
Received November 10, 2021, accepted December 5, 2021, date of publication December 27, 2021, date of current version January 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3138888

Performance of Machine Learning-Based
Techniques for Spectrum Sensing in
Mobile Cognitive Radio Networks
MURAD A. ABUSUBAIH 1 AND SUNDOUS KHAMAYSEH2
1Department of Electrical Engineering, Palestine Polytechnic University, Hebron 00970, Palestine
2Department of Computer Engineering and Information Technology, Palestine Polytechnic University, Hebron 00970, Palestine

Corresponding author: Murad A. Abusubaih (murads@ppu.edu)

ABSTRACT Communication technologies are evolving drastically in recent years. However, the scarcity
of spectrum began to appear with the accelerating usage of various communication technologies, as well as
the preservation of traditional channel access methods. Cognitive Radio (CR) is an innovative solution for
spectrum scarcity. Spectrum sensing is a key task of the CR life-cycle that gains significance as spectrum
holes can be detected during this task. This paper studies and compares the performance of the KMeans-
based spectrum sensing techniquewith the non-cooperative spectrum sensing technique, theAnd-based
spectrum sensing technique, and theOr-based spectrum sensing technique in stationary andmobile CR
networks (CRNs). The effect of the fading channel type has also been considered. Small-scale CRNs were
simulated using the third version of the network simulator. In this context, two models have been developed.
The first was built based on the well-known κ − µ general fading model to simulate the fading effects.
The latter is the noise model to simulate different noise conditions. The results reveal that spectrum sensing
techniques provide better performance in stationary networks as compared to mobile networks. Further,
our experimental results show that at least three secondary users and about 1500 samples are needed to
reach acceptable performance. In addition, the results show that the KMeans-based technique slightly
outperforms the Or-based technique, especially in highly noisy environments and under severe fading
channels.

INDEX TERMS Additive white Gaussian noise (AWGN), cognitive radio (CR), KMeans clustering, network
simulator 3 - NS3, propagation model, spectrum sensing techniques.

I. INTRODUCTION
Cognitive Radio (CR) is an intelligence system able to switch
between radio access methods as well as transmitting in
different portions of the radio spectrum, [1]. The reconfig-
urability of the CR passes through cognition tasks which are:
sensing the spectrum, analyzing the spectrum, and making
joint decisions on spectrum selections. Spectrum sensing (SS)
is the first task of the CR life-cycle that gains signifi-
cance since the spectrum holes can be detected during this
task. Spectrum sensing task operates in a non-cooperative
(Non-CSS) or a cooperative (CSS) modes, whereby the
secondary users (SUs) cooperate to determine the channel
state. There are a plethora of works of spectrum sensing
techniques in cognitive radio networks (CRNs).Most of these
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types are classified as energy detection-based, cyclostation-
ary matrix-based, and covariance-based techniques. Machine
learning-based techniques are another modern type of inno-
vative spectrum sensing technique [2]. In such methods, the
sensing process in detecting the primary user’s activities
passes through two phases which are: the feature extraction
phase and the decision-making phase.

Literature studies conclude that the performance of the
CSS schemes can be affected by many factors. First, the
number of collaborating SUs. Second, the PU transmit power.
Increasing the number of collaborating SUs and the PU
transmit power can improve the performance. Third, the
number of active PUs. Increasing the number of active PUs
can deteriorate the performance because of the high interfer-
ence. Finally, the number of training samples. Increasing the
number of training samples increases the classification time
and the computational complexity. However, these studies
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are conducted for stationary CRNs. As nodes in wireless
networks are normally mobile, studying the performance of
CSS techniques in mobile CRNs is crucial.

The contribution of this paper can be summarized as: firstly
we study and compare the performance of the Non-CSS,
the And-based, the Or-based techniques, as well as the
KMeans-based ML technique in stationary CRNs. In con-
trast to the majority of published research, we then examine
the performance of that mentioned spectrum sensing tech-
niques in mobile CRNs. Also, we try to grasp the effect of
the fading channels on the sensing performance. Moreover,
we try to find the optimal parameters that can improve the
performance of various spectrum sensing techniques. Finally,
we investigate the circumstances in which KMeans-based
spectrum sensing techniques provides superior to traditional
techniques.

