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ABSTRACT Water target recognition is a critical challenge for the perception technology of unmanned
surface vessels (USVs). In the application of USV, detection accuracy and the inference time both matter,
while it is tough to strike a balance and single-frame water target detection behaves unstable in the
video detection. To solve these problems, many strategies are applied to increase YOLOv4’s performance,
including network pruning, the focal loss function, blank label training, and preprocessing with histogram
normalization. The optimized detection method achieves a mean average precision (mAP) of 81.74% and
a prediction speed of 26.77 frames per second (FPS), which meets the USV navigation requirements.
To build the integrated USV-based system for water target recognition, a water target dataset containing
9936 images is created from offshore USV experiments in which the human-in-the-loop annotation and
mosaic data augmentationmethods are used. The issues of miss detection and false alarm can be considerably
mitigated by cascading the Siamese-RPN tracking network, and the major color of a water target can be
retrieved using a local contrast saliency color detection scheme. The system being tested is called ‘‘ME120’’
includes an embedded edge computing platform (Nvidia JetsonAGXXavier). Finally, online dataset learning
demonstrates the improved YOLOv4 achieves an increase of 66.98% in FPS at the cost of a decrease of
0.79% in mAP when compared with the original YOLOv4 and offline navigation experiments validate that
our system achieves high recognition capability while maintaining a high degree of robustness.

INDEX TERMS Object recognition, USV, deep learning, computer vision.

I. INTRODUCTION
USVs will be critical in the future water surface environment.
It is useful in a variety of industries, including marine
emergency rescue, logistics, water quality monitoring, hydro-
logical surveying, marine environment mapping, and water
ecological protection. In comparison to traditional manual
vessels, the USV can work ceaselessly in areas that are
inaccessible to humans, ensuring consistency in terms of
execution efficiency and judgment quality. With the rapid
advancement of computer vision technology, it is becoming
easier for the USV outfitted with a visual intelligent percep-
tion system to efficiently recognize water targets. As a result,
our research on the method and application of water target
recognition is both theoretically and practically significant.

The associate editor coordinating the review of this manuscript and
approving it for publication was Miaohui Wang.

USVs’ conventional sea surface perception technology is
based on millimeter-wave radar, lidar, inertial measurement
units, and GPS, among other sensors. Perception techniques
based on computer vision have advanced dramatically in
recent years. Optical pictures contain more comprehensive
information in the region of interest (ROI) of the target
area, making it easier to discriminate the water target using
visual perception techniques. Specifically, using the video
stream acquired by onboard visual sensors in conjunction
with sophisticated object detection technology, it is possible
to achieve exceedingly accurate and rapid object recognition
and localization.

This study examines an artificial intelligence system based
on a vision sensor and an edge computing platform for recog-
nizing and tracking a water target that must meet the accuracy
and real-time requirements. As illustrated in Figure 1,
the ship is a representative of Zhuhai Yunzhou Intelligent
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FIGURE 1. The ME120 USV with visual sensor and edge computing platform. The edge computing platform
refers to NVIDIA Jetson AGX Xavier Developer Kit (or similar edge computing platform). Which supports
NVIDIA Jetpack, DeepStream SDK, and other Deep-Learning software packs, including CUDA, cuDNN,
TensorRT, etc.

Technology Co., Ltd.’s environmental monitoring USV.
A high-definition photoelectric vision sensor can be included
into the ship’s completely autonomous lifting fin system. This
USV is capable of intelligent obstacle avoidance via real-time
transmission of high-definition water surface footage. USV’s
perception technology is primarily used to perform accurate
obstacle avoidance and shore docking.

As a result, the USV’s capacity to detect surface objects
is necessary to resolve this issue. However, there are certain
difficulties in detecting water targets: 1) It is difficult to strike
a balance between detection precision and inference time for
the detection of actual water targets. For example, recognition
accuracy (confidence level 50% or greater) within a 10 meter
distance must be at least 80% or greater for real-time ship
operation. Simultaneously, the algorithm can only access the
embedded platform, whereas the object detection algorithm’s
inference speedmust exceed 25 frames per second tomeet the
requirement of real-time operation and to match the speed
of the video stream; 2) In addition to single-frame target
detection, other methods are required in actual application
of video object detection. The single-frame target detection
method is susceptible to problems such as tiny objects, poor
illumination, and imbalanced data.

