
Received October 28, 2021, accepted December 11, 2021, date of publication December 27, 2021, date of current version January 10, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3138972

A Profit-Maximizing Security-Constrained IV-AC
Optimal Power Flow Model & Global Solution
AMRO M. FARID , (Senior Member, IEEE)
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
MIT Department of Mechanical Engineering, Cambridge, MA 02139, USA

e-mail: amfarid@dartmouth.edu; amfarid@mit.edu

ABSTRACT Since its first formulation in 1962, the Alternating Current Optimal Power Flow (ACOPF)
problem has been one of the most important optimization problems in electric power systems. Its most
common interpretation is a minimization of generation costs subject to network flows, generator capacity
constraints, line capacity constraints, and bus voltage constraints. The main theoretical barrier to its solution
is that the ACOPF is a non-convex optimization problem that consequently falls into the as-yet-unsolved
space of NP-hard problems. To overcome this challenge, the literature has offered numerous relaxations
and approximations of the ACOPF that result in computationally suboptimal solutions with potentially
degraded reliability. While the impact on reliability can be addressed with active control algorithms, energy
regulators have estimated that the sub-optimality costs the United States ~$6-19B per year. Furthermore,
and beyond its many applications to electric power system markets and operation, the sustainable energy
transition necessitates renewed attention towards the ACOPF. This paper contributes a profit-maximizing
security-constrained current-voltage AC optimal power flow (IV-ACOPF) model and globally optimal
solution algorithm. More specifically, it features a convex separable objective function that reflects a two-
sided electricity market. The constraints are also separable with the exception of a set of linear network
flow constraints. Collectively, the constraints enforce generator capacities, thermal line flow limits, voltage
magnitudes, power factor limits, and voltage stability. The optimization program is solved using a Newton-
Raphson algorithm and numerically demonstrated on the data from a transient stability test case. The
theoretical and numerical results confirm the globally optimal solution.

INDEX TERMS Electric power systems engineering, optimization, optimal power flow, ACOPF, DCOPF,
electricity markets.

I. INTRODUCTION
Since its first formulation in 1962 [1], the Alternating Current
Optimal Power Flow (ACOPF) problem has been one of
the most important optimization problems in electric power
systems. Its most common interpretation is a minimization of
generation costs subject to network flows, generator capacity
constraints, line capacity constraints, and bus voltage con-
straints [2], [3]. Although a globally optimal solution to the
ACOPF itself remains elusive, its most common approxima-
tion, the DCOPF (Direct Current Optimal Power Flow), has
been at the heart of many wholesale deregulated ‘‘real-time’’
energy markets found at many North American Independent
System Operators (ISOs) [4]–[6]. Furthermore, the DCOPF
often serves as the ‘‘sub-problem’’ in mixed-integer, security-
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constrained, unit commitment optimization models [7]–[10]
and generation and transmission planning models [11]–[14].
These, in turn, serve as the basis of wholesale ‘‘day-ahead’’
energy markets in the same ISOs. Beyond these ‘‘economic-
control’’ applications, the ACOPF has also served as a reli-
ability tool for grid operators. The generation cost objective
function can also be replaced with a minimization of electric
power losses or load-shedding amongst other operational
objectives depending on grid conditions [2], [3].

Consequently, these many applications have motivated
extensive attention towards the ACOPF. The main theo-
retical barrier is that the ACOPF is a non-convex opti-
mization problem and thus falls into the as-yet-unsolved
space of NP-hard problems [3]. To overcome the lack of
convexity, the literature has offered numerous relaxations
and approximations of the non-convex constraints includ-
ing: the copper plate relaxation, the network flow relaxation,
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the Second Ordered Cone Programming (SOCP) relaxation,
the Quadratic Convex (QC) relaxation, the Semi-Definite
Programming relaxation (SDP), and the well-known DCOPF
approximation [15]. These approaches result in computa-
tionally feasible, polynomial-time algorithms at the expense
of potentially degraded reliability. In addition to the above,
the literature has also offered numerous non-deterministic
optimization methods including: Evolutionary Algorithms
(EAs) [16]–[20], Particle Swarm Optimization (PSO)
[21]–[27], Simulated Annealing (SA) [28]–[30], Artificial
Neural Networks (ANN) [31]–[34], and Chaos Optimization
Algorithms (COA) [35]. Despite these advances, the clas-
sification of the ACOPF in the NP-hard space has meant
that a globally optimal solution remains elusive to either the
detriment of system reliability or electricity costs. One author
at FERC (Federal Energy Regulatory Commission) estimates
that more efficient market dispatch can save the United States
~$6-19B per year [3].

Although the ACOPF problem already has an extensive
history, the sustainable energy transition necessitates renewed
attention. 1) First, in order to support the integration of dis-
tributed generation [36]–[39] and energy storage [40], electric
power system markets are expanding beyond their traditional
implementation as wholesale markets in the transmission
system to retail markets in the distribution system [41]–[45]
and microgrids [46]–[50]. This constitutes a dramatic pro-
liferation of the optimal power flow problem from the nine
North American independent system operators to poten-
tially thousands of electric distribution system utilities [51].
2) Furthermore, the radial and large-scale nature of distribu-
tion systems necessitates scalable ACOPF algorithms [36],
[52]–[54]. 3) Distribution systems must also feature a promi-
nent role for line losses, nodal voltages, and reactive power
flows which disqualifies many of the typical OPF approx-
imations [52]. 4) Fourth, the integration of variable renew-
able energy resources further necessitates the participation of
demand-side resources in two-sided markets [36], [53], [54].
5) Finally, as the electric power grid activates these demand–
side resources, it also integrates itself with the operation of
other infrastructures including water [55]–[58], transporta-
tion [59], industrial production [60], natural gas [61]–[64]
and heat [65]–[68]. The non-linearity and non-convexity of
the electric power network flow equations – as they are
commonly stated – impedes the effective coupling of multiple
infrastructure sectors. Collectively, these reasons indicate that
the ACOPF problem needs an alternative formulation and not
just a new solution algorithm. Furthermore, it is of immediate
importance to many grid stakeholders including transmission
system operators, distribution system operators, and electric
utilities.

A. ORIGINAL CONTRIBUTION
The original contribution of this paper is a profit-maximizing
security-constrained current-voltage AC optimal power flow
(IV-ACOPF) model and globally optimal algorithm. The
main novelties are as follows. 1) This ACOPF formulation

has as decision variables, the real and imaginary compo-
nents of the generator currents, the real and imaginary com-
ponents of the line currents, and the real and imaginary
components of the generator and bus voltages. Unlike other
IV-ACOPF formulations, active and reactive power vari-
ables are not included to avoid non-convex feasible regions.
The reliance on IV variables eliminates the non-convexities
of the network flow constraints. 2) Rather than using the
‘‘power-flow analysis’’ model, a steady-state current-injec-
tion model of the physical power grid is used. As a result,
generator terminal voltages are connected to exactly one other
bus through a lead line. 3) A profit maximization objective
function is introduced so as to create an explicit two-sided
(rather than one-sided) energy market. 4) Box constraints on
generator current capacities are derived from the capability
curves of synchronous generators. 5) Unlike other ACOPF
formulations where they are often neglected, voltage stability
constraints are introduced for further reliability. 6) Finally,
a power factor constraint is included as a reliability require-
ment enforced by many grid codes [69], [70]. This new
reformulation of the ACOPF is solved via a Newton-Raphson
algorithm and proven to converge to the globally optimal
solution in polynomial time. The numerical results confirm a
globally optimal solution for feasible loading conditions and
returns an infeasible result otherwise. The paper proves that
the provided IV-ACOPF formulation is a generalization of the
familiar ACOPF in PQV θ variables.

B. PAPER OUTLINE
The remainder of this work is structured as follows: In
Section II, a typical ACOPF formulation is introduced
and some of the recent solution algorithms are presented.
Section III derives the new formulation of the IV-ACOPF and
proves its classification as a convex optimization program.
Section IV presents the Newton-Raphson solution algorithm
and proves its convergence to the globally optimal solution.
Section V, then, demonstrates the IV-ACOPF formulation
and solution on data from a well-known transient stability
test case. Section VI discusses the novel features of this
IV-ACOPF reformulation and concludes that it is a general-
ization of the ACOPF in PQV θ variables.Finally, Section VII
concludes the work.

II. BACKGROUND
The first full formulation of the Optimal Power Flow (OPF)
problem was presented by Carpentier in 1962 [1]. Since then,
faster computational resources, the restructuring of electricity
markets, and the proliferation of diverse (physical) energy
resources on the grid have resulted in a rich volume of
OPF literature spanning six decades. Surveys that look at the
evolution and different approaches to solving the problem
include [3], [35], [71]–[79]. Most typically, the objective
function of the OPF problem is the minimization of gener-
ation costs or maximization of power grid profit. However,
operators often choose other objectives including the mini-
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mization of losses, theminimization of load-shedding, among
other possibilities.

