each
network is specialized on a different classification task.
We exploit the complementarity in this ensemble for better
OOD predictions.

F. OVA/OVO ENSEMBLES
These aggregation techniques are popular for performing
multi-label classification based on an ensemble of binary
base classifiers. For OVO, instead of the baseline max-voting
aggregation strategy, pairwise coupling [83] or ECOC [15]
have been widely used, but the quadratically increasing num-
ber of base classifiersmay limit significantlyOVO applicabil-
ity in the case of large sets of labels. In contrast, OVA fusion
uses a linearly increasing number of base classifiers, and
relies in most works on a Winner-Takes-All class assignment
based on the maximum class response. To the best of our
knowledge, these ensembling methods have not been used
for estimating the epistemic uncertainty of DNNs. One-vs-all
formulations have also been studied in a more recent publi-
cation [65] where an ensemble of one-vs-all DNNs is trained,
with a new distance-based loss that can encode the distance
of a point from the training manifold, maximizing the binary
log-likelihood for the positive class and minimizing it for
the negative classes. Despite the interesting results on image
classification tasks, this approach does not seem scalable for
computer vision tasks such as semantic segmentation.

G. DEEP OOD DETECTION
A recent line of approaches addresses OOD detection through
DNNs specific heuristics. Hendrycks and Gimpel [28] estab-
lished a standard baseline for OOD detection relying on the
Maximum Class Probability from softmax. In [14] a confi-
dence branch is attached to a classification network, which
is trained to predict OOD samples, while ODIN [49] learns
a temperature scaling for softmax values and adversarial
perturbation to better distinguish OOD data. Lee et al. [48]
get a class conditional Gaussian distribution with respect
to features that they tune on a dataset with OOD data
and in-distribution data. Lambert et al. [44] attenuate uncer-
tainty by training on a large composite dataset leading to
a more robust DNN. Zendel et al. [84] propose a semantic
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segmentation dataset for checking the confidence score
of DNNs. The authors of [3] train a DNN to predict OOD
confidence score. Lee et al. [47] train a GAN along with the
classifier to produce near-distribution examples and enforce
lower classifier confidence on GAN samples. Malinin and
Gales [57] use Dirichlet networks to build a distribution over
the prediction distributions for OOD detection. Most of these
methods rely on a OOD dataset during training and are likely
to specialize on specific anomalies from these data [29].
In contrast, in our approach we do not require OOD examples
during training, as we leverage the multiple one-versus-all
classifiers.

III. ONE VERSUS ALL FOR DEEP NEURAL NETWORK FOR
UNCERTAINTY QUANTIFICATION (OVNNI)
This section focuses first on the necessary details on the
traditional AVA training of a DNN. Then we describe our
approach based on additional OVA training.

A. NOTATIONS
• The training and testing sets are denoted by Dl =

(xi, yi)
nl
i=1 and Dτ = (xi, yi)

nτ
i=1, respectively, where xi

and yi represent the observed sample and the corre-
sponding label, respectively, with nl and nτ the size of
the training and testing sets, and i ∈ {1 . . . nl} or i ∈
{1 . . . nτ }; xi are input vectors and yi ∈ {1, . . . , n label}
are class labels. Unless otherwise specified, xi and yi,
i ∈ {1 . . . nl}, will refer to training data.

• X is the random variable associated with observed sam-
ples and Y the one associated with classes.

• The DNN is a function f of the observed data xi, with
i ∈ {1 . . . nl} or i ∈ {1 . . . nτ }, and vector ω that contains
the trainable weights. We call fω(xi) the output of the
DNN associated with the weights ω on the data xi.

• L(ω, yi) is the loss function used to measure the dis-
similarity between the output fω(xi) of the DNN and
the expected output yi. Different loss functions can be
considered according to the type of task. Here we will
focus on the cross-entropy that will be introduced in the
next section.

B. ALL VERSUS ALL TRAINING OF DEEP NEURAL
NETWORKS
For image classification, the goal of aDNN is tomap the input
data to a probabilistic prediction that we denote P(Y = y∗ |
X = xi,ω) with y∗ a class label. During training, an optimiza-
tion algorithm will improve the weights ω in order to fit as
much as possible the output to the ground truth vector of class
labels. The loss is expected to measure the similarity between
fω(xi) and yi. Classically we use cross-entropy defined on a
batch B of size N ∈ N by:

L(ω,B) = −
1
N

N∑
i=1

log(P(Y = yi | X = xi,ω)) (1)

The minimization of this loss function is usually based
on gradient methods. Computing the optimal value of each

parameter involves a bin-to-bin measure of similarity, which
may lead to overfitting issues.

