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ABSTRACT Adversarial machine learning defenses have primarily been focused on mitigating static, white-
box attacks. However, it remains an open question whether such defenses are robust under an adaptive black-
box adversary. In this paper, we specifically focus on the black-box threat model and make the following
contributions: First we develop an enhanced adaptive black-box attack which is experimentally shown to be
>30% more effective than the original adaptive black-box attack proposed by Papernot et al. For our second
contribution, we test 10 recent defenses using our new attack and propose our own black-box defense (barrier
zones). We show that our defense based on barrier zones offers significant improvements in security over
state-of-the-art defenses. This improvement includes greater than 85% robust accuracy against black-box
boundary attacks, transfer attacks and our new adaptive black-box attack, for the datasets we study. For
completeness, we verify our claims through extensive experimentation with 10 other defenses using three
adversarial models (14 different black-box attacks) on two datasets (CIFAR-10 and Fashion-MNIST).

INDEX TERMS Adversarial machine learning, adversarial examples, adversarial defense, black-box attack,
security, deep learning.

I. INTRODUCTION o ) IZZi BCIFAR-10 M Fashion-MNIST
There are many applications based on Convolution Neural .
Networks (CNNs) such as image classification [1], [2], object 5 0%
detection [3], [4], semantic segmentation [5] and visual con- g :2;
cept discovery [6]. However, it is well-known that CNNs are e
highly susceptible to small perturbations n which are added € so%

. . . . . 20%
tg bemgn. input images x. As shown in [7], [8]’. by gddmg o I II
visually imperceptible perturbations to the original image, o%
adversarial examples x” can be created, i.e., x’ = x +1. These \;f’ & & F @\ge"q’ N SR _\@9‘-‘% «
adversarial examples are misclassified by the CNN with high N «
COIlfldf.}IlCC..He.nf:e, makllng CNNs secure against this type of FIGURE 1. The robust accuracy (1-o) of each of the 11 defenses analyzed
attack is a significantly important task. in this paper. For a given defense the robust accuracy is computed as the

In ceneral. adversarial machine learning attacks can be minimum robust accuracy achieved over all 14 types of black-box attacks.
g . [ . g . Notice that if no bar is present, then this means 0% robust accuracy.
categorized as either white-box or black-box. This catego-
rization depends on how much information about the clas-
sifier is necessary to run the attack. The majority of the

the classifier/defense parameters are known. Likewise, the
literature has focused on white-box attacks [9]-[11] where

majority of defenses have been designed with the goal of
thwarting white-box attacks [12]-[24]. In this paper, we focus

The associate editor coordinating the review of this manuscript and on black-box attacks, where the classifier parameters are
approving it for publication was Chunsheng Zhu = . hidden or assumed to be secret. This type of adversary
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represents a more practical threat model than the white-box
attacker [25]. This is in part due to the fact the adversary
cannot access the classifier parameters, but is still able to
successfully create adversarial examples [25], [26]. Despite
not having the defense parameters, the black-box adversary
may still query the defense, be able to access X’ (the training
dataset for the defense), or build a synthetic model to assist
them in creating adversarial examples. By analyzing defenses
through a black-box adversarial lens, we help complete the
security picture by offering both new attack and defense
perspectives to the community. Specifically we make the
following contributions:

1) Mixed Black-Box Attack: We develop an enhanced
version of Papernot’s black-box attack [26] by expand-
ing the amount of data available to the attacker
and changing the final attack generation method ¢.
These changes significantly improves the attack suc-
cess rate, i.e. >30% improvement on CIFAR-10 and
Fashion-MNIST.

2) Barrier Zone Defense: We develop a novel defense
based on barrier zones — coined BARZ. We show bar-
rier zone based defenses can outperform all 10 other
recent defenses studied in this paper. These defenses
includes Madry’s Adversarial Training [27], Barrage of
Random Transforms [22] and Ensemble Diversity [24]
justtoname a few. A synopsis of our results is displayed
in Figure 1 where we show the minimum robust accu-
racy of each defense under all 14 types of black-box
attacks.

3) The § Metric (Minor Contribution): In adversarial
machine learning, every defense comes with two dis-
tinct values to consider. These values are the cost
of the defense (drop in clean accuracy) and the
robustness/security (performance on adversarial data).
We propose an intuitive way to help gauge this trade-off
between robustness and cost in the form of the § metric.

A. COMPARING DEFENSES

Figure 1 shows how the robust accuracy of the BARZ defense
(defined as 1 —«, where « is the attack success rate of the best
out of 14 types of black-box attacks) compares to 10 other
recent defenses from literature. The literature defines the
attack success rate « as the fraction of adversarial examples
that are misclassified by the defense. Here it is also important
to precisely define the term adversarial example. In short,
adversarial examples are clean images that are correctly iden-
tified by the classifier in their untampered form, and to which
adversarial noise has further been added by the attacker.

For this reason, using only the attack success rate o
does not give the complete picture (i.e. only ¢ is shown in
Figure 1). The attack success rate « only corresponds to the
fraction of original images which the defense classifier can
correctly label. In essence, for any given defense d, « depends
on the clean accuracy of the defense py and not the state-of-
the-art or best achievable clean accuracy p. Here p specifi-
cally refers to the accuracy measured on the clean images,

1452

without any defense i.e., the clean accuracy. When a defense
is present, we denote the corresponding clean accuracy of the
defense as p4. So, to complete the story of Figure 1, we need
to understand to what extent, the defense itself leads to a
lowering of the clean accuracy of the vanilla scheme from
p down to pg.