Equations 1-7 collectively depict a typical formulation of
the ACOPF problem using ‘PQV θ ’ decision variables.

min
∑
g∈G

(
αRgP2g + βRgPg + γRg

)
(1)

−

∑
d∈D

(
αRdP2d + βRdPd + γRd

)
s.t.

∑
g∈G

AgdPg − Pd (2)

= |Vd |
∑
d ′∈D
|Vd ′ |

(
gdd ′ cos(θdd ′ )+ bdd ′ sin(θdd ′ )

)
∀d ∈ D∑

g∈G
AgdQg − Qd (3)

= |Vd |
∑
d ′∈D
|Vd ′ |

(
gdd ′ sin(θdd ′ )− bdd ′ cos(θdd ′ )

)
∀d ∈ D

θv1 = 0 (4)

Pming ≤ Pg ≤ P
max
g ∀g ∈ G (5)

Qming ≤ Qg ≤ Q
max
g ∀g ∈ G (6)

0 ≤ P` ≤ Pmax` ∀` ∈ L (7)

|Vd |min ≤ |Vd | ≤ |Vd |max ∀d ∈ D (8)

To elaborate, this formulation uses the ‘‘power flow anal-
ysis’’ model of an electric power system. It includes a set
of demand buses D with its associated vector of voltage
phasors VD = |VD|6 θVD as decision variables and complex
power withdrawals SD = PD + jQD as imposed exogeneous
constants. Consequently, this typical formulation assumes
inelastic demand for electric power. The power systemmodel
also includes a set of generators G with its associated vector
of complex power injections SG = PG+jQG as decision vari-
ables. The power system model also includes power lines L.
These have their associated vector of complex power flows
SL = PL+ jQL as decision variables. The model relies on the
formulation of a bus admittance matrix Y = G+ jB such that
the subscript notation of the scalars gdd ′ and bdd ′ indicate the
(d,d’) element of the G and Bmatrices respectively. Similarly,
the notation θdd ′ is the voltage phase angle difference between
demand buses d and d ′. AGD is the generator to demand bus
incidence matrix indicating a value of 1 when generator g
is connected to bus d. Finally, αRg, βRg, and γRg are the
quadratic, linear, and fixed cost terms of the active power
injections by each generator g ∈ G and αRd , βRd , and γRd
are the quadratic, linear, and fixed terms of the active power
withdrawals at each demand bus d ∈ D.
As a whole, this formulation of the ACOPF maximizes

profit subject to physical reliability constraints. Equation 1 is
the (negative) profit objective function (to be minimized) that
is composed of a convex quadratic cost function of the active
power generated and a convex quadratic revenue function

of the active power consumed. Note that because the vector
of active power demands PD is an exogeneous constant,
the revenue terms in this two-sided market formulation are
very commonly dropped to produce an equivalent one-sided
market formulation in which the objective function is written
as a simple minimization of generation costs:

min
∑
g∈G

αRgP2g + βRgPg + γRg (9)

Equation 2 is the network flow constraint for active
power, Equation 3 is the network flow constraint for reac-
tive power, Equation 4 indicates the reference angle of the
network, Equation 5 is the active power capacity constraint,
Equation 6 is the reactive power capacity constraint, Equa-
tion 8 is the voltage magnitude constraint at a bus, and
Equation 7 is the line flow limit constraint. Also note that
Equations 2 and 3 collectively make the ACOPF prob-
lem non-linear and non-convex. In order to overcome the
problems caused by the non-linearity and non-convexity of
these constraints, an extensive literature has emerged that
proposes numerous relaxations, approximations, and solution
algorithms.

Perhaps the most commonly deployed approximation,
especially in electric energy markets, is the so-called
‘‘DCOPF’’ problem [3]. It is obtained by setting all voltage
magnitudes to unity, eliminating lines losses (i.e. G = 0),
and linearizing the power flow equations via a small-angle
approximation [80]. Despite its broad adoption, the DCOPF
approximation cannot be used universally; including in dis-
tribution systems where line losses are non-negligible [52].
Furthermore, a DCOPF solution may not satisfy the original
nonlinear power flow equations. Under such circumstances,
an operator might tweak the DCOPF solution through a
subsequent solution of the power flow analysis equations.
The DCOPF can also over-constrain the solution space;
potentially generating an infeasible solution even when the
ACOPF remains feasible. Finally, there is no guarantee that
the obtained DCOPF solution is either locally or globally
optimal and estimation of the distance from global optimality
remains a topic of research [81].

Consequently, much of the recent ACOPF literature has
sought to use reformulations that involve Convex Relaxations
(CR). In such works, non-convex constraints are loosened to
form a larger, but more importantly, convex feasible region.
The main advantage of such an approach is that if the new
CR algorithm returns an optimal solution within the orig-
inal non-convex region, then it has also solved the origi-
nal (non-convex) problem as well. Furthermore, if the new
CR algorithm returns an infeasible solution, then the orig-
inal (non-convex) problem was as well. Several CRs have
appeared in the recent ACOPF literature. One of the most
promising relaxations to the ACOPF problem, the Sec-
ond Order Cone Programming (SOCP) was proposed for
radial networks by Jabr in 2006 [82]. Since then, the semi-
definite programming (SDP) relaxation has garnered a lot of
attention for its robustness and performance in the literature
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[83]–[85]. In particular, Lavaie and Low have shown topo-
logical conditions where the SDP relaxation demonstrates a
zero duality gap and, therefore, returns a globally optimal
solution [86]. Finally, the Quadratic Convex (QC) relaxation
has been shown to be promising, producing results that are
also robust and reliable [87]. It has also been shown that
certain types of network topologies can guarantee a globally
optimal solution [88], [89]. For radial networks, some of
the aforementioned relaxations have proved to be equivalent,
with a bijective map between their feasible set [90].

Finally, a relatively small portion of the ACOPF literature
abandons the active power (P), reactive power (Q), voltage
magnitude (|V |), and voltage phase angle (θ ) decision vari-
ables in favor of novel combinations of not just P and Q
but also the voltage (V ) and current phasors (I) in rect-
angular coordinates. A rectangular IV-PQ formulation has
been proposed and has demonstrated good computational
performance despite a lack of convexity [75], [91], [92].
A power-current hybrid formulation has also been proposed
with similar effect [93]. The premise of these works is the
assertion that if the non-convexity in the network wide flow
constraint can be isolated to the buses and made separa-
ble, the formulation becomes more amenable to a relaxation
[75], [91]. The following section proceeds within this gen-
eral category of IV-ACOPF formulations with several novel
additions.

III. IV-ACOPF FORMULATION
This section derives an IV-ACOPF formulation in rectangular
coordinates using a current-injection model [94] equivalent
to the one use in transient stability analysis studies after
steady-state conditions have been achieved. As is elaborated
in Section VI, this steady-state current injection model pro-
vides many advantages; most notably the ability to separate
all power system nodes into two distinct groups; generator
terminals and demand-buses. In addition to the constraints
found in the traditional formulation of the optimal power flow
problem, three additional physical phenomena are included
in this formulation. First, a current injection model rather
than power flow analysis model is used. Therefore, each
generator receives its associated lead line in the network flow
[94], [95]. Second, voltage stability imposes a constraint on
the difference in voltage phase angle between two buses
[94], [95]. Some PQV θ formulations have introduced voltage
stability constraints [96]–[99], but an extensive search has yet
to reveal their introduction into an IV-ACOPF. Lastly, the net
power injection into a given bus is placed within minimum
and maximum power factor limits to reflect IEEE operating
standards [95].

The elaboration of the IV-ACOPF formulation proceeds
as follows. Sec. III-A contrasts the current injection model
to the power flow analysis model. Sec. III-B then derives
the associated network flow equations from first engi-
neering principles. Next, Sec. III-C derives the objective
function from first economic principles. The section then
follows the ACOPF formulation described in Section II with

Sec. III-D, III-E, III-F and III-G describing the reference
voltage, generator capacity, thermal line flow, voltage mag-
nitude constraints respectively. The power factor and voltage
stability constraints are then added as new constraints in Sec-
tions III-H and III-I respectively. Finally, in order to create a
convex feasible region, a high quality relaxation of the voltage
magnitude lower bound is introduced in Sec. III-J. Section IV
later proves that the introduction of such a relaxation does not
impede a solution to a global optimum.

A. THE STEADY-STATE CURRENT INJECTION MODEL
The current injection model is a well established power sys-
tems engineering model that is used to study the ‘‘transient
(angle) stability’’ of a power system in response to various
disruptions [94], [95]. The power flow analysis model used in
the traditional (PQV θ ) ACOPF problem above corresponds
with the green buses and blue lines in Fig. 1. Generators
and loads appear as power injections directly into or out of
these buses. The current injection model, instead, treats each
generator as a voltage source attached to a lead line. For
transient stability analyses, usually in the 0.1-10Hz timescale,
each of these generators is given a differential equation
called a ‘‘swing equation’’. Then the system-wide stability
is assessed either by numerical simulation in response to a
perturbation or directly by analytical methods. As the optimal
power flow problem is typically run every five minutes, one
can reasonably assume that swing equation dynamics have
reached steady state and can be subsequently neglected for
the remainder of the paper.

