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ABSTRACT Remote health monitoring has become a necessity due to reduced healthcare access resulting
from pandemic lockdowns and the increasing aging population. Electrocardiography (ECG) is the standard
for cardiac monitoring and arrhythmia identification, but it is inconvenient for long-time remote monitoring.
Recently, Magnetocardiography (MCG) sensors that operate at room temperature became available based
on spintronic sensors. However, MCG analysis is affected by the low-frequency noise present at the
sensors. In this paper, we present an artificial intelligence (AI)-aided multi-model pipeline combining two
AI architectures, defined as model-M1 and model-M2, targeted for ultra-edge Internet of Things (IoT)
sensors to simulate arrhythmia detection. Model-M1 is a denoising preprocessor based on a sliding-window
assisted deep-learning (DL) model. We investigate various methods to achieve high accuracy with
lightweight computation. Model-M2 is a lightweight DL model that analyzes denoised ECG output from
model-M1 to identify arrhythmia. We use multiple publicly available clinically annotated datasets to
evaluate our proposal. We find that denoising by model-M1 retains the features, which assist the model-M2
in achieving high classification accuracy, compared to using a conventional moving average filter. This
AI pipeline architecture is promising for privacy-preserving ultra-edge medical sensing devices.

INDEX TERMS Remote health monitoring, arrhythmia, Internet of Things (IoT), electrocardiogram (ECG),
magnetocardiography (MCG), deep learning (DL), spintronic sensor, convolutional neural network (CNN),
medical analytics.

I. INTRODUCTION
With the recent advancement of the Internet of Things (IoT),
the Internet of Medical Things (IoMT), and Artificial Intel-
ligence (AI) the remote health monitoring has significantly
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approving it for publication was Giovanni Dimauro .

evolved [1], [2]. Even with the massive technological push
towards smart and connected healthcare systems, health
monitoring in remote/non-clinical settings for an extended
period still exhibits various challenges. Numerous wearable
devices and smartphone-based applications are now available
to observe heartbeat variability and even electrocardiogra-
phy (ECG). Although these technologies are non-invasive,
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FIGURE 1. (a) Traditional cardiac monitoring, and (b) our proposed AI-aided MCG monitoring system for cardiac monitoring,
including a schematic of the MTJ sensor and the outline of a lightweight AI pipeline.

their diagnosis capability is not up to the mark when com-
pared to the standard clinical-grade ECG machines. Cardiac
well-being is a vital concern globally, and detecting heart
abnormalities such as arrhythmia requires monitoring in a
non-intrusive way and for a long time [3]. We need to shift
our focus on cardiac activity monitoring in a non-intrusive
approach and analyze the cardiac status at the IoT edge
level.

Cardiovascular diseases (CVDs) are still the leading cause
of death worldwide, accounting for approximately 30% of
all deaths, and according to American Heart Association
(AHA), CVD expenditures will drastically increase in the
coming years [4]. Irregular heartbeat, cardiac arrhythmia
(CA), is a dominant cause of CVD [5]. Arrhythmia can
happen suddenly and needs urgent medical care [6]. Hence,
we picked the use-case of cardiac arrhythmia (CA) classifi-
cation from a diverse set of use cases. With multiple waves
of the novel coronavirus disease (COVID-19) [7], [8], the
need for remote cardiac monitoring or arrhythmia detection
has become even more critical than before [9], [10]. Access
to healthcare got reduced in many regions. For example,
40% of adults in the USA have decreased access to regular
care, even with patients at cardiac underlying conditions
risks [11]. A similar 20–40% decrease in out-patient visits
is also observed in Japan [12]. Hence, continuous cardiac
monitoring is vital in remote/non-clinical healthcare settings.
For arrhythmia detection, ECG is usually employed [13].
The typical wearable technology-based heart monitoring
is not accurate enough, and the standard multi-lead-based
clinically-graded ECG is non-invasive, but not suitable for
continuous remote monitoring (Fig. 1(a)). Magnetocardio-
graphy (MCG) monitoring potentially offers a more direct

mapping to cardiac activity, and it is less intrusive compared
to ECG [14]. Conventional MCG devices are based on super-
conducting sensors that require cryogenic cooling, barring
them from wide adoption. Recently, MCG sensors based on
spintronic magnetoresistive sensors were demonstrated by
various groups, including ours [15]–[18]. The basis of the
magnetic field detection is the change of resistance, due to
quantum tunneling effect through a thin insulator between
two magnetic layers (inset of Fig. 1(b)), thus named magnetic
tunnel junction (MTJ) sensors [19], [20]. Ultra-sensitiveMTJ
sensors were developed to measure both of the cardiac and
brain magnetic signals, i.e.MCG and magnetoencephalogra-
phy (MEG), at room temperature [15], [18], [21]. The R-peak
in the MCG was observed without using averaging. Also, the
significant QRS complex was identified with a high signal-
to-noise ratio by averaging for a few seconds. A differential
benefit of MCG is the high spatial resolution in real-time,
compared to ECG, which can potentially improve cardiac
diagnosis [14], [17]. The MTJ sensors offer a low-power
operation at room temperature, and they can be incorporated
inside integrated circuits on silicon wafers. With the aid
of IoT systems, cost-effective spintronic-based point-of-care
(POC) systems utilizing wireless technologies to deliver data
efficiently are an effective solution with little requirement for
maintenance [22], at diverse regions with dense populations
or under-served remote regions.