TABLE 1. Accuracy for non-malicious and malicious environments.

‘ ‘ Vanilla ‘ Defense ‘
[ non-malicious | p | Pd |
[ malicious | =0 [ ps-(1—0) |

Comparing defenses along these two separate metrics of
(a) robust accuracy 1 — o (how well the attacker is able to
defeat the defense) and (b) clean accuracy p; of the defense
itself (without adversarial presence) leads to fuzziness. It is
not clear which metric is considered more important or what
combination is ‘best’. The first row in Table 1 depicts the
non-malicious environment (i.e., no adversary) and shows
the accuracy p of the vanilla scheme, which is the best we
can achieve to-date, and the accuracy p; of the defense,
which is less than p as explained above. For the malicious
environment, the vanilla scheme cannot achieve any accu-
racy because o« = 0 (see the black-box boundary attack in
Figure 2). This type of attack can always successfully trans-
form a correctly classified image into an adversarial example
that is misclassifed by the vanilla scheme. The probability of
proper/accurate classification by the defense in the presence
of adversaries is equal to p,; - (1 — «) in the lower right corner
of Table 1, since the defense properly labels a fraction py if
no adversary is present, and out of these images a fraction «
is successfully attacked, if an adversary is present.

To avoid any fuzziness, we combine both metrics p; and
1 — o into a single ‘§-metric’: We define § as the drop in
accuracy from the clean accuracy p of the vanilla scheme in
the non-malicious environment (top left corner) to the accu-
racy of the defense in the malicious environment p; - (1 — @)
(bottom right corner):

d=p—pa-(1-a).

When we analyze the non-malicious environment we are
only interested in the clean accuracy of the defense — because
we do not assume any attack. This gives Figure 2 where the
y-axis corresponds to the accuracy pq for the defense in the
non-malicious environment and the x-axis corresponds to the
accuracy for the defense in the malicious environment — that
is, the x-axis represents the drop § from clean accuracy of
the vanilla scheme in the non-malicious environment to the
accuracy of the defense in the malicious environment (the
price for resistance against adversarial examples). We notice
that the x-axis and y-axis can map in a straightforward way
to the clean defense accuracy p; and robust accuracy 1 — «
themselves, which we could have reported as the x-axis
and y-axis in our plots instead. But this would not visually
make clear what combination (p;, | — «) is the best in a
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FIGURE 2. The § metric vs clean accuracy pg4 for the boundary attack. The
BARZ results are shown in green and the vanilla result is shown in gray.

malicious environment. We prefer to plot the §-metric as this
corresponds directly to the (drop in) accuracy of the defense
classifier in the malicious environment.

In practice, when evaluating a defense, we not only take
into consideration the accuracy p — § of the defense in the
malicious environment but also the accuracy of the defense
in the non-malicious environment given by p4 in the top right
corner of Table 1. From a pure machine learning perspective,
we want a defense which does not affect p ‘too much’ — in
other words the drop y = p — ps should be small and limited
to a couple of percentage points. However, security often does
not come for free and in order to minimize § we may need to
sacrifice much more than a couple of percentage points. This
means that we need to study a trade-off between minimizing
8 and an acceptable py. This paper presents such a study
and our defense BARZ is aimed at minimizing § despite a
possibly significant drop y from p to py = p — y in the
non-malicious environment. It turns out that this leads to a
robust accuracy for BARZ which outperforms those of other
defenses as depicted in Figure 1 and Figure 2.

B. OUTLINE

The rest of the paper is organized as follows: In Section II
we discuss black-box adversaries, why we focus on certain
attacks and our new mixed black-box attack. In Section III
we discuss the defenses we study, the security principles
behind them and why we selected these defenses for analysis.
In Section IV we introduce the mathematical intuition behind
the security principles in the barrier zone defense. We discuss
how barrier zone are realized in practice and show empiri-
cal proof of them as well, in Section IV. In Section V we
explain how to concisely analyze the efficiency of a defense.
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We give experimental results for all 11 defenses and 14
attacks in Section VI. Lastly we offer concluding remarks
in Section VII.

Il. ATTACKS

The general setup in adversarial machine learning for
both white-box and black-box attacks is as follows [28]:
We assume a trained classifier f with a correctly identified
sample x with class label y. The goal of the adversary is to
modify x by some amount 1 such that f(x 4+ 1) produces
class label 3. In the case of untargeted attacks, the attack is
considered successful as long as y # y. In the case of targeted
attacks, the attack is only successful if y # y and y = ¢ where
t is a target class label specified by the adversary. For both
untargeted and targeted attacks, typically the magnitude of n
is limited [8] so that humans can still visually recognize the
image.

The difference between white-box and black-box attacks
lies in how 5 is obtained. In white-box attacks, n may be
computed through backpropagation on the classifier or by for-
mulating the attack as an optimization problem [7], [11], [29]
which takes into account the classifier’s trained parameters.
The white-box adversary has access to the trained parameters
which can be used to compute gradients — in essence, the
white-box adversary has access to a gradient oracle (which
when queried spits out gradient information).