A water target recognition system based on USV intel-
ligent perception is proposed to address these issues. Our
contributions are summarized as follows: 1) A ‘‘improved’’
YOLOv4 is proposedwith comparablemAP and significantly
increased FPS. Several methods, including network prun-
ing, focal loss function training, blank label training, and
histogram normalization preprocessing, are used to improve
the performance of YOLOv4; 2) A system was established
by combining dataset configuration, training tricks, and a
three-stage scheme for water target detection, tracking, and
color detection. This system has been validated in real-world
environments.

The remainder of this paper is organized as follows.
Section II summarizes new research in the field and compares
prominent object detection techniques. Section III creates
water target datasets using images from the internet and
images obtained by USV. Section IV enhances the YOLOv4
algorithm to meet the requirements of USV navigation.

By including the Siamese-RPN tracking algorithm and the
LC Saliency color detection technique, the water target
system gains a greater capacity for information perception,
as detailed in Section V. The method of deployment and
the results of the experiments are described in Section VI.
Section VII concludes the paper.

II. RELATED WORK
The field of water target recognition and auxiliary human
eye observation has benefited greatly from image and video
processing technologies. Strickland and Hahn [1] extracted
the ship’s outline from an infrared image using the wavelet
transform filtering approach. Withagen et al. [2] classified
the ship using the forward-looking infrared camera image.
Smith and Teal et al. [3] investigated the visual image
system used to recognize high-speed passenger ferries.
Wen-Jing et al. [4] enhanced the Mean-Shift segmentation
approach for extracting the water target and tracked the
target’s position using the Kalman filter. Shi et al. [5]
recognized the ship target by using the frequency-tune
saliency extraction algorithm and followed it using the
correlation filter approach for joint location and scale
estimation. However, the correlation filtering method makes
real-time tracking in occlusion challenging. Generally, early
visual perception technology is constrained by its era, relying
heavily onwavelet transforms, manual feature extraction, and
wave filters, among other techniques, making it difficult to
complete identification and tracking of complex targets.

After entering the era of deep learning, the great feature
extraction capability of convolutional neural network enables
it to perform well in the field of water target recognition.
Peng et al. [6] recognized six distinct types of water objects
using the Faster R-CNN approach, which achieved an AP
of 91.97% in the datasets of 1189 images. Li et al. [7]
proposed a multiscale object detection CNN based on an
enhanced Faster R-CNN that detects ships in optical remote
sensing images with high efficiency. Wei [8] implemented
automatic recognition and tracking on the ‘‘WAM-V-USV’’
platform, which uses the YOLOv3 algorithm. However, given
the constraints imposed by objective conditions, there is still
potential for improvement in the technique for extracting
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FIGURE 2. The detection results of YOLOv4. Most of the category targets can be accurately detected, only the barrier has a high false
recognition rate.

neural network features. Bochkovskiy et al. [9] presented
a new real-time object detection system, YOLOv4, in the
year 2020, based on numerous unique detection approaches
developed over the previous two years. It attained the highest
mean average precision (mAP) and inference speed on
MS COCO datasets as a new effort in the YOLO series.
In conclusion, the deep learning method can achieve the level
of accuracy that older methods cannot in this industry. The
introduction and advancement of new deep learning-based
visual object identification technology will be a prominent
development trend in the future.

TABLE 1. Comparison of networks performance.

We tested four common deep neural networks on water
target datasets in this article, and the detection results are
listed in Table 1. We evaluate network training performance
primarily in terms of inference speed and recognition accu-
racy. The FPSmetric is used to determine the inference speed,
and the mAP metric is used to determine the recognition
accuracy. The mAP demands a better than 50% intersection
over union (IoU) ratio between the detected bounding box and
the ground truth bounding box, which is determined using the
Pascal VOC Challenge formula.

The mAP1 and Speed1 columns in Table 1 correspond
to the findings obtained on a high-performance machine
equipped with an Intel i9-7920x CPU and an Nvidia
RTX2080ti GPU. While the mAP2 and Speed2 are the
outcomes of the NVIDIA Jetson AGX Xavier real-time
deployment platform. Due to cost considerations, Faster
R-CNN and SSD were not deployed, leaving the related data

in Table 1 empty. Due to the fact that the computational
performance of an edge computing platform is significantly
less than that of a high-performance computer, the average
precision of the identical method may be reduced upon
deployment. When the two indices are compared, YOLOv4
has the highest average precision, which will serve as the
foundation for our detection system. However, its inference
speed is just 15.01 frames per second, which falls short of
the requirements for onboard real-time detection. It will be
enhanced in Section IV to take into account the features of
the target datasets and the requirements for deployment to
an edge computing platform. Fig. 2 illustrates the specific
detection accuracy of YOLOv4, inwhichmost of the category
targets can be accurately detected. Only the barrier has a high
false recognition rate.