The use of remote IoT medical devices also entails the
classification of CVDs from cardiograph data. Sophisti-
cated AI models are proposed in different studies that use
ECG data. It is critical to identify CVDs, such as CA,
as early as possible, and perpetual ECGmonitoring is needed.
The traditional Holter machine-based approach of long-term
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ECG monitoring is intrusive and costly, and it interferes
with subjects’ regular lives. Innovative portable sensors and
machine learning (ML) algorithms that provide near-real-
time diagnosis and developments in cardiovascular mon-
itoring technologies can supply personalized health care
services [23]. Cloud-based AI analytics is used to address this
problem and incorporate some degree of automation into the
ECGmonitoring system, in which the ECG signal is typically
transferred employing wireless communication techniques
(e.g., Bluetooth, 3G/4G, Zigbee, Wi-Fi) to the IoT system for
cloud-based data analysis [24], [25]. In the existing literature,
various DL-based methods for detecting heart arrhythmia
have been employed where most approaches focus on the
utilization of ECG signals as data [26], [27]. In terms of the
DL-based architecture, variations on deep convolution neural
network (CNN) and recurrent neural network (RNN) models
were employed to identify and classify cardiac arrhythmia
or irregular heartbeats from ECG traces [28]–[34]. However,
these techniques are not resource-efficient as they induce
high computational complexity, especially when deployed in
an edge sensor [35], [36]. Furthermore, these ECG-based
monitoring approach is not suitable for long-term remote
non-invasive monitoring of subject’s cardiac acitivity.

In this paper, we focus on proposing the remote monitoring
modality of magnetocardiography (MCG), replacing ECG
remote monitoring by using spintronic MTJ sensors, and how
to incorporate lightweight AI models for ultra-edge analytics.
The contributions are outlined as follows.

1) We propose a system to collect the MCG data in a
portable and non-intrusive manner utilizing spintronic
magnetic tunnel junction (MTJ) sensors. We refer
to this conceptualized system as the ultra-edge sen-
sor/node, which would operate at room temperature in
a remote cardiac monitoring environment, as depicted
in Fig. 1.

2) We identify the key technical challenges associated
with the conceptualized MCG monitoring ultra-edge
node for continuous cardiac monitoring. Most of the
information of the cardiac activity is skewed to lower
frequency side within f = 0.1–30 Hz, where f is the
spectral frequency. At this very low frequency band,
electronic and magnetic noise sources become signifi-
cant. Most significant low-frequency noise source is of
magnetic origin arising in the sensors, which exhibits
as time-correlated flicker noise [21], [37]. The power-
spectral density (PSD) of this noise is inversely propor-
tional to the spectral frequency (i.e., 1/f ). Therefore,
cardiac activity has the same spectral features as the
sensor noise, complicating processing and diagnosis.
The separation between the noise and relevant signal
becomes a formidable challenge, which conventional
linear filters cannot solve. Popular noise filtering meth-
ods fail to efficiently treat the 1/f noise because of
the spectral similarity of the noise and heart-generated
signal [38]. We address the denoising of MCG data by
exploring various deep learning (DL)-based techniques

to reconstruct ECG traces. We analyze three variations
of the DL-based methods, namely a customized con-
volutional neural network (CNN) that includes tem-
poral information, a combination of the custom CNN
and a gated recurrent unit (GRU) layer [39], and a
combination of the custom CNN and a long short-term
memory (LSTM) layer.

3) After minimizing the noise from the MCG, we uti-
lize the AI-aided lightweight Deep Learning-based
Lightweight Arrhythmia Classification (DL-LAC)
model designed in one of our previous works, to detect
arrhythmia heartbeats [40]. Thereby, as manifested in
Fig. 1, our focus in this work is to combine the pipeline
of DL-based MCG denoising to obtain ECG, and by
analyzing ECG, arrhythmia can be detected with high
efficiency and accuracy. We employ multiple publicly
available datasets in order to validate the performance
of our proposed methodology via conducting com-
prehensive computer-based simulations. The proposed
method can be a proof-of-concept for remote cardiac
arrhythmia monitoring via analyzing MCG data col-
lected in a non-invasive manner.

The remainder of this paper is organized as follows. Our
proposed AI models and AI methodology pipeline are pre-
sented in section II. Section III manifests the algorithm for the
considered arrhythmia classification task by analyzingMCG.
Via extensive experimental simulations, the performance of
our proposal is evaluated in section IV. Finally, section V
concludes the manuscript.