A solution might be to use One Versus All training.

C. FROM ONE VERSUS ALL (OVA) TO OVNNI
The current state of the art on uncertainty estimation is Deep
Ensembles [43]. This technique relies on ensemblingmultiple
DNNmodels trained in parallel in order to optimize the same
loss. In contrast to random forests [6], or Bagging [5] the
diversity arises from the fact that different embodiments of
the same model will converge towards different local optima
during training. Conversely, in our approach the diversity
is provided by the one-versus-all (OVA) models constructed
using different labelings of the training set.

Learning to detect abnormal data means that the DNNs
learn to point out: ‘‘I do not know’’. The issue is that the cross-
entropy loss, in collaboration with other heuristics for train-
ing DNNs, e.g., BatchNorm [31], many layers and residual
connections [24], leads to highly overconfident DNNs [22].
Hence we must deal with an overconfident DNN that can-
not handle unknown data. Our solution is to use a DNN
for learning to classify each class vs all the other classes
(OVA training); thanks to this training procedure, each DNN
will learn to discriminate every class as well as their bound-
aries: this permits classifiers that it knows but also that it does
not know.

The OVA strategy is conceptually simple, since at its core it
involves training a binary classification DNN. One classifier
is trained for each class, and prediction is then performed by
running the obtained binary classifiers on the testing sam-
ple and choosing the prediction with the highest confidence
score. Yet, themultiple classifiers involvedwill learnmultiple
probabilistic predictions, denoted by P(Yj = 1 | X = xi,ωj)
with Yj a binary random variable for each class j. We add a
super script onωj, to inform that 1) weights are different from
the ones trained to perform the AVA classification that we
denote ω, and 2) they are also different from the weights of
other classes (different from j).
By training one class versus all the other classes, the DNN

learns in some sense the out of distribution classes, however
with the significant advantage of not relying on explicitly
provided OOD data, in contrast to other strategies [58], [67].
Thanks to this strategy, the DNN learns to better distinguish
between objects from known classes and unknown objects
from classes not seen during training. Yet, OVAmight reduce
the performances since the DNN focuses a lot on learning to
discriminate every class. Therefore, in addition to the OVA
base classifiers, we also perform an All versus all training
that we aggregate with the probabilities of the OVA models
in the following way, as shown in Figure 2.

Let us denote by Y the discrete random variable, that is
taking its value in the list of all classes, and let us denote
by Yj a binary random variable that takes values 0 or 1, with
Yj = 1 meaning that the sample belongs to class j. Hence the
OVA DNN of the class j provides P(Yj = 1 | X = xi,ωj),
while the AVA DNN provides P(Y = j | X = xi,ω) for all j
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FIGURE 2. From AVA and OVA to OVNNI process in the case we deal with
a database composed of just three classes.

in {1 . . . n label}. We consider that the final confidence score
for a sample xi to belong to class j is:

pj(xi) = P(Yj = 1 | X = xi,ωj)× P(Y = j | X = xi,ω)

This score is high if AVA and OVA are confident and low
otherwise. Multiplying OVA and AVA scores also helps to
increase the accuracy since AVA has lower accuracy than
OVA (see Figure 3). Hence we propose to use this score as
a way to quantify the confidence of the DNN.

D. UNCERTAINTY WITH OVNNI
When we optimize a DNN on a training set, it might suffer
from mainly two kinds of uncertainty. The aleatoric uncer-
tainty is linked to the data acquisition and in general it can
be learned but not reduced. It can be reduced only if we have
more information about this process and we can change it,
e.g., add more efficient camera sensors for low-light scenes.
The epistemic uncertainty is related to the lack of knowledge
of the DNN. Hence, by learning to say ‘‘I do not know’’, our
strategy can better model the epistemic uncertainty.
We consider that a measure of confidence must satisfy the

following properties: (1) be bounded, (2) exhibit low values
for OOD data, (3) have a confidence value that aligned to the
accuracy of the algorithm, (4) get more confident if additional
training samples are provided. The first point assures that we
knowwhat is the maximum and minimum of confidence. The
second point is to ensure to detect OOD data, which is crucial
since it provides information on the reliability of the DNN
on one data. The third point is linked to the calibration [22],
which is crucial to rely on the model predictions. The last
point concerns the fact that we want to reduce the uncertainty
when increasing the dataset.

