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ABSTRACT Electron-optic systems (EOSs) with high compression are required for THz-band vacuum-tube
electron devices to reduce the cathode load, which is necessary to increase lifetime and enable operation in
a continuous-wave (CW) mode. However, it is difficult to achieve high compression of multiple electron
beams. In this article, we present the design and simulation of EOS with triple elliptic electron beam for a
0.2-THz traveling-wave tube. The triode electron gun with planar electrodes provides 3 × 0.06-A electron
beam with compression factor of 16. At the cathode, the current density is 26.31 A/cm2 while in the beam
tunnel it is higher than 400 A/cm2. The magnetic focusing systemwith 1.34-T axial magnetic field consisting
of Nd–Fe–B permanent magnets and pole pieces is also designed. The numerical simulation predicts stable
beam transmission at 25-mm distance.

INDEX TERMS Electron gun, electron-optic system, multiple electron beam, traveling-wave tube.

I. INTRODUCTION
Numerous applications, such as high-data-rate wireless com-
munications, high-resolution radar, and non-destructive eval-
uation, require miniaturized high-power wideband sources
of coherent terahertz (THz) radiation. Therefore, increas-
ing power of THz-band microfabricated vacuum electron
devices (µVEDs) is an important problem. The main issue
in the development of µVEDs is the need for an ultrahigh-
current-density electron beam. Using sheet or multiple elec-
tron beam may be a promising solution [1]. Several designs
ofµVEDs with multiple sheet electron beam interacting with
a high-order transversal mode of an overmoded slow-wave
structure (SWS) have been suggested [2]–[8]. It is expected
that such devices can provide over 100 W output power at
sub-THz frequencies.

Nevertheless, these devices require electron beam current
density higher than 100 A/cm2. Therefore, there is a strong
need in electron-optic system (EOS) with electron beam
compression, which allows reducing of the cathode loading
and enables CW operation. Design and development of EOSs
with converging sheet electron beams have been reported in
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several works [9]–[12]. However, in case of multiple beam
this technology is still poorly developed.

In [13] and [14], we presented the EOS with 6.5-times
compression of triple elliptic electron beam for a
0.2-THz traveling-wave tube (TWT). The triode electron gun
with a magnetically shielded cathode has been developed and
3× 0.031 A current, i.e., 93-mA total current has been mea-
sured. The current density at the cathode was about 19 A/cm2

while in the beam tunnel it exceeded 120 A/cm2.
The experiment on beam transportation in 0.55-T axial
focusing magnetic field showed 60% transmission at
25-mm distance.

In [15], a dual-sheet-beam EOS for a 0.34-THz TWT was
designed and studied by 3-D particle-in-cell (PIC) numer-
ical simulation. The EOS produced 2 × 0.043 A electron
beam with 3.3-times compression. Refs. [16]–[18] presented
design and simulation of EOSs with compression of a triple
cylindrical-shaped electron beam. In [16], the EOS for a
0.22-THz TWT 3 × 0.1 A beam with 29.24-A/cm2 cathode
loading and compression factor of 10 was reported. In [17]
and [18], the EOS for a W-band TWT with even higher
3 × 0.15 A current and compression factor of 4 was stud-
ied. Nevertheless, the required cathode loading was higher
than 100 A/cm2.
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FIGURE 1. Schematic of the electron gun. (a) y-z view. (b) x-z view.
(c) 3-D view.

In this article, we improve the design presented in [13], [14]
in order to increase the beam current and to reduce the
cathode loading. The new EOS produces a 3 × 0.06 A
elliptic-shaped electron beam. High compression factor of
16 is demonstrated in 3-D PIC simulation. The corresponding
cathode loading is 26.31 A/cm2, while the averaged current
density of the compressed beam is ∼ 400 A/cm2.

II. ELECTRON-OPTIC SYSTEM DESIGN
A. ELECTRON GUN
Schematic of the electron gun is presented in Fig. 1. This is
a triode-type gun with planar electrodes. The planar shape
of the electrodes essentially simplifies the fabrication and
assembling process. The gun consists of a cathode, a shadow
grid, a focusing electrode (diaphragm) and an anode with
a beam tunnel. The cathode is formed by three 0.5 mm ×
0.6 mm elliptic-shaped protrusions. The elliptic shape is
preferable to circular one because it provides less current
interception at the anode. To increase the beam current, verti-
cal dimension of the protrusions was increased in comparison
with the gun developed in [13], [14]. Distance of 0.2 mm
between the cathodes in y-direction has been selected to get
0.8-mm distance between the beamlet axes. This provides
effective interaction with the higher-order TE03-like mode of
the overmoded staggered grating SWS with 2.4-mm beam
tunnel width [19], [20].