The rest of this paper is organized as follows: Section II
provides a summary of some previous related works.
Section III describes the spectrum sensing problem, theo-
ries, and basic concepts. Section IV describes the system
model, while section V demonstrates the experiment’s setup.
Section VI discusses the results before we conclude the paper
in section VIII.

II. RELATED WORK
In machine learning-based (ML-based) techniques, the clas-
sifier can apply soft or hard combining schemes for decision
making after extracting features in the CSS mode. The deter-
mined type depends on the nature of the feature vectors. SUs
in hard combining schemes implement a mechanism to dig-
itize their local observation, while they explicitly exchange
their local decisions in soft combining schemes. And/
Or-based CSS techniques are the most common examples of
hard combining schemes. In the And-based CSS, the channel
is considered occupied if and only if all SUs determine that
the primary user (PU) is active. Unlike, the Or-based CSS
considers the channel to be busy if at least one SU deter-
mines that the PU is active, [3]. Classification of ML-based
CSS schemes, based on the type of ML algorithm, include:
(I) unsupervised-based CSS, (II) supervised-based CSS, and
(III) reinforcement-based CSS, [4]

In the unsupervised-based CSS, the features are fed into the
classifier without declaring their distinct labels. The k-means
algorithm and its updated version, fuzzy c-mean, as ML
classifier with feature extraction that based on energy detec-
tion (ED) were adopted in [5], [6]. In the ED-based scheme,
the Normalized energy determines the channel state at a pre-
determined threshold. Another scheme based on the geodesic
distance calculation was proposed in [7]. In this scheme, the
geodesic distance is used as feature vectors. These features
are derived from the sensing matrices and their Riemann
means. Reference [8], [9] proposed eigenvalue/eigenvector-
based schemes via applying the linear transformation on the
sensing matrix. The same scheme with the Gaussian Mixture
model was adopted in [10]. [11] introduces a signal process-
ing scheme that combines the empirical mode decomposi-
tion algorithm and the wavelet threshold algorithm in order
to remove the noise components and thus reduce the noise
effects.

In the supervised-based, the features are filled along with
their labels within the classifier to construct the final decision.

Huge research has been conducted based on the support
vector machine (SVM) [12], [13]. A probability vector with
linear and polynomial kernel was proposed in [12]. This
study aims to reduce the multidimensional energy vectors
to two-dimensional probability vectors thus less training
and testing time. Multi-class SVM for model large-scale
CRN with ED-based scheme was adopted in [14], [15],
whereas the supervised beamformer-based technique was
proposed in [16]. In order to implement Multi-class SVM,
an approach of classes coding is needed. For example, the
one versus rest approach characterizes a particular class as
a positive class and the rest as negative classes. Last but
not least, [17], [18] studies applying deep learning in the
sensing process.

Reinforcement-based techniques address specific prob-
lems such as power consumption level, throughput, energy
efficiency, etc. The classifier is given rewards when evalu-
ating its behavior. These awards are evaluated based on the
problems intended to be solved. Reinforcement-based CSS
techniques are not thoroughly studied in the literature. Sens-
ing policy based on ε-greedy policy was proposed in [19].
The reward in this study represents the immediate throughput
corresponding to the selected sub-band. Finally, an efficient
sub-band selection policy based on replicated Q-learning
was proposed in [20]. This technique introduces a partially
observableMarkov decision process that awards high rewards
for a large number of idle channels while otherwise being
awarded smaller rewards.

Though a lot of research has been invested in addressing
the efficiency of ML-based spectrum sensing techniques,
very few has considered the mobility effects [21] as well
as different types of fading channels [5], which we believe
would highly impact the results and thus constitute an impor-
tant gap to be filled out.

III. PROBLEM STATEMENT
During the spectrum sensing task, SUs learn and perceive
the surrounding environment, then detect the spectrum holes.
Each SU that has the right access senses the spectrum, then,
determines the PU signal existence. The channel is con-
sidered idle under the null hypothesis (H0) condition and
busy under the alternative hypothesis (H1) condition [1]. The
challenging problem is to find methods that accurately detect
the existence of PUs transmissions.