FIGURE 1. The Power Flow Analysis vs the Steady State Current Injection
Model. The power flow analysis model includes the green buses, their
associated power demands, and the blue power lines. Generators are
modeled as power injections directly into some of the buses. The current
injection model replaces these power injections with a lead line attached
to a generator represented as a voltage source with its associated current
injection [94], [95].

As shown in Figure 1, this steady-state current injection
model has a set of demand busesD with its associated vector
of voltages VD = VDR + jVDI and current withdrawals
ID = IDR+ jIDI which are taken as exogeneous data inputs.
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It also has a set of generators G with its associated vector
of voltages VG = VGR + jVGI and current injections IG =
IGR+jIGI . The power linesL = LG∪LD are partitioned into
lead lines LG and the power lines LD of the original power
flow analysis network. These have their associated vector of
currents IL = ILR+ jILI = [ILG; ILD]. The constants NG ,
ND and NL = NLG + NLD are also introduced to reflect
the number of generators, demand buses, and power lines.
The remainder of this section formulates the IV-ACOPF on
the basis of this current injection model under steady state
conditions. Equations 1-7 are discussed in sequence. As the
discussion of the objective function depends on the network
flow constraints, the latter are derived first.

B. NETWORK FLOW CONSTRAINTS
Because the network flow equations in Equations 2 and 3
apply to the power flow analysis model and are expressed
in PQ variables, they are not a suitable starting point for this
derivation. Instead, the network flow equations are re-derived
from the first principles of Kirchoff’s Current Law and
Ohm’s law. For the current injection model shown in Fig. 1,
Kirchoff’s Current Law in rectangular coordinates gives:[

IGR
−IDR

]
=

[
ATG
ATD

]
ILR (10)[

IGI
−IDI

]
=

[
ATG
ATD

]
ILI (11)

where IG and ID have opposite sign convention according to
Fig. 1, and where AG is the line to generator incidence matrix,

AG(l, g) =


1 if line l originates at generator g
−1 if line l terminates at generator g
0 otherwise

(12)

and where AD is the line to bus incidence matrix.

AD(l, d) =


1 if line l originates at demand bus d
−1 if line l terminates at demand bus d
0 otherwise

(13)

So as to distinguish between lead lines and power lines shown
in Figure 1, it is also useful to partition these incidence matri-
ces: AG = [AGG; 0] and AD = [ADG;ADD] and recognize that
ADG = −AGD (as defined previously). Then, Ohm’s Law in
complex matrix form gives:

IL = YL(AGVG + ADVD) (14)

IL = YL[AG AD]
[
VG
VD

]
(15)

where YL = GL + jBL is constructed from the vector of
admittances of the lead linesYG and the vector of admittances

of the power lines YD. YL = diag(YL) = diag([YLG;YLD]).
Switching to rectangular components gives:

ILR = GL[AG AD]

[
VGR
VDR

]
− BL[AG AD]

[
VGI
VDI

]
(16)

ILI = BL[AG AD]

[
VGR
VDR

]
+ GL[AG AD]

[
VGI
VDI

]
(17)

which simplifies straightforwardly by evaluating the matrix
products: [

ATG
ATD

]
ILR = G

[
VGR
VDR

]
− B

[
VGI
VDI

]
(18)

[
ATG
ATD

]
ILI = B

[
VGR
VDR

]
+ G

[
VGI
VDI

]
(19)

where G and B are the nodal conductance and susceptance
matrices respectively.

G = [AG AD]TGL[AG AD] (20)

B = [AG AD]TBL[AG AD] (21)

Equations 10, 11, 18 and 19 constitute a steady-state current-
injection model and are incorporated into the new IV-ACOPF
formulation.

C. OBJECTIVE FUNCTION
Returning back to the objective function of the ACOPF, the
translation of the quadratic function in Equation 1 to voltage
and current variables requires especially careful attention.
Consider a naive change of variable of the active power
generated Pg:

Pg = <{VgI∗g }
= <{(VRg + jVIg)(IRg + jIRg)∗}
= <{(VRg + jVIg)(IRg − jIIg)}

Pg = VRgIRg + VIgIIg (22)

The Hessian of the function in Eq. 22 has eigenvalues λe =
{−1,−1, 1, 1} and therefore has indefinite convexity. A simi-
lar conclusion is straightforwardly made for a reactive power
function of voltage and current. Furthermore, convex func-
tions that are composed of functions of indefinite convexity
also have indefinite convexity [100], [101]. This fact serves
as a strong caution against any ACOPF reformulation that
combines PQ variables with IV variables. Instead, this work
develops a formulation on exclusively IV variables as shown
in the remainder of this work.

The derivation of the objective function J begins with the
well-held economic principle that (in the absence of other
constraints) market equilibrium is achieved when the sum of
all of Marginal Revenues (MR) and Marginal Costs (MC)
equals zero.

∇J =
∑
g∈G

MCg −
∑
d

MRd (23)
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The earliest works in power system economics; including
the first formulations of the economic dispatch, DCOPF,
and ACOPF assumed that demand was inflexible and con-
stant in a single time step [102]. Therefore, revenue/utility
terms from the demand-side were assumed as constants and
were abstracted away in favor of one-sided cost-minimization
markets. While this work retains the inflexible and con-
stant demand assumption, the revenue terms are explicitly
re-introduced so as to create an explicitly two-sided market
with inelastic demand.

Next, each generator is given a linear marginal cost curve
and each demand-bus is given a linear marginal revenue
curve.

∇J =
[
∂J/∂P
∂J/∂Q

]
=

∑
g∈G

(
αg ·Sg+βg

)
−

∑
d∈D

(αd · Sd + βd )

(24)

where (·) is the element-wise Hadamard product [103] and
where αg = [αRg;αIg], αd = [αRd ;αId ], βg = [βRg;βIg],
βd = [βRd ;βId ] are real two-dimensional vectors. Unlike
the objective function shown in Eq. 1, this work assumes, for
generality, that both active and reactive power generation can
incur cost and that active and reactive power consumption can
generate revenue. In other words, this IV-ACOPF treats both
active and reactive power as monetized and exchanged prod-
ucts. Furthermore, this work retains the common assumption
of increasing marginal costs and therefore assumes that both
components of αg are positive. Similarly, this work retains
the common assumption of decreasing marginal revenues and
therefore assumes that both the components of αd are nega-
tive. Nevertheless, taking the gradient of Eq. 1 immediately
results in Eq. 24 with αIg = αId = βIg = βId = 0 ∀g ∈
G, d ∈ D.
Several algebraic manipulations are now required in order

to convert the non-convex Eq. 24 into an equivalent equation
written in IV variables that is convex. Substituting the com-
plex power definition S = V ? I∗ yields:

∇J =
∑
g∈G

(
αg ·Vg? I∗g+βg

)
−

∑
d∈D

(
αd ·Vd ? I∗d+βd

)
(25)

Here the ? notation is introduced to emphasize the multi-
plication of complex numbers so as to distinguish between
matrix multiplication and the element-wise Hadamard prod-
uct. [aR; jaI ]?[bR; jbI ] = [aRbR+aIbI ; aRbI+aIbR]. In scalar
form, Kirchhoff’s current balance at each demand-bus d fol-
lows from Eq. 10 and 11:

−Id =
∑
l∈L

AD(l, d)Il (26)

−Id =
∑
lg∈L

ADG(lg, d)Ilg +
∑
ld∈L

ADD(ld , d)Ild (27)

Returning to the linear revenue term (αd ·Vd I∗d ) in Eq. 25,
it is then expressed as a linear combination of revenue com-
ponents originating from each connected line and lead line.
More specifically, complex power coming over a lead line lg

will have an associated retail rate of ρd + αg while a regular
power line will have an associated retail rate of ρd .

αd ·Vd I∗d = −(ρd + αg)·Vd ?
∑
lg∈LG

ADG(lg, d)I∗lg

− ρd ·Vd ?
∑
ld∈LD

ADD(ld , d)I∗ld (28)

where both components of the effective retail rate ρd are
assumed to be negative to maintain the assumption of dimin-
ishing marginal revenues. Recognizing that there is only one
lead line lg for each generator g, and substituting in Eq. 28,
Eq. 25 then simplifies to:

∇J =
∑
g∈G

(
αg ·

(
Vg +

∑
d∈D

ADG(g, d)Vd

)
? I∗g + βg

)
−

∑
d∈D

(
ρd ·Vd ? I∗d + βd

)
(29)

And then applying Ohm’s law yields:

∇J=
∑
g∈G

(
αg ·Zg?Ig?I∗g +βg

)
−

∑
d∈D

(
ρd ·Vd ?I∗d +βd

)
(30)

or simply:

∇J =
∑
g∈G

(
αg ·SLg + βg

)
−

∑
d∈D

(ρd ·Sd + βd ) (31)

where SLg is the complex power lost in the lead line between
a generator and a demand-bus. It must not be confused with
the complex power Sg injected by generator g. Furthermore,
it is worth noting that Eq. 30 is a convex function of Ig and
Vd whereas Eq. 24 is not.