II. PROPOSED SYSTEM MODEL
In this section, we envision an AI-enabled multi-model
pipeline that can identify cardiac arrhythmia by analyzing
MCG signals (Fig. 1(b)). First, we develop a preprocessing
technique for the MCG temporal data, so that the signals
are organized and passed to the convolution layers of a one-
dimensional (1-D) CNN model. Then, we investigate how
to build, train, and fine-tune a customized model (referred
to as model-M1) to mitigate the 1/f noise from the MCG
signal, so that the trained model can be deployed to the
MTJ sensor. The motivation for using DL is to explore the
automatic search for the optimal filtering techniques, which
can be applied to various other applications. Lastly, we trans-
mit the noise-eliminated ECG obtained from model-M1 to
the DL-LAC model (referred to as model-M2). The model-
M2 analyzes the data to produce the heartbeat classes for
arrhythmia detection.

A. DATA PREPARATION AND PREPROCESSING STAGE
We consider noisy MCG data as the input and the cor-
responding ECG data as the labels for the training data.
The detailed preprocessing and random sequencing of MCG
segments for overfitting resilience to generate the train-
ing dataset is depicted in Fig. 2. In comparison to the
traditional input characterization of a convolution layer
whereby the whole MCG training data would be passed to
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FIGURE 2. Data preprocessing methodology for non-intrusive MCG to ECG
noise minimization before passing to model-M1.

the CNN for training, we divide an MCG cycle into nmcg
number of smaller MCG segments, each with a window size
of δ. EachMCG segment of size δ is mapped to one ECG sam-
ple point during the training phase. This chopping mapping
mechanism from input (MCG) to output (ECG) assisted the
model-M1 in obtaining better performance. Our systematic
investigation reveals that the MCG segments result in data
overfitting when sequentially placed in the training dataset.
Therefore, the split MCG segments are arbitrarily provided to
the CNN layer via shuffling the training segments. However,
in the test/inference phase, the MCG segments are given
sequentially as input to the trained model-M1 to obtain a
real-timemapping of a givenMCG segment to its correspond-
ing ECG representation. Each ith MCG segment, denoted by
[Xi,Xi+1, . . . ,Xi+δ] is passed to the model-M1 for training
and corresponding ECG denoised sample, denoted by yi is
obtained as the output.

B. PROPOSED CNN MODEL STRUCTURE FOR MCG
DENOISING (MODEL-M1)
A one-dimensional custom CNN is developed and is used
as a DL-based solution as model-M1. The proposed CNN
model can be outlined as a shallow and simple combination of
convolution and fully connected layers. Fig. 3 represents the
high-level structure of the proposed model. Here, the model
receives the raw MCG segment as input and generates the
corresponding ECG sample as output which is later passed
to model-M2. The convolution (1D) layer receives the raw
MCG segments and extracts relevant features from the MCG,
which is then passed through the fully-connected dense layer.
The dense layer is followed by the output layer of model-M1
with a linear activation function. The output layer produces
one ECG sample prediction for each MCG input segment.

Let the input layer comprise Nm1 units. Assume that the
stride length of the convolution layer is sm1. Using γm1 num-
ber of filters on the input MCG segment, the convolution is
performed, generating feature maps of size (Nm1−km1+1)×
γm1. The ith output of the convolution layer, denoted by yi, can

FIGURE 3. The proposed architecture of the model-M1 leveraging custom
CNN structure for the considered MCG denoising task.

be outlined as follows:

y = �m1(
∑
j∈γm1

(xj ∗ wj + bj)) (1)

Here, x denotes the input MCG segment, and�m1 refers to
the activation function. Also, w and b refer to weight vector
and bias. This convolution operation is carried out using the
number of filters, γm1 on the input MCG segment.

C. AI MODEL FOR ARRHYTHMIA DETECTION
(MODEL-M2)
This sub-section depicts the lightweight heartbeat clas-
sification technique for arrhythmia detection using the
denoised ECG obtained frommodel-M1, which can be imple-
mented and integrated with AI-assisted ultra-edge IoT nodes.
A lightweight classification model is essential for integrat-
ing the AI-aided framework at the ultra-edge IoT nodes
for more agile and real-time analysis. One of our previous
works established that the deep learning-based lightweight
arrhythmia classification (DL-LAC) model outperforms tra-
ditional machine learning models such as random forest and
K-nearest-neighbour in terms of accuracy and computational
expense. Hence, in terms of choosing model-M2, we have
employed the DL-LAC framework to detect irregular cardiac
status by utilizing single-lead denoised ECG obtained from
model-M2 [40]. Fig. 4 illustrates an overview of the architec-
ture of the DL-LAC, which was considered for the model-M2
in the arrhythmia detection task. Themodel receives denoised
ECG from model-M1 as input and generates heartbeat labels
as output. The ECG input data size is validated in the data
size validation phase, where heartbeats with enough sam-
ples are considered to be passed to the model. The model
consists of two main components: automated feature extrac-
tion (AFE) and automated classification (AC). The feature
extraction is conducted by a stack of nlAFE convolution
layers. The AC module and the final output layer generate
the heartbeat classes. All the details about the model-M2
hyperparameters are listed in our previously published
manuscript [40].
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FIGURE 4. The brief architecture of DL-LAC, used as the model-M2. The
model-M2 receives denoised ECG as input and produces heartbeat labels
as output to detect arrhythmia at the ultra-edge node. The model was
initially proposed in [40].