Black-box attacks on the other hand do not have access
to the classifier’s parameters when generating n and must
rely on other information. The black-box adversary may have
access to the classifier itself which upon querying returns a
score vector or the label for which the score is maximized —
we call this a black-box oracle. Besides a black-box oracle,
the black-box adversary may also have information about the
training data that was used to train the classifier.

From a crypto perspective, a white-box adversary is strictly
stronger than a black-box adversary and also has access to the
black-box oracle. However, we often forget that the classifier
parameters known to the white-box adversary can not only be
used to compute a gradient oracle but also a black-box oracle.
This is because we often think that gradient information leads
to more powerful attacks, hence, we may not need to consider
black-box attacks. A defense that demonstrates robustness to
white-box attacks that only make use of a gradient oracle does
not always imply robustness to black-box attacks. Gradient
masking makes it possible for a defense to give a false sense
of security [10] against a fully-equipped white-box adversary
as it only thwarts white-box attacks based on the gradient
oracle. This shows that there is a need to also separately test
gradient free attacks, such as black-box attacks.

In this paper, we focus on black-box adversaries which
utilize adaptive attacks [26]. A natural question is why do we
focus on adaptive black-box type attacks? We do so for the
following reasons:

1) State-of-the-art white-box attacks on published
defenses have been extensively studied in the litera-
ture [9]-[11]. The level of attention given to black-box
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attacks in defense papers is significantly less. By focus-
ing on black-box attacks, we seek to complete the secu-
rity picture. This full security picture means that the
current defenses we analyze have not only white-box
attacks (from their own publication), but also adaptive
black-box results (as reported in this paper). Future
defenses can build upon the security concepts devel-
oped in this paper and our experiments, when making
their own analyses. This completed security spectrum
brings us to our next point.

2) By completing the security picture (with black-box
attacks) we allow the readers to compare defense
results. This comparison can be done because the same
adversarial model, dataset and attack is used for each
defense. This is completely different from adaptive
white-box attacks which may require different adver-
sarial models and different security assumptions for
each attack. For example, in [9] to break a detector
defense (The Odds are Odd), a custom objective func-
tion must be employed to achieve a high attack success
rate in the adaptive white-box attack. Alternatively,
creating an adaptive white-box attack on an ensem-
ble model defense (ADP [24]) is much different. The
only requirement is to increase the number of itera-
tion used in a simple gradient based white-box attack,
to make the attack adaptive and effective. Although
both adaptive attacks in our example are white-box, the
latter (the adaptive white-box attack on ADP) techni-
cally only requires being able to backpropagate on the
model. As noted in [30] it is improper to compare the
robustness of two defenses under different adversarial
models.

A. BLACK-BOX ATTACK VARIATIONS

1) PURE BLACK-BOX ATTACK [10], [31]-[33]

The adversary is only given knowledge of a training data
set Xp.

2) ORACLE BASED BLACK-BOX ATTACK [26]

The attacker does not have access to the original training
dataset, but may generate a synthetic dataset Sy similar to the
training data. The adversary can adaptively generate synthetic
data and query the defense O to obtain class labels for this
data. The synthetic dataset Sy is then used to train the syn-
thetic model. It is important to note the adversary does not
have access to the entire original training dataset Ajp.

In this paper, we propose a new version of this attack
which we call the Mixed Black-Box Attack. In this attack,
the adversary is given the entire original training dataset,
the ability to generate synthetic data and query access to the
defense to label the data. The adversary in our attack also has
multiple different adversarial generation methods ¢ to choose
from to create adversarial examples. In this way, the adversary
can train a synthetic model whose behavior mirrors that of
the defense more precisely. In short, the attacker adapts the
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synthetic model to the defense. It is important to note the
earlier version of this attack [26] did not allow full access to
the training dataset Xy and the adversarial generation method
¢ was fixed to be the Fast Gradient Sign Method (FGSM).

Experimentally, we show that the mixed black-box attack
outperforms the original attack proposed by Papernot. Our
experiments also show the mixed black-box attack works
better on certain types of randomized defenses when com-
pared to both boundary and pure black-box attacks [10], [25],
[31]-[34]. The pseudo-code for the mixed black-box attack is
given in Algorithm 1 and explained in section II-B.

Algorithm 1 Mixed Black-Box Attack. Oracle O (i.e., the
Classifier With defense) Is Modeled Using Synthetic Model
M Which Is Trained Using Method T for E Epochs With
Starting Dataset Xy € &) and Data Augmentation Parameter
A. The Final Adversarial Samples Are Generated From Input
Set X jean Using Attack Method ¢ Within Perturbation €

1: Input: O, Xo, ¢, A, E and X jean
: 8o <« {(x, O(x)) x € Xo}
: //Train model based on initial random parameters 0
: M(6g) < T(M(@), So)
:foree{l,...,E}:
//Augment the dataset with Jacobian technique

kAW

Jrg

~

Xe={x+ 1 -sgn(Jr(x)) : x € X1}

8: Se < {(x,Ox)) : x e X, }US,._

9: //Train M on the new dataset

10: M(6,) < T(M(6c—1), Se)

11: //Generate adversarial examples with M (0g) and attack
¢

12: Output: X4, <« {(x, p(M(OE), €; x,y))

Xclean}

(x,y) €

3) BOUNDARY BLACK-BOX ATTACK [35]

In this type of attack the adversary has query access to the
classifier and only generates a single sample at a time. The
main idea of the attack is to try and find the boundaries
between the class regions using a binary search methodology
and a gradient approximation for the points located on the
boundaries.