III. THE CONSTRUCTION OF WATER TARGET DATASETS
The quantity and quality of the datasets is a significant
influencing factor on the object detection method based on
deep learning strategy.

The water target primarily considers two application
scenarios: the first is object detection for obstacle avoidance,
which includes stumps, driftwood, seaweed, buoys, garbage,
people, and boats, among others; and the second is object
detection for operation functions, which includes fishnets,
barriers, cages, fakemen, and pontoons, among others.
Several common targets are displayed in Figure. 3, which
may represent the primary objectives of USV’s artificial
intelligence system.

There are four primary methods for obtaining water
target images: via open-source datasets, via mobile phone
photographs, via USV acquisition, and via web crawler. A eli-
gible image that fits the requirements undergoes numerous
phases during data processing, including frame extraction,
duplication removal, manual filtering, label annotation, and
data augmentation. Because the long-term movies acquired
with USV perception technology typically contain relatively
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FIGURE 3. Examples of water targets.

FIGURE 4. The method of annotating using a human-in-the-loop. To begin, we need manually label a set of images and train the
network synchronously until the network demonstrates preliminary detection capacity. New images will be predicted using the
network method. Then, based on the network prediction results, the professions manually adjust and audit. Continue this
process until we have all the labeled images and a network algorithm that works well.

similar scenes and objects, some frame extraction processing,
such as collecting a picture every 25 frames, is required.
Then, using the structural similarity (SSIM) [13] algorithm,
contrast analysis is utilized to eliminate duplications and
images that have more than 80% similarity. Following that,
manual screening will exclude undesirable photographs, such
as those with low quality and missing targets, as well as ones
that are too difficult to recognize.

A. HUMAN-IN-THE-LOOP ANNOTATION METHOD
The next phase is label annotation, which is a time-consuming
and tedious process. It is difficult for a manual to do
labeling work for an extended period of time, adhering to
tight standards and producing high-quality work. However,
the human-in-the-loop method [14] can significantly reduce
workload. Fig. 4 illustrates the process of intelligent data
labeling.

For instance, the process of a human-in-the-Loop data
annotation is logged in Table 2. Our team contributed approx-
imately eight members to this effort. Initially, we employed
the standard labeling approach, which was extremely slow,
costing approximately 50 days for 2913 effective labels.
In the subsequent stage, 4127 labels were labeled in around
20 days, resulting in a 3.5-fold increase in labeling efficiency.

TABLE 2. An instance of human-in-the-loop annotation.

While this is an approximation, the efficiency improvement
associated with the human-in-the-loop method is obvious.

B. MOSAIC DATA AUGMENTATION METHOD
To compensate for the lack of datasets, it is usually
necessary to perform some data augmentation. Typical data
augmentation techniques include horizontal/vertical flipping,
rotation/reflection, random scaling, random cropping, color
jittering, and adding noise. Additionally, Glen Jocher [9], [12]
advocated mosaic data augmentation as a strategy of more
efficiently enhancing data. In contrast to conventional
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FIGURE 5. A new method of data augmentation: Mosaic. During training
time, the network will randomly extract four images, and then extract a
random point near the center point of the augmented image, and then
align the extracted four images with this vertex through scaling and
clipping, and finally obtain a new image.

image data augmentation approaches [15], the mosaic data
augmentation method splices numerous images (often four)
into a single complete image, which has been shown to be
more successful for training.

The mosaic data preprocessing method is used in this
article, as illustrated in Fig. 5. After mosaic augmentation, the
region of large targets shrinks, allowing for increased training
of small targets, which benefits network recognition of small
targets.

C. WATER TARGET DATASETS
Following frame extraction, duplication removal, manual
filtering, human-in-the-loop label annotation, and data aug-
mentation, 9936 photos are chosen as the final water
target datasets. The dataset contains 13 different types of
objects categorized as fishnet, stump, barrier, cage, human,
driftwood, seaweed, pontoon, buoy, garage, boat, fakeman,
and metal. Table 3 summarizes the composition of the water
target dataset.