III. PROPOSED DEEP LEARNING-BASED ALGORITHM
In this section, the steps of the training/learning and inference
phases of our proposed technique are depicted.

A. LEARNING PHASE USING MODEL-M1
Algorithm 1 demonstrates the steps of selecting the best
DLmodel structure as themodel-M1 for noise reduction from
MCG data. The algorithm takes training and validation data
as input. Algorithm 1 is utilized in the training/learning phase
at algorithm 2.

Algorithm 1 returns the best-performing model, proposed
as the model-M1, which is later employed as a pre-trained
model in the running/inference phase. Next, all the neces-
sary parameters are initialized in steps 1 to 5. Some notable
hyperparameters are γm1, km1, εm1 that indicates initialize
the number of units, filter size, and the number of epochs,
respectively. Then, the exploration is conducted for three
DL variations (i.e., CNN, CNN-LSTM, and CNN-GRU) and
a set of activation functions and optimizers, defined in the
nested iterative loops in steps 6 to 8. From step 9, searching
for the best DL structure begins by initializing the convolu-
tion layer with the essential hyperparameter values. Then, in
steps 10 to 15, the algorithm checks for the GRU and LSTM
layer to be addedwith the convolution layer if the correspond-
ing conditions satisfy and update the structure of the current
model (denoted by currModel). Afterward, the training of
the current model is done in step 16 with the training data,
and the training loss (lossCurr) of the model is computed in
step 17. Finally, the current model’s performance is compared
with the existing best-performing model. If the current model
outperforms the previous best one, then the model is stored.
Lastly, step 25 returns the best model for future use in the
inference phase.

The algorithm of the learning/training phase is described in
Algorithm 2. It takes the location of data as input (denoted as
datapath) and stores the best selected trained model. In the
first step, the striding window size (δ) is determined and

Algorithm 1: Model Structure Selection of
Model-M1

Input: Xtrain (training MCG data), ytrain
(training ECG target), Xval
(training MCG data), yval
(training ECG data)

Output: bestModel (best performing
model-M1)

1 allModelTypes ← [cnn, cnnLstm, cnnGru]
2 γm1, km1, εm1 ← initialize the number of

units, filter size, and number of
epochs

3 bestScore ← ∞

4 bestModel ← ∅

5 activations, optimizers ← initialize the list
of activation functions and optimizers
for the model-M1

6 foreach modelType ∈ allModelTypes do
7 foreach �m1 ∈ activations do
8 foreach σm1 ∈ optimizers do
9 currModel ← load convolution

layer with γm1,m, �m1, σm1, εm1
10 if (modelType = cnnLstm) then
11 add LSTM layer to currModel
12 end if
13 else if (modelType = cnnGru) then
14 add GRU layer to currModel
15 end if
16 train and update model weights

of currModel using Xtrain and ytrain
17 lossCurr ← evaluate loss

function value of model
currModel using Xval and yval

18 if (lossCurr < bestScore) then
19 bestScore ← lossCurr
20 bestModel ← currModel
21 end if
22 end foreach
23 end foreach
24 end foreach
25 return bestModel

Algorithm 2: Training/Learning Phase of Model-M1
Input: datapath (training data location)

1 δ ← initialize striding window for MCG
segment

2 D ← load all training data from datapath
3 D ← generate synthetic MCG data by

adding low-frequency 1/f noise
4 Dseg ← []
5 for (i = 1 to length(D)− δ) do
6 Dseg ← append D[i : i+ δ] to Dseg
7 end for
8 Xtrain, ytrain, Xval, yval ← prepare the

training and validation data,
respectively, from Dseg based on the
split ratios

9 modelm1 ← obtain best model-M1 structure
by calling Algorithm 1 with arguments
Xtrain, ytrain, Xval, yval

10 save model parameters of modelm1

initialized for MCG segmentation. Then the training data
is loaded, and 1/f noise is added to generated synthetic
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MCG data in steps 2 and 3, respectively. Next, in step 4, the
list for storing segmented MCG data is introduced, denoted
by Dseg. Then, in steps 5 to 7, the initial training data is seg-
mented with δ and saved intoDseg. Next, step 8 split theMCG
data into training and validation data and stored accordingly.
Then the best model-M1 structure is returned in step 9, where
Algorithm 1 is utilized with appropriate training and valida-
tion data. Finally, the best model-M1 structure is saved along
with the model parameters for further utilization as a pre-
trained model-M1.