A. ED-BASED SCHEMES
Let the received signals samples received by the SU
denoted by Zn(k), where Z(k) is the energy value cor-
responding sample k. Therefor, the total energy (E)
is estimated by the nth SU as:

En =
1
K

K∑
k=1

|Zn(k)|2 (1)

K is the number of samples. SUs observe the communi-
cation channel in the sensing duration and then estimate
the value of E. The column vector from energy values
{E1,E2, . . . ,En, . . . ,EN }T is then used to determine the
channel state.
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B. KMEANS-BASED SCHEMES
The K-means algorithm maps the feature vectors to non-
overlapping clusters, at the nearest Cartesian distance. Each
possible cluster represents a set 9 and is indexed by j. So,
the KMeans-based methods try to find the Js of clusters
corresponding to various channel states. Each cluster has
its own centroid Cj that represents the cluster arithmetic
mean. Therefore, the objective function of the KMeans-based
CSS technique (i.e., the distortion function, 2) is to find
the minimum squared distance of overall clusters from their
corresponding centroid as shown in the following equation

2({9j},{Cj}) = argmin
J∑
j=1

∑
l∈9j

ηlj||l − Cj||2 (2)

where l is a feature vector and {.} reflects the cardinality of
9j and Cj sets. ||.|| is the `2-norm, ηlj takes 1 if l is belong to
9j and 0 otherwise. After training the clusters, the items and
the centroid of each cluster become known.

In the testing phase, the classifier becomes able to make
a suitable decision about the channel state, i.e., the channel
is available or not. Let l’ denotes the test vector, then the
decision making can be defined as:

||l ′ − Ci||
minj=1,...,J ||l ′ − Cj||

≥ ζ (3)

(here, Ci < min(Cj) usually represents the noise cluster). The
test vector l’ is classified to the cluster Ci if (3) is satisfied.
Otherwise, it is classified to the cluster Cj.
In the next sections we are interested in evaluating the

performance of ML-based spectrum sensing techniques in
mobile CRNs.

IV. SYSTEM MODELING
In this paper, we consider a small-scale CRN that consists
of a PU network placed in the center and N multiple SUs
around it. Two mobility scenarios are considered, which are
the stationary and the mobile CRNs (they are respectively
abbreviated StaCR and MobCR). The PU network in the two
scenarios is the same and consists of a fixed PU transmitter
(PU-Tx) and a fixed PU receiver (PU-Rx) placed at 15 meters
far from the PU-Tx. SUs in the first scenario are also fixed
and positioned 120 meters away from the PU network. In the
second scenario, SUs are mobile and move randomly in the
area (i.e., move in random direction and velocity). However,
both scenarios start with the initial configuration as shown in
figure 1.

Different levels of cooperation are considered. The non-
cooperative mode is firstly considered, in which only one
node participates in the sensing process. Then, different coop-
erative SUs (i.e., 2SUs, 5SUs, and 10SUs) are participating in
the sensing process. In addition, the effect of various fading
channels is examined. We adopt the general κ − µ fading
model. The general κ − µ fading model was first proposed
and examined in [22]. What makes this model preferable is
that completely different fading channels can be controlled
and modeled by two parameters of the distribution, the κ
and the µ.
The general κ−µ fadingmodel confirms that Rayleigh fad-

ing combines the Rician fading set and the Nakagami fading

FIGURE 1. System modeling.

set. Rayleigh fading can be simulated as κ approaches 0 andµ
equals 1. Different types of Rician fading can be modeled
by fixing the µ parameter and tuning the κ . Also, different
types of Nakagami fading can be modeled by fixing the κ
parameter and tuning the µ parameter. The experiments for
other types of fading channels were carried out for the
κ → 0, µ = 3.5 (Nakagami) and the κ = 2.65, µ = 1
(Rician).

V. EXPERIENTIAL SETUP
We used the well-known third version of the discrete-
event network simulator (ns3.30) to model a small-scale
CRN and to generate datasets. In this model, we assumed
that the PU network always operates at channel 36 of the
IEEE802.11n-5GHz wireless technology. The Wi-Fi mode
for unicast data frames is indexed to the ‘HtMcs6’ value
which is a metric to several parameters of the Wi-Fi connec-
tion such as the 64-QAM modulation type, the 3/4 coding
rate, and one spatial stream.