The (negative) profit objective function (to be minimized)
is then derived as the sum of the integral of each of the
components of the gradient.

J =
∫

∂J
∂PLG

dPLG +
∫

∂J
∂QLG

dQLG

+

∫
∂J
∂PD

dPD +
∫

∂J
∂QD

dQD (32)

which evaluates to:

J =
∑
g∈G

(
αZg(I2

Rg + I2
Ig)

2
+βZg(I2

Rg + I2
Ig)+γRg +γIg

)

+

∑
d∈D

(
ρ̄Rd (VRd IRd+VId IId )2−βRd (VRd IRd+VId IId )+γ̄Rd

)
+

(
ρ̄Id (−VRd IId+VId IRd )2−βId (−VRd IId+VId IRd )+γ̄Id

)
(33)

where αZg = (αRgR2g+αIgX
2
g )/2, and βZg = (βRgRg+βIgXg).

Also, the notation ρ̄d = −ρd/2, and γ̄d = −γd is introduced
so as to use positive leading coefficients exclusively. The
constants vectors γg, γRd , and γId are introduced to account
for the generator fixed costs and demand-bus fixed revenues.
Notice that Eq. 33 is a generalization of Eq. 1 that accounts
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for the cost of reactive power generation and that explicitly
includes the revenues from active and reactive power con-
sumption at the demand buses.

Consequently, this objective function implies several loca-
tional marginal quantities.

∂J/∂Pg = αRgR2g(I2
Rg + I2

Ig )+ βRgRg (34)

∂J/∂Qg = αIgX2
g (I2

Rg + I2
Ig )+ βIgXg (35)

∂J/∂Pd = ρ̄RdPd − βRd (36)

∂J/∂Qd = ρ̄IdQd − βId (37)

These marginal revenue and marginal cost terms tie into the
extensive literature on locational marginal prices [104]–[107]
and facilitate the use of this IV-ACOPF formulation in elec-
tricity market designs despite the novel use of IV variables.

In all, the derived objective function is separable with
respect to generator lead lines and demand buses. Further-
more, it is quartic in the lead line currents and quadratic in the
demand bus voltages. The work assumes exogenously fixed
demand-bus current withdrawals ID. Although this choice
of exogenous data is different from the traditional ACOPF,
this data is readily available to grid operators. Furthermore,
this choice of exogenous data does maintain the demand-bus
voltages as decision variables.

D. REFERENCE VOLTAGE CONSTRAINT
The reference voltage constraint in Equation 4 translates
straightforwardly into rectangular components.

VIref = 0 (38)

E. GENERATOR CAPACITY CONSTRAINTS
The conversion of the generator capacity ‘‘box’’ constraints
in Equations 5 and 6 also requires careful attention. Despite
their widespread use, it is important to recognize that there
is no physics-based phenomenon that results in box con-
straints on active and reactive power. Instead, Carpentier’s
original 1962 paper chose to 1.) assume that all power
plants use synchronous generators as electrical machines, and
2.) approximate a synchronous generator’s capability curve
with a PQ box [1]. The first assumption is entirely appropriate
to the reality of predominantly thermo-electric generation in
1962, but is not necessarily valid in the present sustainable
energy transition. For Carpentier’s second choice, Fig. 2b
shows the actual, highly-curved, shape of a synchronous
generator’s capability curve [108] – which is in turn derived
from a synchronous generator’s equivalent circuit and phasor
diagram [108] (in Fig 2a). The active power upper bound
originates from the circular constraint caused by the maxi-
mum stator current Ia. Meanwhile, the reactive power upper
bound originates from the circular constraint caused by the
maximum rotor current (which in turn is proportional to
the voltage Ea). The active power lower bound is not an
electrical phenomena. Instead, it represents theminimum safe
operating level for a combustion-driven process (e.g. boiler
or gas turbine) [109]. Fourth, the reactive power lower bound

FIGURE 2. (a.) a synchronous generator’s phasor diagram and the
associated limits on the voltage magnitudes of Ea and IaXs.
(b.) a synchronous generator’s actual capability curve and box
constraint approximation. [1], [108].

originates from rotating the maximum stator current phasor
into the fourth quadrant of the complex plane to a limit of
under excitation. Finally, the PQ generator capability curve
is simply a synchronous generator’s (voltage) phasor diagram
with a 90◦ rotation and a constant conversion factor of Vφ/XS
where Vφ is the generator’s one-line equivalent terminal volt-
age and XS is the synchronous effective 1-line reactance of
the generator [108].

In translating the generator capacity constraints to an IV
formulation, this work recognizes the practical compromise
between 1.) the physical modeling of the underlying com-
plexity of generator characteristics, 2.) the socio-economic
design of an equitable electricitymarket that frames all gener-
ators within the same set of applicable constraints, and 3.) the
mathematical tractability of convex vs non-convex feasible
regions. Therefore, it reconfirms Carpentier’s box constraints
with a constant Vφ conversion factor from active and reactive
power to generator output current.

IminRG ≤ IRG ≤ ImaxRG (39)

ImaxIG ≤ IIG ≤ ImaxIG (40)

where IminRG = PminG /Vφ , ImaxRG = PmaxG /Vφ , IminIG = QminG /Vφ ,
and ImaxIG = PmaxG /Vφ . Again, because the conversion from a
generator’s phasor diagram to its capability curve is simply a
multiplication by a constant factor, the backward conversion
from PQ coordinates in VA units to complex current coordi-
nates is a division by the same factor. An added advantage of
Eq. 39 and 40 is that they can be straightforwardly derived
from existing ACOPF datasets; be they real or hypothetical
test cases.

F. THERMAL LINE FLOW CONSTRAINTS
Next, the thermal line flow constraints in Equation 7 must be
expressed in terms of complex voltages and currents.

0 ≤
(
[AG AD]

[
VGR
VDR

] )
I∗L ≤

(
[AG AD]

[
VGR
VDR

] )
I∗L (41)

Given the vector of power line impedances ZL , sub-
stituting Ohm’s law from Eq. 15 into Equation 41
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and simplifying yields:

0 ≤ I2
LR + I2

LI ≤ |IL |
2

(42)

where ()2 is calculated on an element by element basis.

G. VOLTAGE MAGNITUDE CONSTRAINTS
Next, the separable voltage magnitude constraint in Equa-
tion 8 is rewritten in rectangular coordinates and then squared

|VD|2 ≤ V 2
DR + V

2
DI ≤ |VD|

2
(43)

Note that the lower bound on this constraint also introduces a
non-convex feasible region; a subject which is given further
attention in Section III-J. The generator voltage terminals also
have a separable constraint,

V 2
GR + V

2
GI ≤ |VG|

2
(44)

Note that a lower bound is not required because, the generator
voltage magnitude will always be greater than the bus voltage
magnitude of the corresponding bus because of the positive
flow of generated current.

H. POWER FACTOR CONSTRAINT
The first of two constraints that must be added to the ACOPF
formulation is a bounded power factor. While the power
factor at each demand-bus is known in the traditional ACOPF,
the switch to an IV formulation means that it no longer is.
NERC and other grid operators bound the power factor of
power injections at a bus to between 0.95 and 1.00 [69], [70].

0.95 · 1ND ≤
PD
SD
≤ 1

ND (45)

where 1ND is a vector of ones of length ND, and the division
()/() is element-wise. Using the definition of active and com-
plex power, Eq. 45 becomes:

0.95 · 1NB ≤ cos(θVD − θID) ≤ 1
ND (46)

where again θVD is the demand bus voltage phase angles and
the current withdrawal phase angles θID = tan−1(IDI/IDR).
Switching from a constraint on cos(θVD−θID) to tan(θVD) and
then converting to rectangular coordinates results in two sets
of separable constraints:

VDI − VDR tan(θmaxVD ) ≤ 0 (47)

0 ≤ VDI − VDR tan(θminVD ) (48)

where θmaxVD = 18.19◦ + θID and θminVD = −18.19
◦
+ θID.

Although the choice of reference bus is entirely arbitrary, the
common practice is to choose a bus connected to a generator
(via a lead line). In such a case, the reference bus often has
among the larger voltage phase angles in the power system.
Furthermore, if the reference bus is chosen to have the largest
voltage phase angle, then θmaxVD = 0.