4) SCORE BASED BLACK-BOX ATTACKS

In the literature, these attacks are also called Zeroth Order
Optimization based black-box attacks [36]. The adversary
adaptively queries the defense to approximate the gradient
for a given input based on a derivative-free optimization
approach. This approximated gradient allows the adversary
to directly work with the classifier of the defense. Another
attack in this line is called SimBA (Simple Black Box
Attack) [37]. Unlike all the previously mentioned attacks,
this attack requires the score vector f(x) to mount the attack,
instead of merely using the hard label.
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The only type of black-box attack we do not consider in
our analysis from the ones enumerated above, is the score
based black-box attack. Just like white-box attacks are sus-
ceptible to gradient masking, score based black-box attacks
can be neutralized by a type of masking [30]. This means
defenses can appear to be secure to score based black-box
attacks, while actually not offering true black-box security.
Furthermore, it has been noted that a decision (hard label)
based black-box attack represents a more practical adversarial
model [25]. Therefore, we slightly focus our scope on the
three other black-box variants.

We implement the pure black-box attack and mixed
black-box attacks. In both these types of attacks adversarial
samples are generated from the synthetic model using six dif-
ferent methods, FGSM [8], BIM [38], MIM [39], PGD [27],
C&W [11] and EAD [40]. We also consider boundary black-
box attacks. Here we implement the original boundary attack,
the Hop Skip Jump Attack (HSJA) [25], as well as the
newly proposed Ray Searching Attack (RayS) [34]. In total
these attacks represent fourteen different ways to generate
black-box adversarial examples.

B. ATTACK SUCCESS RATE

For classifier C we define X'(C) as the set consisting of
image label pairs (x;, y;) from the training data set Aj that
are correctly classified by C, i.e.,

X(O) ={(xi,y) € &y : Clxp) = yi}-

We say X'(C) represents the set of clean images with respect
to classifier C.

We broaden our description of a classifier C by allowing
it to output a ‘do not know’ symbol L. This may happen if
C computes a score vector f(x) on input x where the scores
do not clearly favor any label. Later we will also interpret
L as the ‘adversarial’ symbol indicating that it may be an
adversarial example.

We define the attack success rate « for classifier C with
respect to a particular adversarial sample generation tech-
nique ¢ as

1
Co¢)=1— —
. 9) 1X(O)] 2

(x;,y1)eX(C)

Pr[C(¢(xi, yi)) € {yi, L}].

Here, the probabilities are over the coin tosses used in ¢
and C. The attack success rate reflects when an adversarial
example is successful meaning that C will predict a legitimate
label, thatis 7 L, which is not equal to the correct class label,
that is # y;.

We note that ¢ is separately trained/modeled/generated
using the information available to the black-box adversary.
This information may consist of sets &y and set X(C), and
based on these sets a self-generated synthetic model M (6),
where 6 denotes the parameters of the synthetic model.
Implicitly, ¢ incorporates a perturbation parameter € indi-
cating into what extent an adversarial example ¢(x;, y;) may
differ from the original image x;.
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The attack success rate estimates the fraction of clean
images of C for which successful adversarial examples can be
generated. Successful means C(¢(x;, y;)) # yi, 1.e., the adver-
sarial example ¢(x;, ;) is misclassified to an incorrect label
even though it is close to the original image x; (with respect
to perturbation parameter €). Here we consider so-called
untargeted attacks where the adversary is only interested in
misclassification to some other legitimate but wrong label.
(An adversarial example for a targeted attack are defined to
be successful if the classifier labels it with a target class label
specified by the adversary.) In practice we estimate «(C, ¢)
by taking a subset Xcjeqn S X(C) and compute the fraction
of adversarial examples ¢(x,y), (x,¥) € Xclean, that are
successful.

The above applies to the mixed-box black attack, see
Algorithm 1, as follows. By oracle O we denote the classifier
with defense to which the adversary has access. The attacker
starts with some starting data Xo € &j, generally, we assume
the worst-case for the defender, i.e., the adversary uses all
the training data Xo = A} as a starting point. Data augmen-
tation is used to recursively generate an augmented dataset
S, where queries to oracle O are used to find labels. Some
training method 7' (based on mathematical optimization for
machine learning) learns new parameters 6, for model M
based on S, with initial parameters 6,_;. The final synthetic
model M (6g) can be attacked by using a white-box attack
method ¢ (this is possible because the black-box adversary
knows parameters 0, hence, a gradient oracle for its syn-
thetic model M (6) is available). At the final step adversarial
examples are generated for X, and we can compute the
fraction for which these are successful — and this estimates

a(O0, pM(BE), €; ).