During the simulation time, the PU-Tx randomly broad-
casts 1500 byte-length UDP packets to the PU-RXwith a data
rate of 5Mbps. SUs must observe and estimate the instanta-
neous signal-to-noise ratio (SNR) of each packet for overall
decision making. In the simulation experiments, SUs listen to
channel 36 for 5 ms per second, then estimate the normalized
SNR over the entire simulation time. In our experiments,
we assume that the probability of PU-Tx activity is 0.5.

We aim at investigating the performance of the KMeans-
based technique as well as several other CSS technologies
in the general κ − µ fading channel. Unfortunately, the ns3
package has no such model of this type of fading. Therefore,
we developed our κ − µ fading model for the ns3 simula-
tor. Here, we employed the well-known rejection sampling
method to directly sample random variables from the κ − µ
distribution.

As aforementioned, ns3 is in nature a discrete-event simu-
lator. Thus, we can only track and extract the data when the
PU becomes active (i.e. during the ON-intervals). To over-
come this problem, we developed a noise model using the
python language. The noise model follows the Gaussian
distribution and can be controlled using the mean of the
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FIGURE 2. StaCR (left) vs. MobCR (right) of Rayleigh fading.

distribution (µ) as well as the standard deviation (σ ). Large
values for µ and σ indicate a very noisy environment while
lower values indicate a low-noise environment. The resulting
data was then combined with that of ns3 to obtain the com-
plete dataset for experiments.

While the modulation and coding index (MCS Index) was
set to ‘HtMcs6’. The packet size and the application data rate
were also set to 1500-byte and 5Mb/s respectively. We found
the best configuration of the noise model to generate
2-samples per time key (time key indicates the second’s
index, i.e., 2-samples/s). The best number of samples taken
during the sensing duration can be calculated by dividing the

sensing interval by the packet size and the application data
rate. This suits the data that was produced from the ns3 and
reflects the probability of the PU-Tx being active. Therefore,
the accurate selection of the MCS Index, the packet size,
and the application data rate have a direct effect on the
performance measurement.

VI. EXPERIMENTAL RESULTS & DISCUSSION
We started the experiments by assuming that the paramet-
ric noise model has −89.75 dBm and 1.0 dBm values for
the µ and the σ parameters. The low-noise environment,
abbreviated as Env1/1. Then, we raised these values to model
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different channel conditions. Table 1 above depicts the vari-
ous noise conditions that were considered.

TABLE 1. The different noise conditions.

A. STATIONARY CRN VS. MOBILE CRN
The experiments were initially carried out for the Rayleigh
fading (i.e., κ → 0 & µ = 1) and the low-noise environment
Env1/1. Figure 2 and figure 3 show that the performance
is generally better for the StaCR scenario as compared the
MobCR scenario. Figure 2a-left shows that the And-based
technique in the stationary mode and under Rayleigh fading
provides the worst-case that is close to the Non-CSS per-
formance. This is because when a SU wrongly detects the
presence of the PU, it affects the global decision made by
all SUs.

Figure 2a-left also shows that the Or-based and the
KMeans-based techniques have comparable detection
performance. In mobile CRN under Rayleigh fading, the
KMeans-based technique is slightly superior to the Or-based
technique, as clearly appears in figure 2a-right. However,
the Or-based technique gives a good performance while the
Non-CSS and the And-based techniques give a degraded
performance.

Figure 2b and figure 2c show that the number of samples,
M, has no clear effect on the performance, while the number
of SUs, N, have an obvious effect on the performance of
the KMeans-based technique regardless the mobility nature
of the SUs nodes. Figure 2b and figure 2c generally show
that we need about 1500 samples and at least 3 SUs to reach
acceptable performance.

Figure 2 confirms that employing more than 5SUs and
that above of 1500 samples for the sensing system does not
improve the efficiency or accuracy of the system. The results
also show that all techniques provide better performance with
StaCR as compared to MobCR. This is due to the more
dynamic nature of mobile channels, which introduces dif-
ficulties in identifying the presence of PU. This leads to a
higher probability of false alarm, Pr(FA).