I. VOLTAGE STABILITY CONSTRAINT
In addition to the above, the power system lines and genera-
tor’s lead line must maintain voltage stability; expressed as a
voltage angle difference inequality constraint.[

1θminVG
1θminVD

]
≤

(
[AG AD]

[
θVG

θVD

])
≤

[
1θmaxVG
1θmaxVD

]
(49)

where 1θminVD and 1θmaxVD represent vectors of the minimum
and maximum voltage phasor angle differences between con-
nected demand buses in the network, and [θVG; θVD] is the
vector of nodal voltage angles.

In most practical applications,1θminVD ,1θmaxVD ,1θminVGD, and
1θmaxVGD are small in magnitude. Next, Equation 49 can be
rewritten as a constraint on the current phase angle using
Ohm’s law. Given an arbitrary power line l with a voltage
difference 1Vl across it, the current phasor is:

Il =
|1Vl |ei(1θvl )

|zl |ei(θzl )
=
|1Vl |
|zl |

ei(1θvl−θzl ) ∀l ∈ L (50)

Consequently, the vector of current phase angles is:

θL = [AG AD]
[
θVG
θVD

]
− θZL (51)

Substituting Eq. 51 into Eq. 49.

θminL ≤ θL ≤ θ
max
L (52)

where θminL = 1θminBV − θZL and θmaxL = 1θmaxVGD − θZL .
Equation 52 is then rewritten in rectangular coordinates to
yield two sets of separable constraints.

ILI − ILR tan(θmaxL ) ≤ 0 (53)

0 ≤ ILI − ILR tan(θminL ) (54)

where tan() is calculated on an element by element basis.

J. RELAXING THE NON-CONVEX LOWER BOUND
CONSTRAINTS ON VOLTAGE MAGNITUDES
A careful inspection of Equation 43 reveals that the lower
bounds on the demand bus voltage magnitudes create a non-
convex feasible region. Neglecting the network flow con-
straints, and taking advantage of the separable nature of
the remainder of the IV-ACOPF formulation, a graphical
approach serves to develop intuition. Figure 3 shows the fea-
sible region of the real and and imaginary components of the
voltage at an arbitrarily chosen demand bus Vd = VRd+ jVId .
The ‘‘halo’’-shaped region in dark grey is caused by the upper
and lower bounds on the voltage magnitude in Eq. 43 and
corresponds to the original ACOPF problem in Section II.
The forrest green region RFVd is the result of adding the
power factor constraints 47 and 48 and corresponds to the new
IV-ACOPF formulation. This very intuitive (‘‘crust of a pizza
slice’’) shape, in actuality, is a two-dimensional projection of
the multi-dimensional feasible region formed by Eqs. 43, 47,
and 48. For simplicity of discussion, the remainder of this
paper refers to this multi-dimensional region and its two-
dimensional projection interchangeably. Note that the lower
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bound constraintmakes the feasible regionRFVd non-convex.
This is because it is possible to choose two points in the
feasible regionRFVd and connect them with a line that leaves
the feasible region. From these definitions, it follows that the
feasible region of the IV-ACOPF formulation RF prior to any
relaxation is RF =

⋂
d∈D RFVd .

FIGURE 3. Feasible region of the voltage magnitude constraint.

In order to overcome this lack of convexity, this work
introduces a high quality relaxation of the feasible region.
Graphically, the newly relaxed feasible region RRF = RF ∪

RR now includes an additional relaxed region RR in light
greenwhich is formed by the creation of a secant line between
the power factor constraints.RR =

⋂
d∈D RRVd .

With respect to the demand bus voltage magnitude lower
bounds, they are relaxed to a set of separable secant lines
defined by:

(
VDR − ϒVDR

)
= mVD ·

(
VDI − ϒVDI

)
(55)

where

mVD =
cos(θmaxVD )− cos(θminVD )

sin(θmaxVD )− sin(θminVD )
(56)

ϒVDI = |VD| sin(θmaxVD ) (57)

ϒVDR = |VD| cos(θmaxVD ) (58)

Note that the secant line is written in the form VDR = f (VDI )
to avoid the potential for a line with infinite slope.

K. SUMMARY OF IV-ACOPF FORMULATION
The new IV-ACOPF formulation is summarized and recast in
the standard form of a convex program.

min J =
∑
g∈G

(
αZg(I2

Rg + I2
Ig)

2
+βZg(I2

Rg + I2
Ig)+γRg+γIg

)

+

∑
d∈D

(
ρ̄Rd (VRd IRd+VId IId )2−βRd (VRd IRd

+VId IId )+ γ̄Rd

)

+

(
ρ̄Id (−VRd IId + VId IRd )2−βId (−VRd IId

+ VId IRd )+ γ̄Id

)
(59)

s.t.
[
IGR
−IDR

]
−

[
ATG
ATD

]
ILR = 0 (60)[

IGI
−IDI

]
−

[
ATG
ATD

]
ILI = 0 (61)[

ATG
ATD

]
ILR − G

[
VGR
VDR

]
+ B

[
VGI
VDI

]
= 0 (62)[

ATG
ATD

]
ILI − B

[
VGR
VDR

]
− G

[
VGI
VDI

]
= 0 (63)

VIref = 0 (64)

IGR − ImaxGR ≤ 0 (65)

IminGR − IGR ≤ 0 (66)

IGI − ImaxGI ≤ 0 (67)

IminGI − IGI ≤ 0 (68)

I2
LR + I2

LI − |IL |
2
≤ 0 (69)

V 2
DR + V

2
DI − |VD|

2
≤ 0 (70)

VDI − VDR tan(θmaxVD ) ≤ 0 (71)

VDR tan(θminVD )− VDI ≤ 0 (72)

V 2
GR + V

2
GI − |VG|

2
≤ 0 (73)

ILI − ILR tan(θmaxL ) ≤ 0 (74)

ILR tan(θminL )− ILI ≤ 0 (75)(
VDR − ϒVDR

)
− mVD

(
VDI − ϒVDI

)
≤ 0 (76)

where the convex constraint in Eq. 76 is the relaxation the
non-convex constraint

−V 2
DR − V

2
DI + |VD|

2
≤ 0 (77)

It is worth emphasizing that the objective function is separa-
ble with respect to each of the generators and demand buses.

J =
∑
g∈G

Jg(IRg, IIg)+
∑
d∈D

Jd (VRd ,VId ) (78)

Meanwhile, with the exception of the network flow con-
straints in Eq. 60-63, all of the constraints are separable with
respect to generators and demand buses as well.

L. CONVEXITY ANALYSIS OF THE FINAL FORMULATION
In order to develop a solution algorithm in the following
section, a convexity proof is provided.
Theorem 1: The optimization program described by the

objective function 59 and subject to constraints 60-76 is a
convex optimization program.

Proof: The objective function as expressed in Eq. 59
is a sum of separable functions of the generator current vari-
ables and the demand bus voltage variables. Therefore, the
convexity of each of these can be determined independently.
The generator cost terms take the form

∑
g fg(hg(IRg, IIg)).

hg() is stated in terms of two variables and has a Hessian

2850 VOLUME 10, 2022



A. M. Farid: Profit-Maximizing Security-Constrained IV-ACOPF Model & Global Solution

whose determinant is equal to 4 and is therefore convex. fg is
stated as a quadratic polynomial of one variablewith a leading
positive coefficient and therefore is also convex. Because fg
is convex and hg is convex then the generator cost terms
together form a convex function. The demand-bus revenue
terms take the form

∑
d fd (hd (VRd ,VId )). hd is an affine map.

fd is a sum of two quadratic polynomials of one variable with
a leading positive coefficient and therefore is convex. The
composition of a convex function with an affine map is also
convex. Eqs. 69-73 are all stated in terms of two (separable)
variables and have Hessians whose determinant is equal to 4.
The remaining constraints are all linear and create a convex
polyhedral feasible region. Therefore, they are convex as
well. Because all the constraints are convex and the objec-
tive function is convex, the optimization program is also
convex.

IV. NEWTON-RAPHSON (NR) SOLUTION ALGORITHM
FOR THE IV-ACOPF FORMULATION
This section presents a Newton-Raphson Solution Algorithm
for the unrelaxed IV-ACOPF formulation to global optimality
in polynomial time. First, Theorem 1 provides a solid founda-
tion upon which to solve the relaxed IV-ACOPF via Newton-
Raphson gradient descent to a candidate solution y†. If y† is
found within the (unrelaxed) feasibleRF , then the algorithm
has found a global solution. If y† is found within the relaxed
regionRR, then it must be discarded as infeasible because the
RF (as we prove below) is infeasible.