Ill. DEFENSES

The field of adversarial defenses is rapidly expanding,
with multiple defense papers released almost every month.
To examine every proposed defense is beyond the scope of
this paper. Instead, we focus our analysis on ten recent, related
and/or popular defenses. In this section we describe the
related defenses, their common security elements and why we
selected them for comparison. The related defenses we con-
sider are Barrage of Random Transforms (BaRT) [22], The
Odds are Odd (Odds) [23], Ensemble Diversity (ADP) [24],
Madry’s Adversarial Training (Madry) [27], Multi-model-
based Defense (Mul-Def) [21], Countering Adversarial
Images using Input Transformations (Guo) [20], Ensemble
Adversarial Training: Attacks and Defenses (Tramer) [14],
Mixed Architectures (Liu) [33], Mitigating adversarial effects
through randomization (Xie) [18], Thresholding Networks (a
basic proof of concept defense developed in this paper) and
Barrier Zones (BARZ), the main technique proposed in this
paper. In general, adversarial defenses can be divided based
on several underlying defense mechanisms. We note this type

1 https://nicholas.carlini.com/writing/2019/all-adversarial-example-
papers.html
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of division is common in other defense papers as well [41].
While the definitions for categorization we provide here are
by no means absolute, they give us a way to better understand
and analyze the field.

1) Multiple Models - The defense uses multiple classifiers
for prediction. The classifier outputs may be combined
through averaging (i.e. ADP), randomly picking one
classifier from a selection (Mul-Def) or through major-
ity voting (Mixed Architecture).

2) Image Transformations -The defense applies image
transformations before classification. In some cases,
the transformation may be randomized (Xie and BaRT)
or fixed (Guo).

3) Adversarial Training - The classifier is trained to cor-
rectly recognize adversarial examples with their correct
label. Madry, Mul-Def and Tramer all use adversarial
training.

4) Adversarial Detection - The defense outputs a null
label if the sample is considered to be adversarially
manipulated. Odds employs an adversarial detection
mechanism, as does the vanilla thresholding network
we consider as a proof of concept defense in this paper.

5) Randomization - The defense employs some form of
randomization during prediction that is not known a
priori to the attacker. BaRT and Xie both apply random
image transformations at run time to the input.

A. BARRAGE OF RANDOM TRANSFORMS (BaRT)

Barrage of Random Transforms (BaRT) by [22] is a defense
that applies a set of image transformations iy, ...i, to the
input x before classification. There are ten types of image
transformations that BaRT employs: JPEG compression,
image swirling, noise injection, Fourier transform perturba-
tions, zooming, color space changes, histogram equalization,
grayscale transformations and denoising operations. For each
input x, the number of transformations, the order of the
transformations and the parameters in the transformations are
randomly selected at run time.

Why we selected it: As the defense we propose (BARZ)
also uses image transformations, BaRT is a natural candidate
to compare to. In building the defense, BaRT trains a single
network on multiple image transformations. In contrast, our
defense trains multiple networks, each on its own smaller
set of image transformations. Comparing these two different
ways of building image transformation based defenses is of
interest.

B. THE ODDS ARE ODD (ODDS)

The Odds are Odd was first introduced in [23] as a statistical
test for detecting adversarial samples. The concept behind
the test is based on a simple observation: clean samples and
adversarial samples have different values in the logits layer
[(-). Here we define the logits layer as the layer before the
soft-max layer. When given an input x, the test works by
creating multiple copies of the input each with random noise
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added %1, ..., X,. The statistical test uses I(%1), ..., (%))
as input to distinguish between adversarial and clean
examples.

Why we selected it: In the black-box setting adversarial
detection is one possible way to make the defense stronger
as the attacker has to produce a wrong class label and avoid
the defense marking the input as adversarial (L). In the
defense proposed in this paper (BARZ) we also employ
detection by using a threshold voting method with multiple
classifiers. As security through detection is precisely what
Odds attempt to achieve, it makes sense to compare statistical
detection methods to voting based detection defenses such
as BARZ.

C. IMPROVING ADVERSARIAL ROBUSTNESS VIA
PROMOTING ENSEMBLE DIVERSITY (ADP)

Using multiple classifier in a defense is a straight-forward
concept based on the notion that it is more difficult to break
an ensemble of classifiers as opposed to a single one. In [24]
they further this notion by specifically training an ensemble of
classifiers to avoid the case where the majority of classifiers
simultaneously misclassify an adversarial example. In this
defense, security is achieved during training in which an
adaptive diversity promoting (ADP) regularizer is used. The
ADP regularizer pushes the non-maximal predictions of each
ensemble classifier to be mutually orthogonal.

Why we selected it: ADP uses an ensemble of classi-
fiers without image transformations or adversarial training.
BARZ on the other hand, uses multiple classifiers with image
transformations. If it were possible to achieve black-box
robustness in an ensemble without image transformations
(e.g. with only special training like in ADP) this would negate
the need for special image transformations in a black-box
defense. Therefore, testing ADP and comparing it to BARZ
has important black-box security implications.

D. MADRY'’S ADVERSARIAL TRAINING (MADRY)

Madry’s adversarial training [27] is a widely used defense
with clear security objectives. As CNNs misclassify adver-
sarial examples, the authors in [27] proposed generating the
adversarial examples and subsequently learning to classify
them correctly during training. In general adversarial training
can be broken down into two steps. In the first step, for a given
clean dataset and classifier, the defender uses a white-box
adversarial attack ¢ to derive an adversarial dataset. In the
second step, the classifier is trained with the adversarial
examples and the original clean labels. These two steps are
repeated during training multiple times to create a robust
adversarial trained classifier.