FIGURE 2. Schematic of the magnetic system. (a) x-z cutaway view
at y = 0. (b) x-y cutaway view at z = 17.5 mm. (c) 3-D view.

The focusing diaphragm has three elliptic holes with the
same dimensions as the cathode protrusions. This electrode
may be used as a control grid serving for beam modulation.
The diaphragm thickness is 0.1mm.However, at the edges the
thickness is increased to improve the mechanical strength.

B. MAGNETIC SYSTEM
A strong axial magnetic field Bz is applied for electron
beam focusing. In [12], we presented the design of 1.1-T
permanent-magnet magnetic focusing system (MFS). In this
work, we modified the design of [12] in order to enlarge
the axial magnetic field above 1.3 T, which is necessary
to achieve high compression. Schematic of the MFS with
dimensions is presented in Fig. 2. Since the length of the
interaction space of the TWT is assumed as 25 mm, the axial
size of the magnets has been set to 30 mm, which is twice
less than in [12]. The dimension of the borehole is 4.2 mm×
3.75 mm that is large enough for placing the SWS circuit. The
apertures of the pole pieces have 0.5mm× 12mmdimension.
In the simulations, the magnetic material is set as

Nd2Fe14B with remanence of 1.48 T. The material for mag-
netic pole pieces is set as steel-1008 with µ = 103.
Fig. 3 shows the plot of axial component of the magnetic

field versus axial coordinate z. It demonstrates nearly con-
stant value of the magnetic field Bz ≈ 1.345 T at 25-mm
distance.
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FIGURE 3. Axial profile of the focusing magnetic field.

FIGURE 4. x-z projection of the electron trajectories and the magnetic
field profile.

III. RESULTS AND DISCUSSION
The electron gun is simulated by using the 3-D CST Particle
Studio simulator [21]. In the simulations, we set the cathode
parameters same as for the M-type dispenser cathode pre-
sented in [12]. At the cathode, the electrons are assumed emit-
ted with a spread angle of 5◦ and with a kinetic energy spread
set in accordance with the Maxwell–Boltzmann distribution.
The cathode temperature and electron work function are set to
1250◦C and 2.055 eV, respectively. The cathode temperature
has been slightly increase in comparison with [12] to get
higher current.

In Fig. 4, electron trajectories in the midplane y = 0 are
plotted together with the magnetic field profile. The com-
pressed beam is injected into the 0.1 mm× 2.4 mm beam tun-
nel. The cathode is magnetically shielded. In this simulation,
the anode voltage is set to Va = 21.4 kV, while the voltage at
the focusing electrode is Vg = 1.48 kV. Fig. 4 shows strong
compression of the beam. Despite deposition of some elec-
trons at the anode, the collector current is 180.97 mA while
the body current is only 4.91 mA, i.e., the beam transmission
is 97.3%.

Fig. 5 shows current-voltage characteristics of the gun.
In this figure, the total cathode current Ic, the collector current
Icol , and the body current Ib are plotted versus the control

FIGURE 5. Current-voltage characteristics of the electron gun. Cathode
current, collector current, and body current versus the control grid voltage
are plotted at the anode voltage of 21.4 kV.

grid voltage Vg. The anode voltage is set to 21.4 kV to
provide synchronism with the forward wave in the staggered
grating slow-wave structure designed in [19], [20]. When the
grid voltage is below 1000 V, there is a significant beam
interception at the anode. At Vg = 1.0 − 1.6 kV, the body
current is very small, i.e., good beam focusing is observed.
However, when Vg > 1.6 kV, beam the body current starts to
rapidly increase. Maximal collector current Icol = 0.2 A is
attained at 1.6-kV grid voltage.