Due to the fact that a single image may contain numerous
categories and targets, the total number of photos is the
sum of all images that contain at least one of these targets.
By and large, these multi-target detection datasets suffer from
a serious sample imbalance problem.

Fig. 6 illustrates several targets. As can be observed,
the background region of photographs changes dramatically,
as does the label size of the target. For instance, some distant
boats have a pixel size of 10× 10 pixels. While the barrier in
the foreground has a wide pixel area, it can take up more than
60% of the entire image.

FIGURE 6. Examples of training samples.

TABLE 3. Water target datasets composition.

IV. IMPROVEMENT OF OBJECT DETECTION ALGORITHM
There are two issues with implementing YOLOv4: 1) the
inference speed of operation on the edge computing platform
is suboptimal; 2) the phenomenon of incorrect recognition
for a certain class is readily apparent. The following are the
corresponding improvement measures.

A. NETWORK PRUNING
Although the YOLOv4 network’s backbone ‘‘CSPDarknet-
53’’ offers exceptional feature extraction capability, the
repeating of gradient weights during network optimization
results in a huge amount of computation and a high inference
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FIGURE 7. The structure of pruned YOLOv4. The ‘‘conv’’ module represents the convolution layer. The ‘‘CB’’ represents the
structure contains a conv layer and a Batch Normalization [16] layer. The ‘‘Concat’’ means the combination or a shortcut of two
feature maps. The ‘‘Up Sample’’ represents an up-sampling operation, which makes the feature maps greater. And the ‘‘CSPX’’
module represents CSPDarknet structure, which combines the Cross Stage Partial Network [17] and ResNet [18], and the ‘‘X’’
means how many residual components are used. The ‘‘SPP’’ module represents the spatial pyramid pooling method [19]. All
module structures can be seen in paper [9].

TABLE 4. Comparison of each enhancement algorithm.

cost, making it unsuitable for deployment to edge computing
platforms. As a result, the backbone is appropriately lowered
in size to increase the network algorithm’s inference speed at
the expense of somewhat reduced average precision.

Fig. 7 illustrates the network structure after pruning. The
core concept of YOLOv4 stays the same, in which the input
module, neck, and prediction module have been lowered
in size. Only the backbone module has been decreased in
size. The backbone module in its original form contains
73 convolution layers. After pruning, 60 convolution layers
are used, significantly reducing computation.

Section IV.E Ablation experiment illustrates the per-
formance of the pruned YOLOv4 on the water target
datasets. Although 3.28% of mean Average Precision is
sacrificed in comparison to the original, the inference speed
is significantly increased by 66.81%, meeting the basic
requirements for USV detection.

B. FOCAL LOSS FUNCTION
Focal loss [20] is a loss function method for resolving the
object detection problem of imbalanced ratios of positive
and negative samples. The loss function, as the underlying
principle of difficult sample mining, reduces the weights of
several negative samples during the network optimization
process.

FL(p) = −α(1− p)γ log(p) (1)

As shown above, p represents the prediction probability, α
and γ are the preset adjustment parameter.

In a nutshell, focused loss is the process of augmenting
the cross-entropy loss function with adjustment parameters.
α and γ are concentration parameters that can be adjusted to
change the influence of simple samples seamlessly. Table 5
Ablation experiment shows the experimental outcomes from
this paper after applying the focal loss function to the pruned
YOLOv4. As can be seen, the difficult-to-identify barrier
class has been improved, while the mAP has also been
marginally improved.

C. BLANK LABELS TRAINING
In contrast to human cognition, when a neural network
encounters ‘‘new’’ items or scenes (such as categories not
included in the training set), it will make significant recog-
nition errors, which is referred to as a ‘‘fooling image’’ [21].
In practice, this manifests as severe false positives, when the
background or unknown object is recognized as some type of
water target in the datasets.

As illustrated in Fig. 8(a), the CNN model previously
displayed a significant misidentification phenomenon during
actual USV navigation. Due to the vision sensor’s location
onboard, it’s impossible to avoid shooting the surrounding
support pole and antenna cable. However, the water target
detection technology consistently incorrectly detects those as
navigation buoys located far from the sea.

To address this grave issue, it is vital to manage the net-
work’s false recognition rate in practice. As a result, images
with blank labels are used for network training, serving as
negative samples. By lowering the confidence in unknown
class recognition, the negative sample lowers the false
positive rate. Figure 8(b) depicts the experimental outcome.
Since that time, there have been almost no instances of false
identification.