B. THE GENERAL κ − µ FADING SETUP
The experiments for other fading channels type were carried
out for κ → 0, µ = 3.5 (Nakagami) and the κ = 2.65, µ = 1
(Rician). In Nakagami fading channels, figure 3a, and Rician
fading channels, figure 3b, it is clear that the KMean-based
technique and the Or-based technique almost provide compa-
rable performance that is better than the And-based technique
in stationary CRN. On the other hand, the KMean-based tech-
nique outperforms other techniques in mobile CRN. In fact,
when the κ and µ parameters increase, the performance of
CSS techniques is consequently improving. Thus, the char-
acteristic of the fading environment is highly affecting the

FIGURE 3. The performance of the various technique under the effect of
the different fading channels.

performance of all CSS techniques as shown in the figures,
figure 2a and figure 3.

Figure 4 illustrates the performance of the KMean-based
technique in Rayleigh fading compared to other fading dis-
tributions. Obviously, the results show that the performance
of the KMean is better in the Nakagami and Rician fading
channels. This is because when the value of κ or µ increases,
the dispersion of the faded signal decreases. As a result, the
distance between the clusters’ centroids increases.

Figure 4 compares the performance of the KMean-based
technique for StaCR and MobCR for those types of fading
channels as well. We found that mobility causes performance
degradation. Increasing the parameters κ and µ leads to a
decrease in the dispersion of the fading signal. In contrast,
the mobility increases the dispersion of the fading signal
due to the spatial diversity effects of mobile nodes. Thus,
the signal dispersion has a significant impact on the sensing
performance.

C. NOISY ENVIRONMENT
In noisy environment, it becomes difficult for SUs to truly
detect the presence of the PU signal. This is because they
become unable to determine the nature of the captured signal.
Figure 5 compares different CSS techniques in two different
noisy environments, Env1/1 (µ = −89.75, σ = 1.0) and
Env2/1 (µ=−88.25, σ = 1.5). It is clear that the performance
of CSS deteriorates in a high-noise environment, especially
for the And-based technique.

In StaCR, figure 5a, the performance of the KMeans-based
and the Or-based technique are comparable in a low-noise
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FIGURE 4. Comparison the effect of different fading channels on the performance of the KMeans-based technique.

environment. However, their performance is degraded in a
high-noise environment. The performance of the Or-based
techniques is slightly superior compared to the performance
of the KMeans-based technique. But, the KMeans-based
technique is obviously superior and more stable as compared
to other techniques in the MobCR, figure 5b. Further, the
results show that the performance of the And-based technique
is degraded.

Figure 6 depicts the KMeans-based CSS performance of
Rician fading. The data is depicted for two noisy environ-
ments, Env1/2 and Env2/1, which are characterized according
to table 1. Figure 6b and figure 6d show that the mobility
clearly affects the sensing data. The data is more dispersed in
the mobility scenario, leading to altering the place of the cen-
troids (i.e. the Euclidean distance in MobCR> the Euclidean
distance in StaCR). This means that mobility is inevitably
introduces low performance. Figure 6c and figure 6d show
the effects of the noise level on the sensing data. Clearly,
in the high-noise environment, the clusters becomemore con-
densed. Thus, clusters’ centroids becomemore close, causing
difficulties for the ML techniques to accurately classify the
sensed data.

Table 2 summaries the numerical results for the noisy envi-
ronments, Env 1/1 and Env2/1, under the effect of different
fading channels. The table depicts the probability of detec-
tion, Pr(D), verses different reference points of probability of
false alarm, Pr(FA), r1 = 5%, r2 = 10%, and r3 = 15%.
By comparing the measurements, it is clear that the Pr(D)
decreases when the noise level is high, thus the performance
in a high-noise environment (Env2/1, the second part of the
table) is degraded. The second rows of various fading chan-
nels shows that the performance of the And-based technique
is the lowest. The performance of this technique is far from
reaching the value of 90% for Pr(D) versus the value of 10%
for Pr(FA). For example, while the Pr(D) of stationary Rician
fading was approximately equal 80% versus 10% of Pr(FA),
it decreases too much less in most experiments (i.e., The
Pr(D) is even lower 20% with the MobCR).