Why we selected it: Madry’s adversarial training is one of
the most commonly accepted adversarial machine learning
defenses due to its intuitive design and robust results. While
the security principles that Madry’s adversarial training are
based on do not directly overlap with BARZ, it nevertheless
is a defense standard to compare to.
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E. MULTI-MODEL-BASED DEFENSE (MUL-DEF)

In [21] they proposed a defense against white-box attacks
based on multiple networks, each with the same architecture.
The authors in [21] developed their defense based on a spe-
cialized training technique. They first start with a classifier
C; that has been trained on the clean dataset X'. A white-
box attack ¢c, is done on Cj to generate a set of adversarial
examples S1. A new training set is formed from the original
dataset and adversarial examples: X U Sj. This new set is
used to train the next classifier C». This process is repeated
such that classifier C; is trained on X U S; U ... U 5.
During prediction the final output is randomly selected from
classifiers Cy, ..., C,, where m is the number of specially
trained classifiers in the Mul-Def.

Why we selected it: Mul-Def has overlapping security
concepts with BARZ. Both use multiple models in the
defense and both try to create distinct classifiers (Mul-Def
through special training and BARZ through training on trans-
formed data). In the randomized form of BARZ, a random
subset of model outputs is used similar to Mul-Def. The main
difference between the two defenses is that Mul-Def does not
employ any voting among the models and does not implement
any adversarial detection. If an ensemble defense could avoid
having to implement detection, this would clearly boost the
clean accuracy of the defense. This is due to the fact imperfect
detection methods mark some clean samples as adversarial
(false positives). Due to their similar security concepts, it is
logical to compare Mul-Def to BARZ.

F. COUNTERING ADVERSARIAL IMAGES USING INPUT
TRANSFORMATIONS (GUO)
In [20], the designer selects a set of possible image transfor-
mations for a single classifier and keeps the selection of the
chosen image transformations secret. The main security idea
in this defense (Guo) is that the image transformations will
distort the adversarial noise enough such that it is no longer
causes the classifier to misclassify the adversarial example.
Why we selected it: While we do not directly test the
original Guo image transformations, the security concepts
behind the Guo defense are the same as a single network in
BARZ. Essentially, the security principles in the Guo defense
(single network and image transformations) are a special case
of BARZ when the number of classifiers m = 1. Since
Guo defense has already been proposed, it would be redun-
dant to propose BARZ, if BARZ-1 (i.e. the Guo defense)
already offered substantial security. Therefore, it is necessary
to experiment with the Guo defense.

G. ENSEMBLE ADVERSARIAL TRAINING: ATTACKS AND
DEFENSES (TRAMER)

The authors in [14] proposes another type of adversarial train-
ing method. In this defense, adversarial examples are gener-
ated by attacking multiple networks with multiple different
attack methods. After this the designer trains a new network
with the generated adversarial examples. The authors in [14]
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argued that this adversarial training can make the adversar-
ially trained network more robust against (pure) black-box
attacks because it is trained with adversarial examples from
different sources (i.e., pre-trained networks).

Why we selected it: The Tramer defense has natural secu-
rity concepts parallel to BARZ. Both defenses rely on multi-
ple models. In BARZ these models are used for consensus
voting, in the Tramer defense they are indirectly relied on
(for generating new adversarial examples). Both defenses are
also designed with black-box adversaries in mind. Hence, the
Tramer defense is a natural choice to test when considering
black-box threat models.

H. MIXED ARCHITECTURE (LIU)

In [33], the authors studied the transferability between CNNs
with different architectures for the ImageNet dataset. They
found that adversarial samples do not always transfer between
different architectures, i.e. adversarial samples misclassified
by C are not always misclassified by C;. Based on this study
one could propose a defense made up of different CNNS
Ci, ..., Cy each with a different structure.

Why we selected it: While not directly proposed in [33],
the question of the viability of a mixed architecture defense
arises from the results of [33]. As BARZ uses multiple mod-
els, would it make a significant difference in robustness if the
architectures of the models are mixed? By testing the mixed
architecture defense (Liu) we try and empirically answer this
question.

I. MITIGATING ADVERSARIAL EFFECTS THROUGH
RANDOMIZATION (XIE)

In [18] a defense is developed using a single classifier where
a random image transformation i, is applied to the input
x at run time. Unlike BaRT or BARZ, this method does
not require retraining the classifier on the different image
transformations iy, . . . ip.

Why we selected it: The Xie defense uses image transfor-
mations just like BARZ. Hence this defense presents a unique
competing concept: achieve security through randomization
without costly retraining. Whether gaining this robustness
without retraining is possible under a black-box adversary is
why we study the Xie defense in this paper.

J. THRESHOLDING NETWORK (VANILLAT)

The thresholding network is a simple defense demonstrated
in this paper to highlight the challenging nature of creating
robust barrier zones. The threshold network is a detection
type of defense that uses a vanilla classifier C and threshold 7.
If the highest probability p from classifier C falls below
threshold ¢, the sample is marked as adversarial: L.

Why we selected it: When considering barrier zones
defenses, the first intuition might be that simply thresholding
a vanilla classifier could work. That would mean robustness
could be achieved without multiple classifiers or image trans-
formations. We develop the thersholding network defense to
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empirical demonstrate that a single classifier barrier zone is
not sufficient.