To begin, because the relaxed IV-ACOPF is a convex opti-
mization program and fulfills Slater’s Condition [100], it may
be solved straightforwardly by formulating the Lagrangian,
deriving the first order optimality (KKT - Karush-Kuhn-
Tucker) conditions, and solving using a Newton-Raphson
algorithm. The standard form of a convex optimization
program is:

Minimize J (x) (79)

s.t h(x) = 0 (80)

g(x) ≤ 0 (81)

where J (x) and g(x) are convex functions and h(x) is an
affine function. In this work, x = [VRG;VIG; IRG; IIG;
VRD;VID]. Furthermore, h(x) is represented by Equations
60 - 64 and g(x) is represented by Equations 65 - 76. The
Lagrangian is:

L(y) = f (x)+ λT h(x)+ µT g(x) (82)

where y = [x; λ;µ]. The first order (KKT) optimality condi-
tions follow straightforwardly from ∇L.

∇f (x)+ µT∇g(x)+ λT∇h(x) = 0 (83)

h(x) = 0 (84)

g(x) ≤ 0 (85)

µ ≥ 0 (86)

µT g(x) = 0 (87)

where Eq. 83 is the stationarity condition, Eq. 84 and 85
assure primal feasibility, Eq. 86 assures dual feasibility,
and Eq. 87 assures complementary slackness. Finally, the
Newton-Raphson Algorithm 1 is applied with Hk as the
k th iterate of the Hessian of the Lagrangian.

Algorithm 1 Newton-Raphson Minimization Algorithm for
Unrelaxed IV-ACOPF Formulation
1: procedure ACOPF(k = 0, y0, ε)
2: while ||∇L(yi)|| < ε do
3: yk+1← yk + H

−1
k ∇L(yk )

4: k ← k + 1
5: end while
6: y†← yk
7: if y† ∈ RF then
8: y∗← y†

9: else
10: y∗← ∅
11: end if
12: return y∗
13: end procedure

Theorem 2: Algorithm 1 converges quadratically to a
globally optimal solution to the unrelaxed IV-ACOPF formu-
lation (defined by Eqs 59-72 and 77) in polynomial-time.

Proof: At a high level, Algorithm 1 is composed of
two subsections. In the first, the While Loop implements the
well-known Newton-Raphson algorithm to produce the can-
didate solution y†. The algorithm has a quadratic convergence
rate [100] and gives a globally optimal solution to convex
optimization problems in polynomial time [110]–[112]. In the
second subsection, a test is made on the candidate solution.
If y† ∈ RF , then the Newton-Raphson algorithm has found
the global optimum. In all other cases, y† ∈ RR then by
Lemma 1 (below), RF = ∅ and the candidate solution y†

must be discarded and an infeasible solution returned instead.
Therefore, Algorithm 1 either finds the globally optimal solu-
tion or infeasible solution in polynomial time.
Lemma 1: If Algorithm 1 returns a candidate solution

y† ∈ RR, then RF = ∅.
Proof: A proof by contradiction is is provided. Assume

that RF 6= ∅.
1) First recognize that Algorithm 1 always returns |V †

G| =

|VG|. Because the objective function must minimize
generator currents IG without consideration for gener-
ator terminal voltages, the generator terminal voltages,
by Ohm’s Law, must rise to their maximal value.

2) In the meantime, an increase of demand-bus voltage
magnitudes from |V †

D| to a hypothetical value |V ‡
D| =

|V †
D + 1VD| where |1VD| > 0 so that |VD| ≤ |V

‡
D| ≤

|VD|, by Lemma 2 (below), necessitates an increase in
one or more generator voltage magnitudes from |V †

G| to
|V ‡
G| = |V

†
G+1VG|. Because |V

†
G| = |VG|, |V

‡
G| > |VG|

creates a contradiction where the generator terminal
voltage upper bound is violated.
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Therefore, by contradiction, if y† ∈ RR, then
RF = ∅.

The importance of Lemma 1 to Theorem 2 (as the main
result of the paper) cannot be understated. Because this paper
uses a steady-state current injection model, it has generator
terminal voltages. These generator terminal voltages, in turn,
have upper bounds. Any effort to move the demand-bus volt-
age magnitudes upwards will require the generator terminal
voltage magnitudes to move upward as well, and beyond their
upper bound values. Therefore, if the demand-bus voltage
magnitudes are lower than the lower bounds, then there is no
way to increase themwithout violating the generator terminal
voltage upper bounds instead. The reader will recognize that
the argument of the Lemma 1 proof presented above is built
upon a physical intuition rooted in Ohm’s Law: an increase
in one of more demand-bus voltage magnitudes necessitates
an increase in one or more generator terminal voltage mag-
nitudes. Practicing electrical engineers will recognize this
physical intuition as always true by experience. Nevertheless,
for a purely mathematical argument, this statement is recast
as Lemma 2 below.
Lemma 2: An increase of demand-bus voltage magnitudes

from |V †
D| to a hypothetical value |V

‡
D| = |V

†
D +1VD| where

|1VD| > 0 necessitates an increase in one or more generator
voltage magnitudes from |V †

G| to |V
‡
G| = |V

†
G +1VG|.

Proof: A proof by contradiction is provided. First, for
simplicity, Equations 10, 11, 18 and 19 are combined into a
single linear matrix equality over complex numbers[

I†G
−ID

]
= Y

[
V †
G

V †
D

]
=

[
YGG YGD
YDG YDD

][
V †
G

V †
D

]
(88)

where the bus admittance matrix Y = G + jB is parti-
tioned into YGG = [ATGYLAG], YGD = [ATGYLAD], YDG =
[ATDYLAG], and YDD = [ATDYLAD]. Taking the gradient of
both sides yields:[

1IG
0

]
=

[
YGG YGD
YDG YDD

] [
1VG
1VD

]
(89)

If we assume 1VG = 0, then 0 = YDD1VD. Because
YDD is invertible, the only solution to this equation is
1VD = 0. |1VD| > 0 is impossible. Therefore, by contra-
diction, a demand bus voltage increment |1VD| > 0 neces-
sitates a generator terminal voltage increment magnitude
|1VG| > 0. Finally, a ‘‘real-life’’ electric power system has
power lines with positive resistances and reactances. There-
fore, G(i, j) > 0 ∀i = j, G(i, j) ≤ 0 ∀i 6= j, B(i, j) <
0 ∀i = j, and B(i, j) ≥ 0 ∀i 6= j. Therefore, the direction
of the voltage magnitude increment |1VG| necessitates an
increase one or more generator voltage magnitudes from |V †

G|

to |V ‡
G| = |V

†
G +1VG|.

V. NUMERICAL DEMONSTRATION
To demonstrate the profit-maximizing security-constrained
IV-ACOPF, a modified version of the Saadat (1999) transient
stability test case [94] is chosen. The associated one-line

diagram is shown in Fig. 4. The system consists of three
generator buses (in blue) and three generator lead-lines (in
red), six demand buses (in green) and seven power lines (in
blue). Impedance values have been retained from the original
text, and the current withdrawals at the demand buses are
shown on the figure. Similarly, the minimum and maximum
limits on generator current injections are provided. All bus
voltage magnitudes have a lower bound of 0.9 and upper
bound of 1.1. The voltage stability constraint limits the angle
associated with the current injected to a line between ±20◦.
Aminimum power factor of 0.95 is used to calculate the lower
limit on the demand bus voltage phase angle according to
Eq. 48. The reference bus is chosen to have the largest voltage
phase angle. Therefore, θmaxVD = 0. All provided values are
given per unit. The chosen marginal cost ($/MW ) for each
generator and marginal revenue values for each demand-bus
are shown in Table 1.

FIGURE 4. Saadat’s (1999) Six Demand-Bus, Three Generator Transient
Stability Test Case [94]. The topological arrangement and impedance
values have been retained. Real and imaginary generator current
injection are shown in green.

TABLE 1. Generator & Demand-Bus Revenue Parameters.

These input values constitute moderate loading condi-
tions. Here, the IV-ACOPF optimization program reaches
a global optimum of J = $763.79. The associated deci-
sion variables are shown in Figure 5. The generators cur-
rent injections remain well within their real current capacity
constraints. That said, Generator 1 has reached its limit with
respect to its imaginary current capacity. In the meantime,
and as expected, the generator voltage magnitudes are all
situated on their respective upper bounds. This is because the
IV-ACOPF minimizes the cost of generator current injec-
tions but does not depend on generator voltages. Therefore,
generator voltages will tend to rise in order to minimize the
generator currents. At these moderate loading conditions, all
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FIGURE 5. Solution of the IV-ACOPF formulation under moderate loading
conditions.

of the electric power lines (including generator lead lines)
remain unconstrained as well. Finally, all of the demand bus
voltages are well within their voltage magnitude constraints.
This rather ‘‘uneventful’’ scenario, nevertheless, provides an
important result. Under these moderate conditions, the opti-
mum of the relaxed IV-ACOPF is equivalent to the global
optima of the unrelaxed problem. Furthermore, because there
is a tendency towards higher generator terminal voltages,
candidate optimal solutions y† ∈ RR will tend to occur
only when necessary, and more specifically under relatively
high loading conditions. Reconsider Ohm’s Law in Eq. 14.
Multiplying on both sides by ATD and solving for VD gives:

VD = −A1ID − A2VG (90)

where

A1 = (ATDYLAD)
−1 (91)

A2 = A1ATDYLAG (92)

In short, the network flow constraints can be rearranged
so that the demand-bus voltages are written in terms of
the demanded currents ID and the generator terminal volt-
ages VG. As ID increases, it pulls down demand bus voltages
with it.