It should be noted that this strategy will also improve
recognition accuracy; there is a trend toward increasing mAP
as the number of blank labels increases. As demonstrated in
Table 5 Ablation experiment, the mean Average Precision of
the detection findings increases to 81.27 % after adding the
blank label.

However, given the robustness and generalizability of the
network approach, this paper only adds 10% blank labels
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TABLE 5. Ablation experiment.

FIGURE 8. Comparison before and after the application of blank labels training.

(for example, if there are 7452 photos in the train datasets,
745 images with blank labels are added), while improving
performance (mAP index) by 2.02%. With the addition of
more blank labels, the gain in detection accuracymay bemore
noticeable. However, because this strategy may interfere with
the generalization of the network algorithm, it should be used
sparingly in practice.

D. PREPROCESSING BASED ON SPECIAL WEATHER
In different weather conditions, such as rain, fog, night,
and so on, the detection performance of the algorithm
can be improved after image enhancement. In the case of
bad weather conditions, the gray value of the image will
decrease, resulting in some targets cannot be recognized
by the network. References [9], [12] mentioned that data
enhancement of images before input into the network can
effectively improve detection accuracy.

The common methods of image enhancement are sum-
marized as follows: 1) The whole or local characteristics of
the image can be emphasized to make the original image
clear; 2) It is suggested that the differences between the
features of different objects in the image can be enlarged by
emphasizing some interesting features; 3) The suppression
of the features of interest can improve the image quality,
enrich the information quantity, and enhance the image
interpretation and recognition effect.

In this paper, five popular image enhancement methods
are applied, including linear transformation [22], histogram
normalization [23], gamma transform [24], global histogram
equalization [25], and contrast limited adaptive histogram

equalization (CLAHE) [26]. The experiment’s concept is
as follows: the water target image is enhanced and then
detected using the pruned network algorithm, and the results
are compared to the original image without preprocessing,
in order to investigate the effect of image enhancement on
water target recognition in various environments. It will be
determined during the enhancement operation by the image’s
gray value. Generally, the sample image’s average grayscale
value will be calculated and compared to the threshold value
(for example, 120). When the image’s average grayscale
value is larger than 120, no image preprocessing is required.
On the other hand, if the threshold value is less than
120, the image is not sufficiently clear and should be
enhanced.

The effect comparison of each enhancement algorithm is
shown in Table 4. The original detection’s mean Average
Precision can reach 79.25% without image enhancement.
Other algorithms have a slight negative impact on the
network detection, while histogram normalization has a
certain improvement on the performance, which can be used
as a practical enhancement method.

Generally, image enhancement should be used with
caution during adverse weather conditions such as gloomy,
rainy, or foggy days. Specific examination of a particular
problem, if performed harshly on large datasets, may be
counterproductive.

In this paper, we take histogram normalization method
for image enhancement on rainy and foggy days. Fig. 9
shows the comparison before and after histogram normal-
ization. Table 4 shows that the detection accuracy after
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FIGURE 9. Comparison of before and after histogram normalization.

FIGURE 10. The water target detection-tracking-color three-stage scheme.

histogram normalization reaches 80.03%. Compared with
the original detection, the mAP value increased by 0.78%.
Especially, only the average precision value of boat class
decreased slightly, while the AP value of all other classes
increased.

E. ABLATION EXPERIMENT
A comparison ablation experiment was conducted using the
above-mentioned enhanced approaches. Table 5 summarizes
the experimental findings. The mAP1 and Speed1 metrics
correspond to findings obtained on a high-performance
computer equipped with an Intel i9-7920x CPU and an
Nvidia RTX2080ti GPU. While the mAP2 and Speed2 are
the outcomes from the NVIDIA Jetson AGXXavier real-time
deployment platform.

Since the inference speed of the original algorithm after
deployment is only 15 FPS, which is far from the basic
requirements of USV real-time detection. After network
pruning, the network’s inference speed reached 26 FPS,
which fully meets the requirements of USV, while on the cost
of slightly detection accuracy decent.

V. OBJECT TRACKING AND COLOR DETECTION
ALGORITHM
Based on the optimization methods above, the USV intelli-
gent sensing system has satisfied the requirements of single

image detection preliminarily. However, object detection
in the continuous image sequences (video) and additional
information about the object are needed for the navigation of
USV. Therefore, this section mainly studies the application of
water target recognition based on the improved YOLOv4.