The training algorithm of model-M2 is presented in our
previous work [40], and hence we are only exhibiting the
inference phase implementation of both models in the fol-
lowing sub-section.

B. INFERENCE PHASE USING BOTH MODEL-M1 AND
MODEL-M2
In the running/inference phase, the algorithm proposed
with pre-trained model-M1 and model-M2 is exhibited in
Algorithm 3. It takes the location of test data for inference
and returns the predicted class labels (ypred ) for the corre-
sponding data sample. After loading the testing data from
step 1, the pre-trained model-M1 and model-M2 (defined as
modelm1 andmodelm2) are loaded in subsequent steps 2 and 3.
In step 4, the model-M1 is utilized to predict the ECG of
each corresponding MCG record and store the prediction
in ecgpred . Next, the DL-LAC model, which was proposed
in [40], is used as our proposed model-M2 to generate one of
the four heartbeat class labels by using the predicted heartbeat
(ecgpred ). At the penultimate stage, the class label with the
maximum probability is chosen as the final class of each
heartbeat sample. Lastly, the predictions list is returned in
step 7, which concludes the running algorithm workflow.

Algorithm 3: Inference/Test Phase
Input: datatest (test data location)
Output: ypred (heartbeat class

predictions)
1 Xtest ← load all test MCG data datatest
2 modelm1 ← load pre-trained model-M1

parameters trained using Algorithm 2
3 modelm2 ← load pre-trained model-M2

parameters from DL-LAC model designed
in [40]

4 ecgpred ← use modelm1 to predict ECG
heartbeat by denoising MCG data

5 yprob ← predict the class probabilities
for ECG heartbeat ecgpred employing the
model modelm2

6 ypred ← argmax(yprob)
7 return ypred

IV. PERFORMANCE EVALUATION
This section assesses the proposed technique’s effective-
ness using extensive computer-based experiments depending
on synthesized noisy MCG data obtained from a publicly
available ECG dataset named PTB Diagnostic ECG

Database, referred to as DS1 [41]. The noisy MCG signals
are generated from actual ECG data arranged unbiasedly
with realistic specifications to establish a substantial training
dataset. The proposed AI-aided model can be shifted to the
MTJ sensor and then used to minimize noise from MCG,
employing ultra-edge logic-in-sensor functionality after the
learning/training phase. After obtaining the filtered ECG
from the noisy MCG data, we use the DL-LAC model
(refereed as model-M2) to get the arrhythmia detec-
tion results. Four different real and publicly available
arrhythmia datasets are employed to verify the efficiency
of the arrhythmia classification task by using the ECG
obtained from the MCG. We have utilized a machine with
Intel Core i7, 3.00GHz central processing unit (CPU),
16 GB RAM to implement the experimental simulations.
We have also employed an Nvidia RTX 2060 graphics pro-
cessing unit (GPU) to expedite the computing speed. The
simulations were conducted with multiple Python libraries
(i.e., Scikit-learn, NumPy, Scipy, Pandas, and Matplotlib
libraries) for data processing and illustration to assess the effi-
ciency of our strategy. TensorFlow 2.0 and the Keras Python
library are used to implement the DL models. We compared
our proposed DL-based method to the MA filtering using
various performance indicators.

The simulation phases can be summarized into mainly two
phases:

1) First, to choose the best structure of the model-M1
and the optimal values of hyperparameters. Among
several hyperparameters, we only optimized two vital
hyperparameters of model-M1 (i.e., optimizer and acti-
vation functions) [42]. Then, we considered stacking
multiple configurations with various RNN-based layers
(i.e., GRU and LSTM layers) with the convolution
layer. Then, we compared the performance of CNN,
CNN-GRU, and CNN-LSTM models and selected the
most appropriate model architecture for further inves-
tigation. PTB Diagnostic ECG Database, referred to as
DS1 [41], was employed for this simulation phase.

2) Phase 2: After selecting the appropriate computa-
tional technique (i.e., model-M1) for MCG noise min-
imization, we passed the ECG signal obtained from
denoised ECG data to the DL-based model for iden-
tifying the presence of arrhythmia heartbeats. We have
utilized the previously proposed DL-LAC model [40],
referred to as model-M2, to detect irregular arrhyth-
mia heartbeats automatically in a lightweight manner.
We have employed multiple publicly available datasets
obtained from PhysioNet [43], specified as MIT-BIH
Supraventricular Arrhythmia Database (DS2) [44],
MIT-BIH Arrhythmia Database (DS3) [45], St Peters-
burg INCART 12-lead Arrhythmia Database (DS4),
and Sudden Cardiac Death Holter Database (DS5) [46].