We use as a measure of confidence for OVNNI the proba-
bility max

j∈{1...n label}
{pj(xi)}. This measure, bounded by 0 and 1,

tells us how much we can rely on the DNN prediction
and to which extent it can be used to model the epistemic
uncertainty. Indeed in most approaches, the maximum class
probability (MCP) [28] is used as a simple baseline to model
uncertainty. In our case, we do not properly evaluate the
MCP since we do not have a probability. Yet, our confidence
score is directly inspired by theMCP. Other approaches make

FIGURE 3. OVNNI inference process for the out of distribution case and
the in distribution case.

similar assumptions, for instance the evidential model from
Sensoy et al. [75] where the uncertainty is quantified from
belief measures.

IV. EXPERIMENTS
We continue by illustrating the performance of OVNNI for
detecting OOD data by conducting five experiments. In the
rest of this section we will describe the experimental pro-
tocol, followed by the five experiments. We implemented
all approaches ourselves and used for all the same learn-
ing hyper-parameters per dataset, without particular tuning.
Moreover, the number of ensembles is the same for all the
techniques, and corresponds to the number of classes.

A. EXPERIMENTAL PROTOCOL
The detection of OOD data can be done either by techniques
that measure the uncertainty, or by techniques that detect
OOD data. We first have compared our OVNNI to three other
uncertainty estimation techniques: MC Dropout [18], Deep
Ensembles [43], and TRADI [17]. The major interest of
these techniques comes from the fact that, since they estimate
uncertainty, they also estimate the epistemic uncertainty and
therefore the OODdata.We also have compared our approach
to two other techniques: ODIN [49] and ConfidNET [11], that
serve as references in unsupervised techniques for detecting
OOD data. As a baseline algorithm, we use the maximum
class probability (MCP) with AVA trained DNN. We denote
this approach as MCP. As an additional baseline we con-
sider one-class Support Vector Machine [59], [64], a classic
method for outlier detection. We train it on AVA logits.

Note that we have not compared our OVNNI to techniques
trained to learn OOD such as [58], [67], since in these cases
the OOD data are in the training set, making this technique
able to detect just with trained OOD data. To balance OVA
training which typically has more samples available for the
‘‘All’’ class, we use weighted cross-entropy to train for each
class, with weights for a given class based on 1 − τ class,
where τ class is the proportion of data samples of this class
in the training set. In addition, for a fair comparison in all
experiments we use the same number of models for ensemble
and Bayesian methods. We conducted several experiments in
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TABLE 1. Comparative results obtained on the calibration task.

two target applications: image classification (2 experiments)
and semantic pixel segmentation (3 experiments). We consid-
ered 7 evaluation measures, in addition to accuracy. Details
and results are given below.

1) EVALUATION MEASURES
The evaluation should focus on several points. The first one
is the error/success on predicting if the DNN model has
some knowledge about specific data. This involves detecting
if the data is OOD or not. For that, we use three solutions
proposed in [28]. We first only used the confidence score of
the OOD data and of the in distribution test data. Based on
these confidence scores, and as in [26], [28], we evaluated
the AUC, AUPR and the FPR-95%-TPR, that are indicators
of the accuracy of detecting OOD data.

However, these measures give no information about the
number of good predictions (that should be high) and of bad
predictions (that should be low).

This information is crucial since, although it is impor-
tant to have a low score with the OOD data, the DNN

should also reach a high confidence score for well-
classified data, and low confidence scores elsewhere. In case
the DNN does not reach this point then it might be
unusable.

For that, the authors in [11] propose to use metrics similar
to the one used by Hendrycks et al. [28] but rather than
classifying into classes ‘‘OOD’’ or ‘‘In distribution’’, they
classify as ‘‘correctly classified’’ or ‘‘not correctly classified’’
(this latter class contains both bad predictions and predictions
on OOD data, see [11] for more details).

We also used the Expected Calibration Error (ECE) [22],
which uses the M -bin histograms of confidence scores and
accuracy. The ECE performs a bin-to-bin difference between
the two histograms, then an average over the M bins. Sim-
ilarly to [22] we set M = 15. This metric, by measuring
the difference between the expected accuracy and confidence,
is an indicator of the quality of the confidence, and should be
close to 0.