In order to meet the actual requirements of the automatic
navigation of USV, the water target recognition-tracking-
color three-stage scheme is proposed in this paper. As shown
in Fig. 10, the whole scheme is based on the object detection
network (the improved YOLOv4 algorithm above). When
the system starts to read the input video stream, the water
target detection network will output the category, confidence,
and bounding box of the object of interest in the first stage.
In the second stage, the object tracking network will use
the result of the object detection network as the tracking
template. Ship targets are usually set as the tracking objects,
and the results of the tracking network and the detection
network will be fused to generate the final output in the
object detection-tracking fusion scheme. In the third stage,
the color recognition algorithm will take the cropped sub-
image according to the detected bounding box as the input
image, and extract the main color of the target based on the
saliency recognition of the foreground. Navigation buoys and
ship targets are usually set as color detectable objects. The
details of object tracking and color detection algorithms will
be introduced in this section.
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FIGURE 11. The structure of the Siamese-RPN tracking network algorithm.

A. CASCADE OBJECT TRACKING METHOD BASED ON
SIAMESE-RPN NETWORK
If the object detection network is fed with frames in a
video frame-by-frame, the temporal context is missed, thus
causing unstable detection results, and even miss recognition.
Because there is a lot of redundancy between adjacent
frames, it is feasible to speed up the video detection without
hurting performance or to enhance the stability of video
detection [27]. To improve its stability in the actual navigation
of USV, this section studies how to use the object tracking
algorithm to assist the object detection algorithm in a cascade
way. The improved YOLOv4 also encounters the same
problem, when it is used for frame-by-frame video detection.
The shortcomings are concluded as follows:

1) In terms of accuracy, the object detection network with
high mAP suffers missed detection in long-time frame-by-
frame video recognition;

2) In terms of inference performance, the speed of frame-
by-frame object detection may be unstable.

To cover these two issues, a special target tracking network
is introduced as compensation. The object tracking network
algorithm will work by taking the template obtained from the
object detection network.

Object tracking is the process of locating moving objects
in video over time. According to the number of tracked
targets, it is classified as single object tracking (SOT) and
multi-object tracking. In this paper, we focus on using
SOT to enhance the stability of video detection. Early
approaches in SOT try histogram of oriented gradient (HOG)
features and kernelized correlation filters (KCF) to get the
heatmaps of the template image and the real-time image.
Then, the HOG features are replaced by a fully convolutional
network for the feature extraction of both the template image
and the real-time image [28]. Due to the same network
structure and weights, this network is called the Siamese fully
convolutional (Siamese-FC) network. Later, the Siamese-
RPN network algorithm [29] is proposed by cascading a
region proposal network [10] after the Siamese-FC. In this
paper, we use the Siamese-RPN to track targets such as ships.

As shown in Fig. 11, the network structure, this model is
composed of a Siamese sub-network for feature extraction
and an RPN sub-network for the determination of template
coordinates. In the Siamese sub-network, a simple improved
AlexNet [30] is used to generate the feature maps. In the RPN
sub-network, it is divided into two branches, in which the
classification branch determines background or foreground,
and the regression branch regresses the bounding box
coordinates. In detail, the KCF algorithm is applied to the
feature map of the template image and the feature map of the
real-time image first, resulting in heatmaps in feature map
level. The heatmaps will be used to judge the foreground
and regress the coordinate. Generally, this algorithm has
achieved accurate results with real-time inference speed,
however, Siamese-RPN also suffers when the image changes
quickly.

In order to improve the stability of video detection,
an object detection-tracking fusion scheme is proposed in
this paper. As shown in Fig. 12, the model is initialized
(the confidence threshold C0 and maximum tracking frames
T0 are set) at the beginning. Then the improved YOLOv4
algorithm will detect the input video frame and output
the bounding box D1, confidence C1 and class L. After
outputting the first frame, it will enter the object tracking
stage. According to the template and the real-time image in
the video stream, the Siamese-RPN tracking network will
output the bounding box D2D2 and the confidence C2. When
C2 < C0C2 < C0 or the tracking time is longer than the
maximum frames, the object detection networkwill be started
again, otherwise, the object tracking will continue. Finally,
the algorithm will end when the video stream is loading done.
From another perspective, this method can also be regarded
as an adaptive template update for object tracking [31].