A. DATASET PREPARATION
For denoising MCG task, we have employed synthesized
MCG obtained from ECG cycles of the publicly available
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TABLE 1. Frequency of heartbeats of each class in DS2, DS3,
DS4, and DS5.

PTB Diagnostic Database [41]. The dataset arrangement
steps are mainly replicated from our previous work in [39] by
adopting ECG traces from lead II of all the subjects. The ECG
cycles are segmented into individual heartbeats beginning
with the R wave to the subsequent QRS complex. Each ECG
trace was upsampled to a sampling frequency of 2000 Hz, and
then we added low-frequency 1/f noise to reflect the spectral
characteristics of the MCG signal. The MCG and actual ECG
cycles are utilized for training the DLmodel after the data has
been collected and preprocessed.

After obtaining the denoised ECG cycles from the first DL
model (model-M1), we then employ the pre-trained DL-LAC
model (model-M2) to classify arrhythmia in a lightweight
manner. The data preparation steps are primarily comparable
to our previous work [40]. We have considered 100 sam-
ples in each ECG heartbeat for both the learning/training
phase and inference/testing phases. For arrhythmia detection,
we have considered ECG signal as the input, denoted by
X = [x1, x2, . . . xN ], and the model-M2 outputs heartbeat
labels denoted by y = [y1, y2, . . . yN ]. In the considered
experiments, yi represents one of four separate ECG heartbeat
class labels denoted as N, S, V, and F, representing nor-
mal, supraventricular ectopic, ventricular ectopic, and fusion
heartbeat, respectively. The details of the four datasets are
listed in Table 1.

B. RESULTS AND DISCUSSION
In this sub-section, we illustrate the results of our extensive
simulations in two separate phases. In phase 1, we have
noted the results while choosing the best DL-based model
among three candidate DL models. After selecting the DL
model structure of model-M1, in phase 2, we have listed the
classification performance when the model-M1 is combined
with previously proposed DL-LAC as the model-M2.

1) PHASE 1 (SELECTION OF THE APPROPRIATE MODEL-M1)
In simulation phase 1, to determine the best configuration
(i.e., hyperparameters) of the DL-based model-M1, we use
the synthetic MCG data from DS1 as input and obtain actual
ECG as the model’s output. Three variations of DL methods
are considered, namely, CNN, CNN-LSTM, and CNN-GRU.
As for performance metrics, several quantitive and qualitative
indicators are considered. We analyze the power spectral
density (PSD) dependence of the remaining noise, the noise

reduction factor, and the Root Mean Square Error (RMSE) to
compare how each method performed in the MCG to ECG
prediction task. Furthermore, we also compare the output
of the three DL-aided models visually to get an intuitive
understanding of how the models are performing in terms
of the MCG denoising task to obtain ECG signals. Finally,
we have also compared the methods in terms of average pre-
diction time to get a quantitive idea about the computational
requirement of the model-M1.

Firstly, we have tuned some of the significant hyper-
parameters of the candidate model-M1 (i.e., CNN, CNN-
LSTM, and CNN-GRU). The spectral characteristics of the
remaining noise of each technique (i.e., MA and three DL
variations) are compared by analyzing the PSD dependence
and the noise reduction factor in Fig. 5. Note that the
spectral frequency is normalized by the sampling frequency
(f /fs, fs = 2 kHz). Employing the manual tuning technique,
the hyperparameters of the DL models are tuned. Our search
space consisted of the activation functions rectified linear
unit (ReLU) [47], Sigmoid, Tanh, and exponential linear unit
(ELU) [48] along with stochastic gradient descent (SGD),
root mean square propagation (RMSprop), adaptive moment
estimation (Adam), adaptive delta (Adadelta), adaptive gradi-
ent algorithm (Adagrad), Adamax, and Nadam as candidate
optimizers [49]. We have utilized the set of optimizers and
activation functions to determine the best hyperparameters
for each of the three DL model variations. Some of the other
essential hyperparameters are set without further optimiza-
tion. The convolution layer in the DL models consists of
300 filters, and the fully-connected layer contains 300 nodes.
The learning rate of all three models is set to 0.001. The
models are trained for 100 epochs with early stopping criteria
of 5 epochs to avoid overfittingwhile training themodels. The
CNN-LSTM and CNN-GRU models are designed to have
an LSTM and GRU layer after the convolution layer. Both
LSTM and GRU layers in the CNN-LSTM and CNN-GRU
models consist of 300 nodes and a recurrent dropout of 0.5 to
avoid overfitting.