To better understand the behavior of our DNNs when
facing strong shifts in the input data distribution, we
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TABLE 2. Comparative results obtained on the OOD detection task.

FIGURE 4. (a) and (c) Accuracy vs confidence plot on the CIFAR10 \SVHN and BDD Anomaly experiments, respectively. (b) Calibration plot on the
CIFAR10 \SVHN.

propose to evaluate the Corrupted Accuracy (cA), and Cor-
rupted Expected Calibration Error (cE) for CIFAR10 [39].

For this scenario, we use CIFAR-10-C [27], where the author
generated various noise with different levels of intensity.
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FIGURE 5. Test accuracy on CIFAR-10-C [27].

2) OOD CLASSIFICATION WITH MNIST [46]
Concerning the classification, we used in a first experiment
MNIST [46] which is a dataset composed of digit images
as training dataset and NotMnist [1] which contains letter
images as OOD dataset.We first trained a classifier to learn to
recognize the images of digits then tested it on the test set of
MNIST and NotMnist hoping that the classifier would distin-
guish digits form letters. The DNN used for this experiment
is fully connected and composed of 3 layers as in [17], [43].
Results are shown in Tables 1 and 2 (MNIST rows).

3) OOD CLASSIFICATION WITH CIFAR10 [39]
We also trained a network on CIFAR10 composed of classes
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships
and trucks. We have considered as OOD SVHN dataset [62].
Many methods [56] train on CIFAR10 and test on the test set
of CIFAR10with noise or on STL-10 [10]. It turns out that the
first test aims more at measuring random uncertainty and the
second one the capability to adapt to the domain. We rather
have preferred to consider as an OOD dataset SVHN which
is a color image dataset of digits, that guarantees that the
OOD data really comes from a distribution different from
that of CIFAR10. The DNN we used on this experiment is
Resnet50 [24], which has the advantage of being popular
in the community. Results are shown in Tables 1 and 2
(CIFAR10 rows). One can see in Table 3 our results under
dataset shift. Our approach has state-of-the-art results in
terms of accuracy and almost regarding the ECE. Figure 5
shows that OVA is not adapted to aleatoric uncertainty
while OVNNI maintains good performances. Hence, we have
shown that our approach is resistant to aleatoric uncertainty.

4) OOD SEGMENTATION WITH CAMVID [8]
We used Camvid, a dataset conventionally used in works
dealing with segmentation or uncertainty theory and deep
learning [11], [17], [33]. This dataset is an ‘‘easy’’ dataset
but allows quickly validating results. To test the ability of

TABLE 3. Comparative results obtained on CIFAR-10-C [27].

OVNNI to detect OOD pixels, we trained on all Camvid
classes except 3 classes (pedestrian, bicycle, and car), that we
deleted, by marking the corresponding pixels as unlabeled.
These three classes correspond to OOD classes. Thus this
experimental protocol, proposed in [17], makes it possible to
validate that the trained DNN will detect the pixels on which
it has not been trained as OOD. The DNN for this experiment
is Enet [68]. Results are shown in Tables 1 and 2 (Camvid
rows).

5) OOD SEGMENTATION WITH StreetHazards [26]
StreetHazards is a large-scale dataset that contains different
sets of synthetic images of street scenes. More precisely,
this dataset is composed of 5125 images for training and
1500 test images. The training dataset contains 13 classes and
the test dataset is composed of the 13 training classes and
250 OOD classes, making it possible to test the robustness of
the algorithmswith all possible scenarios. For this experiment
we used PSPnet [85] with the experimental protocol in [26].
The architecture used for the PSPnet is ResNet50. Results are
shown in Tables 1 and 2 (StreetHazards rows).

6) OOD SEGMENTATION WITH BDD ANOMALY [26]
BDD Anomaly dataset is a subset of BDD dataset, composed
of 6688 street scenes for the training set and 361 for the
testing set. The training set contains 17 classes, and the test
dataset is composed of the 17 training classes and 2 OOD
classes. For this experiment we used PSPnet [85] with the
experimental protocol in [26]. The architecture used for the
PSPnet is ResNet50. Results are shown in Tables 1 and 2
(BDD Anomaly rows).

B. VISUALIZING OVA AND AVA EMBEDDING
In this subsection, we perform two experiments to determine
the behavior of the representations learned by the DNN with
the different techniques. For both experiments we train a
simple DNN composed of 3 hidden layers followed by a batch
normalization on MNIST dataset [46].