In the real-time experiment of USV, it is found that the miss
rate of the proposed object detection-tracking fusion scheme
is greatly reduced compared with the original algorithm.
As shown in Fig. 13, the original network may have the
wrong detection results. For example, there are double boxes
at T = 1.72 moment (which means two bounding boxes
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FIGURE 12. The object detection-tracking fusion scheme.

FIGURE 13. Comparison of detection results after introducing tracking network.

detected by the same one person); at T = 1.95 moment the
object missed, and at T = 2.10 moment the bounding box
has low confidence. However, after integrating the object
and tracking method, these bad detections both have been
improved. In a word, frame-by-frame object detection cause
in miss detection long-time video detection, while the object
tracking network can greatly make up for the shortcomings
in real-time navigation of USV. These accurately detected
and tracked ship bounding boxes will constitute the ship
trajectory, which can be used for ship behavior recogni-
tion [15] and for promoting the intelligent vessel traffic
services [32].

B. COLOR DETECTION BASED ON LC SALIENCY
ALGORITHM
For the further needs of information perception, the water
target recognition system not only outputs the bounding box
but also needs to determine the main color of the target. The
key to judging the main color is to separate the foreground,
which can isolate the influence of the background color.
Therefore, this paper designs a color extraction scheme based
on the local contrast (LC) saliency algorithm [33]. The
principle of the LC saliency algorithm is to calculate the sum
of the distance between each pixel and all other pixels in the
image, which will be its saliency value.

Fig. 14 shows the process of color detection. Through the
bounding box detected by the network in the early stage, the
main region of the object is extracted. Then, according to

the LC saliency algorithm, the mask of the foreground can
be acquired. Based on the mask, only the foreground color
information can be counted, so as to eliminate the interference
of background color value.

After the foreground is extracted, the next step is to
determine the color category of the foreground region. In this
paper, color is divided according to the HSV (hue-saturation-
value) color model. In HSV color space, hue represents
the color information, in a computer image, whose value
ranges from 0 to 180; saturation represents the degree of
color approaching the spectral color, whose value ranges
from 0 to 255; and the value represents the color brightness,
whose value ranges from 0 to 255. There are different
opinions on the specific criteria of color division. The color
criteria adopted in this paper based on experiments are shown
in Table 6.

The last step is shown in the right part of Fig. 14.
The original image will be divided into three color
layers (H-S-V). According to the judgment basis in Table 6,
the color category of each pixel in the foreground area can
be judged. By the method of histogram statistics, the largest
number of color categories can be obtained as the main color
of the water target.

The color detection scheme in this paper can be summa-
rized as follows:

(1) Firstly, according to the bounding box detected by
the object detection network, get the main region of color
extracting.
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FIGURE 14. The water target color detection algorithm flowchart.

(2) The LC saliency detection algorithm is used to get the
foreground mask.

(3) The original image will be separated into H-S-V three
layers.

(4) Combining the mask, the foreground area’s gray value
histogram is calculated.

(5) The space of S and V layers is integrated to judge
whether it belongs to black, white, and gray color;

(6) If it doesn’t, it will judge which color belongs to which
according to the H space, and generally select the most colors
in the histogram.

At present, this method has a good detection effect for
objects with uniform color distribution, such as navigation
buoys, but it is not accurate for objects with complex colors.
The frequent histogram statistics and calculation of gray
value distance are also time-consuming, so this algorithm can
be greatly improved in the future.

VI. THE WATER TARGET RECOGNITION SYSTEM AND
EXPERIMENT RESULTS
To build the USV water target recognition system, it is
important to deploy the CNN model to an edge computing
platform and do some software engineering tasks such as
GUI development. Following that, the system was evaluated
in a variety of ways, including online learning and offline
navigation.

A. THE PROCESS OF DEPLOYMENT
Fig. 15 illustrates the deployment process. It is important to
complete model training on a high-performance computer,
which is typically accomplished using the efficient PyTorch
Deep Learning framework at this stage. It must first be turned
into a TensorRT model before being deployed on an edge
computing platform. Additional information is available in
NVIDIA’s official guide. This process may result in a loss of
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FIGURE 15. The deployment process.

TABLE 6. Color range judgment in HSV space.

prediction precision, which is mostly due to the quantization
of model weights from floating-point to integer quantities.
In general, the NVIDIA Jetson AGX Xavier edge computing
platform can be connected to the USV’s central control
system through a power cable, a connector (typically a USB
type-C connection), and an ethernet interface. By invoking
the video stream from the visual sensor, the system is able to
perform the ship’s real-time detection duty for aquatic targets.