This behavior is explained by Fig. 6 where x-z current
density profiles calculated at different values of the grid
voltage are presented. At low grid voltage, overfocusing of
the beam takes place, as is shown in Fig. 6(a). The crossover
is located well before the anode plane. As a result, most
of the beam current is intercepted by the anode. With the
increase of Vg, the crossover shifts towards the anode and,
at Vg = 1.0 − 1.6 kV, the beam is properly focused into the
tunnel [Fig. 6(b)].

Note that at the edges of the beam there appear a ring-
shaped domain, where the current density is much higher than
in the center of the beam. As the grid voltage increases, the
compression becomesweaker and this part of the beam begins
to settle at the anode [Fig. 6(c)]. This results in rapid increase
of the body current.

Fig. 7 demonstrates the electron current density profile in
the midplane x = 0 calculated at Vg = 1.48 kV. At that volt-
age, the current of each beamlet is 62 mA that is almost two
times higher than in the previous works [13] and [14]. Thus,
the averaged current density at the cathode is 26.31 A/cm2.
Despite it is higher than the values reported in [12]–[14]
where the cathode loading about 20 A/cm2 was measured,
it still seems available for the existing thermionic cathodes.

At the entrance of the beam tunnel, the beamlets have
nearly elliptic shape with approximately 75 µm × 250 µm
dimensions. Thus, one can estimate the compression factor
as 16 and the averaged current density as ∼ 400 A/cm2.

However, the current density distribution in the beam
cross-section is essentially non-uniform that is typical
for EOSs with high compression, see e.g. [12]. This is
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FIGURE 6. Electron beam current density profiles in the midplane
y = 0 at Va = 21.4 kV and Vg = 0.5 kV (a), 1.48 kV (b), and 1.7 kV (c).

FIGURE 7. Electron beam current density profile in the midplane x = 0 at
Vg = 1.48 kV and Va = 21.4 kV.

demonstrated in Fig. 8 where current density profiles in
x-y cross section at different distances from the cathode are
plotted. The beam exhibits ripple, which is most pronounced
in the vertical direction. In Fig. 8, one can see the abovemen-
tioned ring-shaped high-current-density domains at the edge
of the beams. At the points of maximal compression, e.g.,
at z = 4.8 mm or at z = 6.0 mm, the current density attains
very high values ∼ 103 A/cm2.
Fig. 9 illustrates the results of beam transportation inside

the 0.1 mm × 2.4 mm beam tunnel. In this figure, electron
beam profiles in x,z and y,z planes are plotted. This figure

FIGURE 8. Electron beam current density profiles in x-y plane inside the
beam tunnel at different distances from the cathode.

FIGURE 9. Electron beam transportation in the beam tunnel. (a) Side view
in the x,z plane. (b) Top view in the y,z plane.

clearly demonstrates ripples with a spatial period determined
by the cyclotron wavelength λc = 2πv0z

/
ωc ≈ 2.4 mm,

where v0z is the dc beam velocity and ωc is the electron
cyclotron frequency. However, Fig. 9(a) reveals a more com-
plicated shape in the x,z plane, which is nearly bi-periodic.
This shape is explained by the motion of the particles, which
form the low-density halo of the beam (see [12] for details).
These particles have high transversal velocities, which may
reach 10% of the axial velocity. Fig. 9 shows stable propaga-
tion of the beam at nearly 25 mm distance that is sufficient
for effective beam-wave interaction in a 0.2-THz TWT.

IV. CONCLUSION
In this article, we present the design of a novel multiple-beam
EOS for a 0.2-THz TWT. This EOS provides formation of the
triple elliptic beam for interaction with higher-order transver-
sal mode of the overmoded SWS. The simulations predict
16-times compression of the beam. The cathode loading
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is 26.31A/cm2 while the averaged current density in the beam
tunnel exceeds 400 A/cm2.
The triode electron gun with planar electrodes has been

selected since such a design simplifies the fabrication pro-
cess. The control grid voltage can be adjusted for effective
beam focusing. The simulation demonstrates stable trans-
portation of the 3 × 0.06 A beam at 25-mm distance in the
0.1 mm × 2.4 mm tunnel. These parameters are sufficient
to provide high-gain, high-power operation of the 0.2-THz
TWT with staggered grating SWS [20].

Fabrication and assembling of the gun is now in progress.
The future research will be aimed at experimental measure-
ments of current-voltage characteristics as well as at studies
of the beam transmission.
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