The best optimizer and activation function for the CNN
model are Adagrad and Sigmoid; for the CNN-LSTMmodel,
the most suitable optimizer and activation function are Ada-
grad and ReLU; and for the CNN-GRU model, the best
performing optimizer and activation function are Nadam
and ReLU. Hence, we have selected these hyperparameters
as the most suitable ones for each DL model variation.
As manifested in the PSD graphs, all the DL-based varia-
tions demonstrate exceptional performance in terms of noise
minimization compared to the MA filtering technique. The
DL-based methods outperformed the MA technique, espe-
cially at the essential low-frequency region (f /fs < 0.03).
Similar outcomes are also observed when the noise ratio
plots are analyzed for all the methods. Compared to the MA
filtering, the noise PSD is decreased by 10–100 times. This
improved noise reduction is due to the nonlinear filtering of
the CNN layer of themodels. A similar effect was found using
nonlinear threshold functions applied to dual-tree wavelet
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FIGURE 5. Comparison of the DL models and the MA filtering in terms of the dependence of noise power on the spectral frequency
(in Subfig 5(a), 5(c), 5(e)) and noise PSD ratio (in Subfig 5(b), 5(d), 5(f)). The spectral frequency is normalized by the sampling frequency fs, and
for different optimizers and activation functions, DL model predictions noise is relative to the noise of the MA filtering (using DS1).

transform, with up to 4 times (5.6 dB) reduction in flicker
noise power [50]. However, the use of CNN is a more gener-
alized approach to nonlinear filtering.

Fig. 6 provides a visual illustration whereby the actual
ECG signal utilized as ground truth is presented at the
bottom, which is obtained from the original dataset DS1.
The noisy MCG data is also exhibited. Then, the shape
of the conventional MA filtering technique is plotted in a
blue line. Then we plot the prediction of the DL variations

(i.e., CNN, CNN-LSTM, and CNN-GRU) in the top three
line graphs. It is observed that the ECG predictions of the DL
variations are notably similar to the actual ECG cycle, and
it can robustly distinguish the crucial waves or peaks of the
ECG heartbeat such as R-peak, QRS complex, etc. The MA
filter with the same window size distorts the QRS complex.

To decide the best-performing model among the DL mod-
els, we compare the prediction efficiency in terms of pre-
diction error RMSE and average inference time required.
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FIGURE 6. Visual performance evaluation demonstrating the original ECG
cycle, synthetic noisy MCG cycle used as input, comparison between
conventional moving average method, and the DL-based techniques
utilized as the model-M1 to process and remove the input MCG signal’s
noise to obtain denoised ECG. The curves are vertically shifted to increase
transparency.

FIGURE 7. Average prediction performance (RMSE) for MA technique and
different variations of model-M1.

FIGURE 8. Average prediction time per cycle for MA technique and
different variations of model-M1.

Fig. 7 manifests the average RMSE, and Fig. 8 represents
the mean prediction time induced by each of the meth-
ods. The RMSE measure is typically utilized for measur-
ing the prediction performance [51], [52]. It gives an over-
all view of how each procedure performed in terms of the

ECG prediction task by denoising MCG. The results show
that the CNN variation of the DL outperforms all the other DL
methods. TheMA technique suffers from a high RMSE value
due to its smoothing of high-frequency components on the
QRS complex,. The other two DL variations (CNN-LSTM
and CNN-GRU) performed slightly worse than the CNN
model. In terms of the average prediction/inference time, the
MA requires the least time, due to the simple computation.
However, the CNN model is within an order of magnitude,
and also incurs considerably short computation time com-
pared to the CNN-LSTM and CNN-GRU. Thereby, consid-
ering the performance efficiency of the CNN, in phase 1 of
our experiments, we consider CNN to be the most appropriate
DL model, and hence we picked it as the model-M1.

2) PHASE 2 (ARRHYTHMIA DETECTION UTILIZING
MULTI-MODEL PIPELINE WITH MODEL-M1 AND MODEL-M2)
In phase-2 of the simulation, we compare three input types
to model-M2, such as 1) denoised ECG from the MA filter,
2) denoised ECG from the optimal model for model-M1, and
3) the original ground-truth ECG a reference. Model-M2 is
the lightweight arrhythmia classification model (DL-LAC),
classifying heartbeats into normal or abnormal heartbeats.
Note that the considered architecture of the DL-LAC model
had already been optimized substantially in our previous
work [40]; therefore, we have employed the optimized model
architecture by adopting the appropriate hyperparameters
from that work. The datasets DS2–DS5 are new to the model
and were not included in the training phase. Furthermore,
three different performance indicators (accuracy, precision,
and F1-score) are adopted to evaluate the classification effi-
ciency of each method in Table 2. These performance indi-
cators are expected to portray a comprehensive idea of the
effectiveness of each technique in terms of classification
efficiency.