The performance of the Non-CSS techniques is low as
shown in table 2. The Pr(D) was around forty percent versus
10% of Pr(FA) of the Rayleigh fading with Env2/1. table 2
also shows great convergence in the performance of the
Or-based and the KMeans-based techniques. They achieve

FIGURE 5. The performance of the various technique under the effect of
different noisy environments.

high performance that reaches 100 percent versus 10% of
Pr(FA) in the KMeans-based techniques under stationary
Rician fading and Env1/1.

Finally, figure 7 illustrates themobility and noise effects on
the performance of the KMeans-based technique for Rayleigh
fading. As seen, the best performance corresponds to the
lowest-noise environment, while the worst performance cor-
responds to the highest-noise environment. An exception
here to the mobility conditions, the MobCR introduces better
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FIGURE 6. Data clustering for different environments, [Rician, M = 1500s].

performance compared to StaCR in high-noise environments.
Actually, a deep thinking reveals that good performance
comes from balancing the parameters of the Gaussian distri-
bution and the parameters of the κ − µ distribution which is
achieved in the high-noise environment.

VII. LIMITATIONS AND DIRECTIONS FOR FUTURE
RESEARCH
We finish by the mention of some of the limitations and
directions for future research.

A. LIMITATIONS RELATED TO THE DERIVED FEATURE
VECTORS AND THE TYPE OF THE SPECTRUM
SENSING TECHNIQUES
In mobile networks, spatial diversity that results from the
different SUs’ positions and their movement may provide

useful information that can be utilized to accurately estimate
the channel states. The accurate estimate of the channel states
inevitably leads to massive improvement in the sensing per-
formance. Several ideas can be addressed under this direction.
Further research can be devoted to other ML-based spectrum
sensing techniques, such as the GMM.

B. LIMITATIONS RELATED TO THE TYPE OF NETWORK
TECHNOLOGIES, PROTOCOLS, AND STANDARDS
Correct tuning of sensing parameters, such as sensing dura-
tion and periods, probability of primary user activity, num-
ber of samples taken per sensing period, etc., has a direct
impact on sensing performance. The selection of the exact
values of these parameters is mainly modified based on the
type of simulated networks and their protocols. Here, some
limitations regarding network technologies and protocols
are clearly visual and are worth considering as directions
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TABLE 2. Summary of numerical results for the noisy environments Env 1/1 and Env2/1, [N = 5SUs, M = 1500s].

FIGURE 7. StaCR vs. MobCR of KMeans-base CSS for different noisy
environments, [Rayleigh, N = 5SUs, M = 1500s].

for future research. In fact, the standards that govern
these parameters constitute another aspect worth considering
as well.

C. LIMITATIONS RELATED TO THE SECURITY ASPECT
Whereas different levels of SUs’ cooperation are considered,
we assume that all SUs that participate in the sensing process
provide honest information about what has been observed
from their point of view. However, the security aspect may
be considered. Of course, if we assume scenarios when some
adversary nodes deliberately manipulate the sensing data in
order to falsy determine the channel state.

VIII. CONCLUSION
This work focused on the performance of KMeans-based
techniques in mobile CRN. The effect of the type of fad-
ing channel was also investigated. A small-scale CRN was
adopted and simulated using the well-known ns3 simulation
platform. The general κ − µ fading channel was considered.
The κ − µ fading signal was sampled using the well-known
rejection samplingmethod. As ns3 is a discrete-event network
simulator, there was a need to develop a noise model using
python language. Performance measurements have been per-
formed for the Non-CSS as well as for different types of CSS
techniques.

Our experimental results reveal that the KMeans-based
and the Or-based techniques with the stationary scenarios
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provide the best comparable performance. The And-based
and Non-CSS techniques provide the worst performance in
stationary scenarios. In mobile CR, the And-based and the
Non-CSS techniques provide highly degraded performance.
Also, the performance of the KMeans-based and the or-based
techniques is better as compared to the And-based and the
Non-CSS techniques, but at same time not better than the
stationary case. Further, the results show that at least 3+ col-
laborative SUs and at about 1500 samples are needed in order
to improve the performance of the KMeans-based and the
Or-based techniques. Finally, we found the performance of
the KMeans-based technique is stable in high-noise envi-
ronment as compared to the And-based and the Or-based
techniques.
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