In the first experiment, we have considered as training data
only the images with the digits ’0’,’1’ and ’2’ images (the
3 first classes). Then we perform inference on the official
test set composed of images with these classes and the OOD
images which are composed of other classes. We represent
in Figure 8 the softmax of a classical AVA training, a deep
ensemble training and the OVNNI training.We can see that in
contrast to other techniques, OVNNI results do not necessar-
ily belong to the 2-dimensional simplex. In addition, OVNNI
brings the OOD data far away from the simplex vertices
which highlights its potential to detect OOD data.
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FIGURE 6. Results of OVNNI on BDD Anomaly. The first column is the input image, the second is the ground truth, the third is
prediction and the fifth is the confidence score of OVNNI. For comparison, we add the MCP confidence score in the fourth
column. We can see that OVNNI has a low score on the motorcycle on the three first rows and on the train on the last row
which correspond to the OOD classes.

FIGURE 7. Results of OVNNI on StreetHazards. The first column is the input image, the second is the ground truth, the third is
prediction and the last is the confidence score of OVNNI. For comparison, we add the MCP confidence score in the fourth column.
We can see that OVNNI has a low score on the chair, the seat, the rocket and the spider which correspond to the OOD classes.

In the second experiment, we performed a classical AVA
training, and we also performed the OVA training. Hence
for the OVA training, we have 10 DNNs (since the dataset
has 10 classes which are the 10 digits). The OOD class is
composed of images of the NotMNIST dataset [1]. Hence,
we apply the DNNs on this test dataset and on the AVA
case, we collect for each data the feature space of the DNN
just before the classification of each data. In the OVA case,
we collect the same feature space but for the DNN of the
predicted class.

We reduce the dimension of each of these feature
spaces using t-SNE [55] and Principal Component Analysis
(PCA) [82], and we plot the results in Figure 9. We can see
that in theAVA case theOODdata are in the center of Figure 9
mixed with the other classes, and in the OVA case they are
closer to the border whatever the dimensionality reduction

algorithm we use. This is crucial because it shows that OVA
learns a more interesting descriptor than AVA.

C. HYPER PARAMETERS
In Table 4, we summarize the hyper-parameters used in
the Camvid [8], StreetHazards [26] and BDD-Anomaly [26]
experiments. In Table 5, we summarize the hyper-parameters
used in the MNIST [46] and the CIFAR10 [39] experiments.

D. DISCUSSIONS
On MNIST we can see in Tables 1 and 2 that OVNNI has
competitive results for detecting OOD data; more specifi-
cally, its calibration score (ECE) is the best. With respect to
the metrics proposed by Hendryck et al., OVNNI is the most
effective in detecting OOD images, improving the best AUC
by 1.4% the best AUPR by 0.6% and the best FP by 62.0%.
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FIGURE 8. Results on MNIST - 3 classes experiments. We represent in these figures the softmax prediction outputs obtained by the baselines (a) MCP,
(b) Deep Ensemble, and (c) by OVNNI, respectively.

FIGURE 9. Results of the MNIST / NotMNIST experiment. We represent the projection on a 2D space of the feature space of the baseline MCP in (a) and
(c), and of OVA in (b) and (d). We use PCA [82] and t-SNE [55] as dimensionality reduction algorithm.

Concerning the metrics proposed by Corbière et al., OVNNI
improves the AUC by 1.41%, the AUPR Error by 0.80% the
AUPR success by 2.14% and the ECE by 70.6%.

On CIFAR10, although Deep Ensembles achieve good
results on all the measurements as well, except on the ECE,
note that OVNNI is better calibrated. This can also be seen
in the histogram in Figure 4. The difference between OVNNI
and Deep Ensembles is low and the crucial requirement of
DNN is to have a good calibration. Hence, having a good
calibration is more important than having a good AUC or
AUPR. Also, we have represented the accuracy vs confidence
curves in Figure 9. These curves are defined in [43] and
are constructed by evaluating the accuracy of all data where
the DNN has reached confidence thresholds. These curves
show the performance of the OVNNI confidence index over
CIFAR10. Finally, we have illustrated the OVNNI calibration
on CIFAR10 in the calibration curve in Figure 9. The calibra-
tion plot is defined in [22] and is constructed by taking bins
of data based on their confidence score. Then on each bin,
we evaluate the accuracy, as it should ideally be comparable
to the confidence score. These curves show once again the
good performance of OVNNI in terms of calibration.