The classification performance of Model-M2 is high con-
sidering that the datasets are new, with an average accu-
racy of 0.9033. The DL-based pipeline consisting of MCG
denoising with model-M1, followed by arrhythmia clas-
sification using model-M2, produces similar classification
performance. When using the MA-based input to Model-
M2, the performance deteriorated. The MA-based pipeline
achieved 0.8220 average accuracy, 0.8301 average preci-
sion, and 0.8243 average F1-score across the four datasets.
Whereas our proposed multi-model pipeline (model-M1 &
model-M2) obtained 0.8878, 0.8682, and 0.8626, respec-
tively. Thereby, the analysis reveals that our proposed two-
model-based pipeline achieved significantly better perfor-
mance than using the MA method, with a performance close
to using the ground-truth ECG.

Next, we compare the outcomes of the MA filtering
method and the proposed multi-model pipeline (model-M1&
model-M2) with the heartbeat prediction of only the base
model-M2 (i.e., DL-LAC), which used actual ECG from the
dataset as input. In Fig. 9, we compare the cosine similar-
ity, accuracy, precision, and F1-score values to get a more
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TABLE 2. Arrhythmia classification performance comparison of the proposed technique with model-M1 and model-M2 combination with MA and
model-M2 combination. Both combinations are also compared with baseline (ECG and model-M2). The outcomes noted in the table exhibit the
robustness of the methods compared to the original heartbeat labels from the dataset.

FIGURE 9. Arrhythmia classification performance comparison of the proposed method with MA methods (utilizing
noise-minimized/denoised ECG signal for both methods). These results measure the robustness of the methods compared to
the outcomes with actual arrhythmia classification model with ECG.

comprehensive idea about the outcomes of both MA and
our proposed methodology with respect to the heartbeat pre-
diction of model-M2/DL-LAC model. The cosine similarity,
accuracy, precision, and F1-score comparisons are illustrated
in sub-figure 9(a), 9(b), 9(c), 9(d), respectively. The mean
accuracy, precision, F1-score, and cosine similarity values
for the MA filtering technique are 0.8494, 0.8778, 0.8631,
and 0.8521. On the other hand, using denoised ECG data,
our proposed approach (model-M1&model-M2) can achieve
much higher efficiency (accuracy: 0.9154, precision: 0.9131,
F1-score: 0.901, and cosine similarity: 0.9084) than the MA
method with respect to the results of the DL-LACmodel with
actual ECG data. The encouraging outcomes reveal that the
proposed multi-model methodology is considerably robust
in arrhythmia detection from MCG data. Also, the proposed

technique is quite similar in terms of efficiency when we
compare it to the results of the DL-LAC model with ECG
data.

V. CONCLUSION
The spread of various worldwide epidemics in recent times
has accelerated the demand for remote patient monitoring.
Hence, in this paper, we have presented an AI-aided analytics
pipeline for next-generation ultra-edge IoT sensors to facili-
tate remote health monitoring. As a use case, we have elected
one of the major health issues worldwide: arrhythmia classi-
fication. Although typically automated arrhythmia detection
utilizes ECG data, the ECG data collection process using
contact leads is inconvenient. Even though ECG can
be employed to monitor patients’ heart problems, the
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discomfort it causes when used for prolonged time war-
rants that new applications must be established in the IoT
industry for cardiovascular monitoring. In this context, spin-
tronic sensors based on Magnetic Tunnel Junction (MTJ)
devices show a promising advantage in regard to sensitivity
and mobility, as well as the capacity to support ultra-edge
logic-in-sensor topology. However, one vital challenge with
MCG analysis is the low-frequency 1/f noise which needs
to be reduced effectively to analyze the data for arrhythmia
detection. Firstly, to minimize low-frequency noise from col-
lected MCG data, we propose a custom CNNmodel, referred
to as model-M1, which is used to generate denoised ECG
from raw MCG signal. Then, we utilize a lightweight AI
framework noted as model-M2 to detect arrhythmia by eval-
uating model-M1’s denoised ECG. We conducted extensive
simulations on various publicly available datasets. We found
that the classification results from our pipeline are com-
parable to the ECG-based arrhythmia detection. The pro-
posed AI-aided multi-model MCG analysis using spintronic
technology-based ultra-edge IoT sensors can be considered
a new path to facilitate remote patient monitoring for a
prolonged period, especially in aging urban populations and
under-served regions.

Even though we have used multiple publicly available
datasets to conduct extensive experimental simulations, one
of the limitations of this work is we have not tested the
proposedDL-based approach in a real-world setting. Our pro-
posed method demonstrated excellent potential for arrhyth-
mia detection in an AI-aided non-invasive manner, but we
have investigated a particular application case study of
arrhythmia classification, and this work can be extended
in many different directions. For future research directions,
the proposed approach can be generalized to other remote
subject monitoring tasks (i.e., brain-activity monitoring using
MagnetoEncephaloGraphy, MEG) as well, especially for
a long time non-invasive monitoring. Furthermore, this
MTJ-based logic-in-sensor approach can be extended to other
domains, such as the quality assurance of sensors during
aerospace and automotive control. Therefore, future research
can be conducted to evaluate the potential of this approach
in other remote health monitoring use-cases as well as other
domains.
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