FIGURE 6. The candidate solution y† of the IV-ACOPF formulation under
high loading conditions. Because the candidate solution violates the
voltage magnitude lower bound constraint, the solution must be
discarded and the optimization problem pronounced as infeasible.

A second IV-ACOPF scenario that reflects high loading
conditions is now studied. This time, all currents have been
increased by 23.3%. Now the IV-ACOPF optimization pro-
gram reaches an optimum of J = $757.56. The associated
decision variables are shown in Figure 6. In this scenario,
Generator 3 has reached its real current capacity limit, while
Generators 1 and 2 respectively are less than 1% and 2% away
from their real current inject limits. Generator 1 continues to
reach its imaginary current capacity limit. Again, as expected,
the generator voltage magnitudes are all situated on their
respective upper bounds. At these high loading conditions,
Power Line 4 has reached its thermal capacity limit. Finally,
because of the voltage magnitude relaxation, the voltage
magnitudes for demand buses 3, 4, 5 and 6 are now all below
the safe value of 0.9p.u by 0.299, 0.307, 1.11, and 1.84%
respectively. Therefore, by Lemma 1, this candidate solution
must be discarded and the optimization problem pronounced
as infeasible. Figure 7 visualizes the candidate solution in a
manner similar to that shown in Figure 3.

VI. DISCUSSION: THE IMPORTANCE OF MODELING
DECISIONS
This paper has contributed a profit-maximizing security-
constrained IV-ACOPF formulation as a convex optimiza-
tion program which lends itself to a straightforward globally
optimal solution via a Newton-Raphson algorithm. In so
doing, it has demonstrated several modeling novelties which
this section now discusses. The first decision was to switch
away from PQV θ decision variables to IV decision vari-
ables. APQV θ formulation inevitably introduces non-convex
|Vi||Vj| terms (i 6= j) in order to calculate the active power P
and reactive power Q variables. Similarly, an IVPQ formula-
tion that mixes current, voltage, active power, and reactive
power variables must inevitably introduce S = V ? I∗
constraints which are also non-convex. Therefore, a whole-
hearted flip into IV phasors is required to eliminate these
non-convexities. Similarly, the choice of rectangular coordi-
nates for these phasors rather than polar coordinates avoids
the introduction of non-convex sin(θ ) and cos(θ ) terms.
The result is a set of easily managed linear network flow
constraints.

This IV-ACOPF also features a steady-state current injec-
tion model that includes generator terminals and their asso-
ciated lead lines. This modeling decision has two primary
advantages. First, the power flow analysis assumes complex
power injections from generators; that when converted to IV
variables imply that the generators are current sources. This
modeling assumption is physically inconsistent with other
electric machine models and power systems engineering
models where generators are typically modeled as Thevenin-
equivalent voltage sources [108], [113], [114]. The choice
of voltage sources over current sources corrects the under-
lying causality [115], [116] of the system where the genera-
tor’s current is drawn from the network rather than imposed
by the generator. Second, the introduction of the generator
lead lines in the current injection model means that the
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FIGURE 7. The candidate nodal voltage solution y† of the IV-ACOPF formulation under high loading conditions is indicated by *. Voltage upper bounds are
shown in red. Voltage lower bounds are shown in blue. Voltage lower bound relaxations are shown in magenta. Power factor upper and lower bounds are
shown in black. Each generator and demand bus is shown. Because the candidate solution violates the voltage magnitude lower bound constraint, the
solution must be discarded, and the optimization problem pronounced as infeasible.

supply-side of the objective function can now be expressed
in terms of generator currents IG alone and thus avoid the
typical S = V ? I∗ non-convexity when IV formulations
must ultimately monetize the purchase and sale of active and
reactive power. Said differently, the correction of the physical
causality also corrects the mathematical non-convexity.

Along these lines, this IV-ACOPF formulation also takes
special care in the design of the objective function. Typical
ACOPF formulations that offer a one-sided cost minimiza-
tion (as in Eq. 9) are just a mathematical short-hand for a
two-sided profit maximization with inelastic demand as in
Eq. 1. Nevertheless, the distinction in this work is critical
because the explicit inclusion of the demand-side revenue
terms (even if the demand is inflexible) is instrumental in
the derivation of a convex objective function. Although this
work continues with the traditional assumption of inelas-
tic demand, this two-sided formulation indicates that one-
sided market designs are perhaps outdated and that two-sided
markets should become the norm in the context of the 21st

century sustainable energy transition. Follow-onworks to this

paper are likely to investigate elastic demand formulations.
The objective function alsomonetizes both active and reactive
power. Because traditional ACOPF formulations have been
directed to transmission systems, they have often focused
on active power generation and flow and neglected reactive
power. In distribution systems, however, the flow of reactive
power is often highly constrained. Therefore, this IV-ACOPF
formulation provides themonetary incentive to alleviate these
reactive power flow constraints. Furthermore, on the demand
side, it charges differently for current delivered at one voltage
versus another. In conclusion, the objective function gives
balanced attention to the supply side, the demand side, active
power and reactive power.

This IV-ACOPF formulation also pays special attention
to the generator capacity constraints. In that regard, it is
clear that the original 1962 paper by Carpentier approximates
the capability curve of synchronous generators; which in
turn is expressed as a constant voltage multiple of a syn-
chronous generator’s phasor diagram. In order to maintain
consistency of the modeling, this work simply ‘‘undoes’’
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the multiplication of Vφ/XS but retains the Carpentier’s box
constraints. This avoids several non-convexities from the
synchronous generator’s phasor diagram. It also facilitates a
market design that is agnostic to device physics and treats all
energy resources with the same level playing field; a highly
desirable characteristic in the socio-economic design of an
equitable electricity market.

The choice of exogeneous data in this IV-ACOPF for-
mulation versus a traditional ACOPF is also of particular
importance. The traditional ACOPF provides SD as exoge-
nous data. When switching to IV variables, this exogeneous
data decision reveals two simultaneous dilemmas. First, and
mathematically, SD = VD ? I∗D immediately introduces a
constraint of indefinite convexity. Second, and physically,
electric power systems are based upon either voltage or
current causality. Introducing exogeneous complex power
consumption data SD is a statement of ambiguous causality
of power system physics. When receiving exogeneous data
of complex power withdrawals, a power systems engineer
should ask whether the underlying physics assumed voltage
or current sinks with their associated imposition on causal-
ity. In the unlikely event that the load is a voltage sink,
then the associated demand-bus voltage decision variable
disappears. In contrast, if the load is a current sink (or a
given impedance), then the demand-bus voltage remains as a
decision variable as provided in this IV-ACOPF formulation.
Although, existing ACOPF implementations have amassed
considerable quantities of complex power demand data, the
original source of this data normally collects the associated
current phasor data as well; either from SCADA (Supervi-
sory Control and Data Acquisition) systems or smart meters.
Therefore, the benefits of changing exogeneous data from
SD to ID greatly outweigh the relatively modest implemen-
tation effort. Similarly, existing forecasting software which
normally predict SD can be retooled with historical voltage
phasor data VD to produce ID. Alternatively, new forecast-
ing software can predict ID directly from historical current
phasor data. The implementation steps avoid the use complex
power data with indefinite convexity and ambiguous physical
causality.

Finally, it is important to comment on the equivalence of
this IV-ACOPF to the original ACOPF problem described in
Sec. II.
Theorem 3: Given the optimal vector of demand-bus

voltage phasors V †
D, the IV-ACOPF formulation defined by

Equation 59-72 and 77 is a generalization of the ACOPF
formulation defined by Equations 1-8 when PD and I∗D are
chosen such that SD = V †

DI
∗
D.

Proof: The equations of the IV-ACOPF are addressed in
turn.
• By the discussion in Section III-C, the objective function
in Eq. 59 is equivalent to Eq. 1 when αIg = αId = βIg =
βId = 0 ∀g ∈ G, d ∈ D.

• From the proof of Lemma 2, the network flow equa-
tions 60-63 are combined to yield Equation 88. Applying
the definitions of YL ,AG andAD to the bottom block-row

of equations gives:

−ID = ATDGYLGAGGVG + A
T
DGYLGADGVD

+ATDDYLDADDVD (93)

Substituting in Ohm’s Law on the lead lines from Eq. 15
and the definition of a bus admittance matrix YD =
Y TLDADDVD gives:

−ID = ATDGILG + YDDVD (94)

This same result can be confirmed from the power anal-
ysis model by rewriting Equations 2 and 3 in complex
matrix form:

AGDSG − SD = diag(VD)Y ∗DV
∗
D (95)

and then dividing all terms by diag(VD). Because SD
and ID are exogeneous constants they must be related
by the optimal vector of demand-bus voltage phasors
V †
D. SD = V †

DI
∗
D.