IV. BARRIER ZONE DEFENSE (BARZ)

With so many different kinds of defenses, a natural question
is why do we propose another? In short, the answer is because
no current defense we analyze performs well against ALL
types of black-box attacks and offers a flexible trade-off
between security and clean accuracy. For example, adver-
sarially trained networks like Madry perform poorly against
pure black-box attacks (less than 65% robust accuracy on
CIFAR-10 [27]). Randomized defenses like Xie and Mul-Def
work well against boundary attacks but fail against mixed
black-box attacks which can adapt to the randomization (we
show results for this in section VI). If we want to increase their
security, it is not immediately clear how much clean accuracy
will be impacted. Likewise, if we want greater clean accuracy,
without completely abandoning the defense, it is not obvious
how this can be accomplished. In BARZ by adding more
networks this trade-off between security and clean accuracy
is transparent. BARZ is also one of the only defenses that
performs well across all types of black-box attacks (pure,
mixed and boundary).

We present full experimental results in section VI to sup-
port these claims and give an individual analysis of every
defense with respect to black-box attacks in the appendix.
Our main focus is to create a defense where the other pro-
posed methods fall short. We strive to create a high fidelity
defense (BARZ) that provides flexibility between security
and clean accuracy.

A. SECURITY PRINCIPLES OF BARRIER ZONES

The BARZ defense is based on the concept of barrier zones.
Barrier zones are the regions in between classes where if an
input falls in this region, it is marked as adversarial. For any
new defense the first question is why is it effective, or in this
case why do barrier zones provide security? Here we give the
mathematical intuition behind this concept.

Suppose we have m classifiers C; with corresponding
attack success rates o; = a(Cj, 0;), where adversarial sample
generation technique 6; is specific to classifier C;. Let us
construct a new classifier C which uses each C; to predict a
label and outputs the majority decision. If more than one label
has the same majority vote, then C outputs L representing
that it does not know how to assign a label. To output a
legitimate label, C needs to have a clear majority vote which
is not shared by multiple labels.

Consider an adversarial sample generation technique ¢
tuned to C. Let vote Vi be defined as

Vixi,y) = {1 =j =m : Ci(¢(xi, yi)) = k}|
(assuming deterministic algorithms C; and ¢ for simplicity).
Only if Vy, > Vi for all labels k # y;, classifier C will
output the correct label y;. The adversarial example ¢(x;, y;)
is successful if a label different from y; and L is output. That

1458

is, there exists a label y & {y;, L} such that V5 > V} for all
legitimate labels k # 3.
This shows that the difference

AQi k) = Vy, = Vi

represents the ‘advantage’ of choosing y; over k in classifier
C. By using notation A(.,.) and translating our character-
ization of successful adversarial examples, we have attack
success rate @ = a(C, ¢) equal to

{ (xi, yi) € X(C) : H
Fek i 1) Veek 5 AT, K) > 0

|X(C)] ’
where K is the set of all legitimate class labels together
with L.

This establishes the conditions for a successful attack on
multiple standard classifiers when the output is determined
by the majority. We now demonstrate how two security princi-
ples in BARZ increase the difficulty of the attack conditions.

ey

1) ABSOLUTE CONSENSUS MAJORITY VOTING

Instead of using simple majority voting, in BARZ we use
absolute consensus majority voting. This means if all classi-
fiers do not agree on the same label, the sample is interpreted
as adversarial/suspicious, labeled L, and the attack fails.
We can see that this specifically changes the threshold > 0
in (1) to > m for a successful attack. Note that while the
threshold is now higher, the base conditions for a successful
attack, advantages A(y, k), did not change in value. Our next
security principle deals with the base conditions.

2) INPUT TRANSFORMATIONS

In BARZ each classifier C; implements its own unique
secret input linear transformation ;. It is important to note
that in this subsection we discuss the secret transforma-
tions ¢, abstractly without designating the specific type
of transformation. Theoretically, this allows us to develop
the mathematical formulation of the attack success rate of
the adversary without assuming the type of transformation.
However, for experimentation and defense implementation
the image transformation is important and we discuss its
choice further in Section IV-B. Once the secret input linear
transformation 1; is applied, a classifier C]/ is executed:

G=Cjov;

The reason for individual transformations is to further
increase the difficulty in crafting adversarial example
¢(x;, y;). It has already been shown in the literature that
vanilla classifiers have high transferability [33]. Therefore,
using standard vanilla classifiers without transformations (for
all k, Yy is the identity function), does not significantly
improve the security for the following reason: If

Ci(p(xi, yi) =9 # yis

then due to transferability there is a high probability that all
standard vanilla classifiers C; output the same wrong label J.
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FIGURE 3. Decision regions with and without barrier zones.

This implies that the absolute consensus majority voting with
vanilla classifiers yields a high attack success rate «. See
necessary condition in (1) with absolute consensus majority
vote > m.

We can rewrite ¢(x;, y;) as the corresponding clean image
and noise: ¢(x;, ;) = x; + n;. Under this formulation we
can reformulate (by using linearity of ;) the base condition
Ay, k) to

I <j<m: Ci(p(xi,y) =3}

G, y) = k|
Ci (Wi (x) + ¥i(ni)) = 3}
D i) + ) = kY (2)

There are several important takeaways from (2). While the
transformation v; changes between classifiers, the noise the
adversary crafts n; does not change. In essence for a single
sample x; the adversary must generate noise 7; that is invari-
ant to the set of transformations vy, ..., ¥,,. Specifically
the condition for a successful attack is now: Ci(l//] (x) +
VI = 3s vy ClpWm(x) + Ym()) = 3 for some 3 ¢
{yi, L}. That is, noise v;(»;) must fool classifier Cj, for all
J simultaneously, while the adversary can only construct a
single noise value ;.