B. ONLINE LEARNING RESULTS
Intel i9-7920x CPU, Nvidia RTX2080ti GPU, and Python3.8,
OpenCV3.4.2, CUDA10.1, cuDNN7.4, PyTorch1.6, and Ten-
sorRT7.0 software environment were used in this experiment.

The water target datasets are separated into training sets of
7452 images and test sets of 2484 images in a 3:1 ratio. The
initial learning rate is set to 0.01, the momentum parameter
is set to 0.937, the decay parameter is set to 0.000484, and

the Focal Loss parameter γ is set to 1.5. The loss function is
optimized using the adaptive moment estimating momentum
technique (Adam). When the training epoch reaches 286, the
network algorithm converges completely.

The final algorithm presented in this article is the outcome
of Section IV’s pruning, loss function modification, negative
sample processing, and picture enhancement. On a high-
performance computer, the detection accuracy is 81.74 per-
cent and the inference speed is 69.13 frames per second. After
deployment, accuracy reduces to 79.30 percent and comput-
ing speed decreases to 26.77 frames per second. Fig. 16 (a)
illustrates the AP indicators for each category on the high-
performance computer, whereas Fig. 16 (b) illustrates the
detection miss rate (b). Overall performance is excellent;
even the most difficult barrier targets are accurate to within
69 percent.

C. OFFLINE NAVIGATION
The detection results are presented in Fig. 17 after the system
described in this paper is deployed offline. Experiments
were conducted on four scenes, including a lakeside pier,
an interior river, the Pearl River estuary, and aerial images
captured by an unmanned aerial vehicle (UAV). By and large,
this method produces a high-quality detection effect that is
capable of successfully completing all types of water target
detection jobs.

In the scene of a lakeside dock, the man on the shore and
the ships swimming in the lake may be spotted correctly
and robustly However, it is discovered that the occlusion
condition may have a substantial effect, which requires more
optimization. We can see that the support pole and antenna
wire on the ship significantly blocked the camera during the
recognition process for Scene 2 inland river and Scene 3
Pearl River estuary. However, thanks to the blank label
training procedure described in Section IV-C, the algorithm
accurately and consistently recognizes the navigation buoy
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FIGURE 16. The detection results of the improved YOLOv4 algorithm.

FIGURE 17. The offline navigation of water target recognition system.

in the distance. Additionally, the system detects clearly in
Scene 4, whose images are transmitted through UAV from
aerial video. Additionally, it is a promising route for future
growth in terms of expanding the perception modes of USV.

VII. CONCLUSION AND FUTURE WORK
The purpose of this work is to investigate the lightweight
water target detection system based on USVs. To begin,
utilizing the human-in-the-loop technique, water target
datasets comprising of 9936 images were established. Then,
various techniques for optimizing the YOLOv4 algorithm
were considered: 1) We pruned the backbone to increase
inference speed to 26 FPS from 15 FPS; 2) We used the
Focal Loss function to correct for sample imbalance, which

resulted in a 0.33% increase in mAP; 3) We used the blank
labels training method to reduce false alarms in real-world
prediction, which resulted in a 2.02 percent increase in mAP;
4) Several preprocessing methods have been tried to improve
detection performance under adverse weather conditions,
with histogram normalization. Along with the enhancements
to the object detection network, we included a color detection
method based on the LC Saliency algorithm for improved
obstacle avoidance and cascaded a Siamese-RPN object
tracking network to boost the detection stability and real-time
performance. Finally, it is deployed on the NVIDIA Jetson
AGX Xavier platform for edge computing. The experimental
results demonstrate that the water target recognition system
is capable of operating in a complicated water target
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environment while maintaining its stability, speed, and
accuracy.

Water target identification is a rapidly growing field with
enormous potential. We describe three intriguing future
issues based on what has been accomplished: 1) Several
optimizations have been made to YOLOv4’s performance,
particularly in terms of inference speed, and we look forward
to the implementation of a lightweight vision Transformer.
2) Human-in-the-loop annotation improves dataset quality
control and speeds up labeling. A more precise and efficient
human-machine collaboration strategy will be developed in
order to achieve a better balance between annotation speed
and quality. 3) In the case of a detection and tracking fusion
network, the Kalman filter can be utilized to correlate targets
in the front and back frames.
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