OnCamvidwe note that OVNNI improves the results of the
state of the art by up to 77% with regard to the metrics pro-
posed by Corbière et al. [11], and by up to 77% for calibration

as well. Concerning the metrics proposed by Hendryck et al.,
OVNNI improves the measurements by a maximum of 22%.

On StreetHazards we show in Table 2 that OVNNI has
better results than the state of the art by improving the best
results by up to 42.8%. In Table 1 OVNNI improves the result
by a least 2.6% and improves state-of-the-art ECE by 2%.
These results show the interest of using OVNNI for semantic
segmentation.

Finally, on BDD Anomaly OVNNI improves the calibra-
tion by at least 48% which is highly relevant, given the
importance of this metric. Furthermore concerning the other
metrics, OVNNI improves the results by at least 22%. Fur-
thermore, in Figure 4 we have illustrated the confidence
accuracy curve of several algorithms. These curves underline
again that OVNNI reaches the best performance in terms of
calibration.

Overall, these results show that OVNNI improves the cal-
ibration of networks by rendering the confidence in their
results more in line with their expected results. Making DNN
models more reliable is crucial, especially in areas where the
model should not be overconfident. In [22] the authors show
that good accuracy of DNNs comes with a price, namely their
reliability. In this work, we propose a solution that increases
accuracy in most cases, while at the same time improv-
ing the calibration and the OOD detection performance.
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TABLE 4. Hyper-parameter configuration used in the semantic
segmentation experiments.

TABLE 5. Hyper-parameter configuration used in the classification
experiments.

The conceptual simplicity of this solution is a significant
asset for its adoption, and the results also convey the message
that one vs all training can still have an interest for a finer
understanding of epistemic uncertainty in DNNs.

Ensemble of OVAs and OVNNI act like Deep Ensem-
bles, i.e. discovering and exploring multiple modes [16].
Just like Deep Ensembles, they benefit from the multiple
modes provided by each model leading to better calibrated
predictions [16]. However, Deep Ensembles can still become
overconfident as they follow modern training heuristics [20].
In OVNNI, weighting OVAs with AVA softmax leads to
generally less confident predictions and improves calibration
(plots in Figure 4 confirm this quantitatively). This effect is
similar to temperature scaling for calibration [20]. However,
we do not need an additional validation set to tune this factor.
OVA acts as a single class classifier for OOD detection and
also learns to perform classification.

E. LIMITATIONS OF THE APPROACH AND PERSPECTIVES
The OVA strategy is conceptually simple and straightforward
to adopt and implement in most cases. The main limitation
of OVA is related to cases with numerous classes. For pop-
ular datasets and tasks involving up to 10-15 classes the
computational cost is on par with ensembling approaches,
for which this is a typical size for the ensemble [43]. How-
ever beyond this number of classes, the approach is less
appealing due to the increasing training cost. We note that
in several practical settings, e.g., perception for driving assis-
tance [9], [23], [36], [77], the number of classes is often low

(less than 10), in order to avoid ambiguity and class imbal-
ance, which are frequent drawbacks of high granularity
datasets. For tasks that do not allow for a low number
of classes, we indicate a few potential strategies to ren-
der OVNNI more feasible for such cases. we can consider
meta-classes that group multiple classes from the training set
according to visual or semantic relatedness. The taxonomy
of a number of datasets is derived from an ontology (usually
hierarchical), e.g., Imagenet [13], and we can use this cri-
terion for grouping classes. Alternatively, such meta-classes
can be learned [19], [86], as considered in other related
approaches, e.g., Error Correcting Output Codes rely on OVA
and even on OVO classifiers [42], [76]. In this work, we did
not need to adopt such strategies were not necessary as the
computational cost is tractable on the considered datasets.
However we plan to explore them in future works.

V. CONCLUSION
In this work, we presented an approach based on one versus
all training and mixed with a modern approach based on deep
learning. We show that the combination of these approaches
reaches state of the art performance on all segmentation
experiments. Regarding classification tasks, OVNNI exhibits
the best calibration performance. Concurrent approaches suf-
fer from a lack of performance in calibration in most datasets,
hence the scores that they provide are overconfident, poten-
tially leading to dangerous scenarios in critical applications.
In addition to the reported performance, our approach needs
little hyperparameter tuning and is easy to implement.

Future work involves first extending this strategy to new
tasks such as medical image analysis. One could also use
this framework for active learning since active learning algo-
rithms require techniques that can detect OOD data.
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