When we combine (2) with absolute consensus majority
voting our final attack success rate for the adversary can be
concisely written as:

—-f1<j<m
={1<j=<m:

—fl<j=<m

{ (xi, yi) € X(C) : H
Fer i 1) Vit Cr(xa) + i(ni) = 9
|X(O)] '

In the original multi-classifier attack formulation (1) only a
majority of the classifiers had to miss classify the adversarial
example ¢(x;, y;) to a label y such that A(y, k) > O for
any k # y. Under the BARZ defense it is clear the new
conditions requires ALL classifiers and each transformation
to be bypassed.

B. REALIZING BARRIER ZONES

In practice barrier zones forces the adversary to add noise n
greater than a certain magnitude in order to overcome the
barrier zone. Because an attack fails if the noise becomes
visual perceptible to humans, the adversary is limited in terms
of the magnitude of 7. In many cases this means the adversary
may not be able to overcome the barrier zone and therefore
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cannot fool the classifier. Barrier zones are shown both in
a theoretical diagram and with actual experimental results
in Figure 3. The natural question is how can barrier zones
be implemented in classifiers? In this subsection we discuss
different techniques that can be used to create barrier zones.

1) MULTIPLE CLASSIFIERS

Barrier zones can be created through the use of multiple clas-
sifiers. A naive approach to this method would be to simply
use CNNs with different architectures. However, we show
that merely using different architectures does not yield secu-
rity. Specifically, we test such a defense in our results by
using one VGG16 and one ResNet56 with majority voting
(we denote this as the Liu defense). This has also been shown
in the literature in [33]. Other examples of architectural
defenses not yielding security include ADP and Mul-Def
(which we test in this paper). Instead to break transferability
between networks we introduce secret image transformations
for each classifier. Our defense composed of multiple clas-
sifiers (each with their own transformations) is depicted in
Figure 4. Each CNN has two simple unique secret image
transformations as shown in Figure 4. The first is a fixed
linear transformation c(x) = Ax + b, where A is a matrix
and b is a vector.

After the linear transformation a resizing operation i is
applied to the image before it is fed into the CNN. The CNN
corresponding to ¢ and i is trained on clean data {i(c(x))}.
Multiple CNNSs are used, each with their own resizing opera-
tion and A and b components as shown in Figure 4.

From [22] we know adversarial examples are sensitive to
image transformations which either distort the value of the
pixels in the image or change the original spatial location
of the pixels. It is important to note that in this paper we
experimentally established that image resizing and linear
transformations can reduce transferability. However, there
may be other image transformations that can also accomplish
this goal.

2) IMAGE TRANSFORMATION DEFENSES

A few simple questions arise when dealing with image trans-
formations in security. For example, can only one network
with image transformations be used without retraining? We
test this concept using the defense by Xie (and we show it per-
forms worse than BARZ under the mixed black-box attack).
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Can only a single network with image transformations and
retraining work? In essence we test a single network, with one
set of transformations (Guo) and a single network retrained
on multiple random transformations (BaRT). Both of these
defenses perform worse than BARZ for the mixed black-box
attack.

Another valid question is can only detection of adversarial
samples be employed? We test this hypothesis in the follow-
ing way, we use a vanilla network and a confidence threshold,
i.e. any sample below a certain confidence score is marked
as adversarial. We also test the Odds defense which employs
its own adversarial detection method. In section VI we show
that neither thresholding nor the Odds defense are able to
outperform BARZ.

It is important to note that it may be possible to further
combine other defense techniques such as adversarial train-
ing, randomizing some of the image transformations or any
number of other techniques. However, the goal of this paper is
not to exhaustively test every possible defense combination.
The goal is not to test every defense in the literature either.
The objective of this work is to provide a defense frame-
work against black-box adversaries that offers clear trade-offs
between clean accuracy and security.

C. BARRIER ZONE GRAPHS

In Figure 3 we show barrier zone graphs for various defenses
for a single image from CIFAR-10. These graphs are based on
the decision region graphs originally presented in [33]. In our
graphs, each point on the 2D grid corresponds to the class
label of an image I’. Green represents that I’ has been classi-
fied correctly, while red and blue regions represent incorrect
class labels. Gray represents that the null (adversarial) class
label has been assigned. The image I’ is generated from the
original image /:

I'=I+x-g+y-r. 3)

Here g represents the gradient of the loss function with
respect to 1. In (3) r represents a normalized random matrix
that is orthogonal to I (note g is also normalized). Variables,
x and y represent the magnitude of each matrix which is
determined based on the coordinates in the 2D graph.

In essence the graph can be interpreted in the following
sense: The origin is classification of the original image with-
out adversarial perturbations or random noise added. As we
move along the x-axis in the positive direction, the magnitude
of the gradient matrix x increases. Moving positively along
only the x-axis is equivalent to the FGSM attack, where the
image is modified by adding the gradient of the loss function
(with respect to the input). If we move along the y-axis only,
the magnitude of the random noise matrix y increases. This
is equivalent to adding random noise to the image. Moving
along the positive x-axis and any direc