• By the discussion in Section III-D, the reference angle
constraint in Eq. 64 is equivalent to Eq. 4.

• By the discussion in Section III-E, the generator capac-
ity constraints in Equations 65 - 68 are equivalent to
Equations 5 and 6.

• By the discussion in Section III-F, the thermal line flow
constraint in Eq. 69 is equivalent to Eq. 7.

• By the discussion in Section III-G, the voltage magni-
tude constraints in Equations 73 and 77 are equivalent
to Eq. 8.

• By the discussion in Section III-H, the exogeneous con-
stant SD = PD + jQD in the ACOPF is a specific
condition of the power factor upper and lower bounds in
Equations 71 and 72where θmaxVD = θ

min
VD and θVD−θID =

tan−1(QD/PD). �
Note that Theorem 3 omits the generator terminal voltage

upper bound because the generator terminals do not appear
in the power flow analysis model of the ACOPF. Their
re-inclusion serves to protect generators from over-voltages.
Similarly, the theorem omits the voltage stability constraints
in Equations 74 and 75 because they do not appear in the
original ACOPF either. Their re-inclusion would protect the
grid from voltage instabilities. Lastly, the voltage magnitude
lower bound relaxation in Eq. 76 is superfluous in the pres-
ence of the more binding voltage magnitude lower bound in
Eq. 77. In other words, and as a significant conclusion of this
paper, when PD and I∗D are chosen such that PD = V †

DI
∗
D

and αIg = αId = βIg = βId = 0 ∀g ∈ G, d ∈ D, then
the optimal point x∗ = [VRG;VIG; IRG; IIG;VRD;VID] of the
IV-ACOPF formulation defined by Equation 59-72 and 77 is
equivalent to optimum point χ = [PG;QG; |VD|; θD] from
the ACOPF formulation defined by Equations 1-8.
Beyond these equivalence conditions, it is important to

recognize that the more general conditions of the IV-ACOPF
offer notable improvements. More specifically, relaxing the
condition PD = V †

DI
∗
D means that the demand side is

no longer a constant but rather a function of demand-bus
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voltages. The original ACOPF 1.) ignores the demand side
entirely and 2.) does not differentiate between the sale of
electric power at one voltage versus another (assuming, per-
haps incorrectly, that a customer is indifferent to voltage
magnitude). Instead, the inclusion of these demand side terms
as functions in the IV-ACOPF explicitly differentiates the
sale of electric power at one voltage versus another. In a
21st century sustainable energy transition characterized by
the energy Internet of Things [36] and other demand side
resources [117], it is likely that treating the sale of only
active power integrated over time on a purely kWh basis
irrespective of voltage level is no longer viable in the long-
term. Furthermore, the use of exogeneous power demand data
SD was an immediate source of indefinite convexity and was
an immediate source of ambiguous physical causality. The
switch to exogeneous current demand ID data alleviates both
of these problems and a practical power systems engineer
may ask why the (original) ACOPF should continue to be
solved in light of these problems with SD as the choice
of exogeneous data. Setting aside these computational and
practical benefits, in the end, the IV-ACOPF and ACOPF
models both effectively secure the grid. While the IV-ACOPF
formulation can be solved to global optimality in polynomial
time, the original ACOPF, at present, can not.

VII. CONCLUSION
In conclusion, this paper has contributed a profit maximiz-
ing security-constrained current-voltage AC optimal power
flow (IV-ACOPF) model and globally optimal algorithm.
The main novelty of the work is its exclusive use of current
and voltage phasors in rectangular coordinates to maintain
the convexity of the optimization problem. The formulation
also explicitly includes both the supply and demand sides to
provide a profitmaximizing rather than costminimizing func-
tionality. The now linear network flow constraints also facili-
tate the inclusion of power factor constraints (Eq. 47 and 48)
and voltage stability constraints (Eq. 53 and 54) that are
often neglected in typical optimal power flow formulations.
This IV-ACOPF does feature a high quality ‘‘secant-line’’
relaxation on the otherwise non-convex voltage magnitude
lower bound. This new IV-ACOPF reformulation facilitates
a straightforward polynomial-time globally optimal solution
via a Newton-Raphson algorithm. The numerical results con-
firm the globally optimal solution and return infeasible solu-
tions when the loading conditions are excessively high. As
elaborated in the discussion section, this paper opens the
door to significant future work that enables the sustainable
energy transition; including application to the operation of
distribution systems and microgrids, two-sided markets with
elastic demand, and coupling to other infrastructure sectors.
It also is likely to have direct application to generation and
transmission planning methods.
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NOMENCLATURE
DECISION VARIABLES
| VD | Magnitudes of Voltage Phasors for

Demand Buses.
θID Phase Angle of Current Phasor for

Demand Buses.
θVD Phase Angle of Voltage Phasor for

Demand Buses.
θmaxVD Upper Bound on Phase Angle of Voltage

Phasor for Demand Buses.
θminVD Lower Bound on Phase Angle of Voltage

Phasor for Demand Buses.
J Profit Objective Functin.
MCG Marginal Revenue.
MRD Marginal Cost.
PG Active Power from Generators.
PL Active Power through Power Lines.
QG Reactive Power from Generators.
QL Reactive Power through Power Lines.
SG Complex Power from Generators.
SL Complex Power through Power Lines.
VDI Imaginary Part of Voltage Phasors

for Demand Buses.
VDR Real Part of Voltage Phasors for Demand Buses.
VD Voltage Phasors for Demand Buses.
VGI Imaginary Part of Voltage Phasors

for Generators.
VGR Real Part of Voltage Phasors for Generators.
VG Voltage Phasors for Generators.
ILDI Imaginary Part of Current Phasors for Demand

Bus to Demand Bus Power Lines.
ILDR Real Part of Current Phasors for Demand

Bus to Demand Bus Power Lines.
ILD Current Phasors for Demand Bus to

Demand Bus Power Lines.
ILGI Imaginary Part of Current Phasors for

Generator Lead Lines.
ILGR Real Part of Current Phasors

for Generator Lead Lines.
ILG Current Phasors for Generator Lead Lines.
ILI Imaginary Part of Current Phasors

for Power Lines.
ILR Real Part of Current Phasors for Power Lines.
IL Current Phasors for Power Lines.
IGI Imaginary Part of Current Phasors

for Generators.
IGR Real Part of Current Phasors for Generators.
IG Current Phasors for Generators.

OTHER SYMBOLS
f () A Generic Function.
g() A Generic Function.
h() A Generic Function.
k Iteration Counter.
y† A Candidate Solution.
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y† An Optimal Solution.
L() A Lagrangian Function.
λ Lagrange Multiplies.
λe Eigenvalues.

PARAMETERS
αRD Quadratic Cost Coefficient for Active

Power from Demand Buses.
αRG Quadratic Cost Coefficient for Active

Power from Generators.
βRD Linear Cost Coefficient for Active

Power from Demand Buses.
βRG Linear Cost Coefficient for Active

Power from Generators.
γRD Fixed Cost Coefficient for Active

Power from Demand Buses.
γRG Fixed Cost Coefficient for Active

Power from Generators.
| VD |max Upper Bound on Voltage

Magnitude of Demand Buses.
| VD |min Lower Bound on Voltage

Magnitude of Demand Buses.
AD Line-to-Bus Incidence Matrix.
AGD Generator-to-Demand Bus Incidence Matrix.
AG Line-to-Generator Incidence Matrix.
B Bus Susceptance Matrix.
BL Generator & Bus Susceptance Matrix.
G Bus Conductance Matrix.
GL Generator & Bus Conductance Matrix.
ND Number of Demand Buses.
ND Number of Power Lines.
NG Number of Generators.
PD Active Power from Demand Buses.
PmaxG Upper Bound on Active Power

from Generators.
PminG Lower Bound on Active Power

from Generators.
PmaxL Upper Bound on Active Power

through Power Lines.
QD Reactive Power from Demand Buses.
QmaxG Upper Bound on Reactive

Power from Generators.
QminG Lower Bound on Reactive

Power from Generators.
SD Complex Power from Demand Buses.
Y Bus Admittance Matrix.
YL Generator & Bus Admittance Matrix.
IDI Imaginary Part of Current

Phasors for Demand Buses.
IDR Real Part of Current

Phasors for Demand Buses.
ID Current Phasors for Demand Buses.
YL Lead Line and Power Line Admittances.

SETS
d ∈ D Demand Buses.
g ∈ G Generators.
l ∈ L Power Lines.
l ∈ LD Demand Bus to Demand Bus Power Lines.
l ∈ LG Generator Lead Lines.
RF Feasible Region.

RRF Relaxed Feasible Region.
RR Relaxed Region.
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