
Received October 13, 2021, accepted December 17, 2021, date of publication December 27, 2021, date of current version January 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3138966

Besting the Black-Box: Barrier Zones for
Adversarial Example Defense
KALEEL MAHMOOD 1, PHUONG HA NGUYEN2, LAM M. NGUYEN 3, THANH NGUYEN4,
AND MARTEN VAN DIJK 5, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
2eBay Inc., San Jose, CA 95125, USA
3IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10562, USA
4Amazon Inc., Seattle, WA 98109, USA
5CWI Amsterdam, 1098 Amsterdam, The Netherlands

Corresponding author: Kaleel Mahmood (kaleel.mahmood@uconn.edu)

ABSTRACT Adversarial machine learning defenses have primarily been focused onmitigating static, white-
box attacks. However, it remains an open question whether such defenses are robust under an adaptive black-
box adversary. In this paper, we specifically focus on the black-box threat model and make the following
contributions: First we develop an enhanced adaptive black-box attack which is experimentally shown to be
≥30% more effective than the original adaptive black-box attack proposed by Papernot et al. For our second
contribution, we test 10 recent defenses using our new attack and propose our own black-box defense (barrier
zones). We show that our defense based on barrier zones offers significant improvements in security over
state-of-the-art defenses. This improvement includes greater than 85% robust accuracy against black-box
boundary attacks, transfer attacks and our new adaptive black-box attack, for the datasets we study. For
completeness, we verify our claims through extensive experimentation with 10 other defenses using three
adversarial models (14 different black-box attacks) on two datasets (CIFAR-10 and Fashion-MNIST).

INDEX TERMS Adversarial machine learning, adversarial examples, adversarial defense, black-box attack,
security, deep learning.

I. INTRODUCTION
There are many applications based on Convolution Neural
Networks (CNNs) such as image classification [1], [2], object
detection [3], [4], semantic segmentation [5] and visual con-
cept discovery [6]. However, it is well-known that CNNs are
highly susceptible to small perturbations η which are added
to benign input images x. As shown in [7], [8], by adding
visually imperceptible perturbations to the original image,
adversarial examples x ′ can be created, i.e., x ′ = x+η. These
adversarial examples are misclassified by the CNN with high
confidence. Hence, making CNNs secure against this type of
attack is a significantly important task.

In general, adversarial machine learning attacks can be
categorized as either white-box or black-box. This catego-
rization depends on how much information about the clas-
sifier is necessary to run the attack. The majority of the
literature has focused on white-box attacks [9]–[11] where

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunsheng Zhu .

FIGURE 1. The robust accuracy (1-α) of each of the 11 defenses analyzed
in this paper. For a given defense the robust accuracy is computed as the
minimum robust accuracy achieved over all 14 types of black-box attacks.
Notice that if no bar is present, then this means 0% robust accuracy.

the classifier/defense parameters are known. Likewise, the
majority of defenses have been designed with the goal of
thwarting white-box attacks [12]–[24]. In this paper, we focus
on black-box attacks, where the classifier parameters are
hidden or assumed to be secret. This type of adversary
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represents a more practical threat model than the white-box
attacker [25]. This is in part due to the fact the adversary
cannot access the classifier parameters, but is still able to
successfully create adversarial examples [25], [26]. Despite
not having the defense parameters, the black-box adversary
may still query the defense, be able to access X (the training
dataset for the defense), or build a synthetic model to assist
them in creating adversarial examples. By analyzing defenses
through a black-box adversarial lens, we help complete the
security picture by offering both new attack and defense
perspectives to the community. Specifically we make the
following contributions:

1) Mixed Black-Box Attack: We develop an enhanced
version of Papernot’s black-box attack [26] by expand-
ing the amount of data available to the attacker
and changing the final attack generation method φ.
These changes significantly improves the attack suc-
cess rate, i.e. >30% improvement on CIFAR-10 and
Fashion-MNIST.

2) Barrier Zone Defense: We develop a novel defense
based on barrier zones – coined BARZ. We show bar-
rier zone based defenses can outperform all 10 other
recent defenses studied in this paper. These defenses
includesMadry’s Adversarial Training [27], Barrage of
Random Transforms [22] and Ensemble Diversity [24]
just to name a few.A synopsis of our results is displayed
in Figure 1 where we show the minimum robust accu-
racy of each defense under all 14 types of black-box
attacks.

3) The δ Metric (Minor Contribution): In adversarial
machine learning, every defense comes with two dis-
tinct values to consider. These values are the cost
of the defense (drop in clean accuracy) and the
robustness/security (performance on adversarial data).
We propose an intuitive way to help gauge this trade-off
between robustness and cost in the form of the δmetric.

A. COMPARING DEFENSES
Figure 1 shows how the robust accuracy of the BARZ defense
(defined as 1−α, where α is the attack success rate of the best
out of 14 types of black-box attacks) compares to 10 other
recent defenses from literature. The literature defines the
attack success rate α as the fraction of adversarial examples
that are misclassified by the defense. Here it is also important
to precisely define the term adversarial example. In short,
adversarial examples are clean images that are correctly iden-
tified by the classifier in their untampered form, and to which
adversarial noise has further been added by the attacker.

For this reason, using only the attack success rate α
does not give the complete picture (i.e. only α is shown in
Figure 1). The attack success rate α only corresponds to the
fraction of original images which the defense classifier can
correctly label. In essence, for any given defense d , α depends
on the clean accuracy of the defense pd and not the state-of-
the-art or best achievable clean accuracy p. Here p specifi-
cally refers to the accuracy measured on the clean images,

without any defense i.e., the clean accuracy. When a defense
is present, we denote the corresponding clean accuracy of the
defense as pd . So, to complete the story of Figure 1, we need
to understand to what extent, the defense itself leads to a
lowering of the clean accuracy of the vanilla scheme from
p down to pd .

TABLE 1. Accuracy for non-malicious and malicious environments.

Comparing defenses along these two separate metrics of
(a) robust accuracy 1 − α (how well the attacker is able to
defeat the defense) and (b) clean accuracy pd of the defense
itself (without adversarial presence) leads to fuzziness. It is
not clear which metric is considered more important or what
combination is ‘best’. The first row in Table 1 depicts the
non-malicious environment (i.e., no adversary) and shows
the accuracy p of the vanilla scheme, which is the best we
can achieve to-date, and the accuracy pd of the defense,
which is less than p as explained above. For the malicious
environment, the vanilla scheme cannot achieve any accu-
racy because α = 0 (see the black-box boundary attack in
Figure 2). This type of attack can always successfully trans-
form a correctly classified image into an adversarial example
that is misclassifed by the vanilla scheme. The probability of
proper/accurate classification by the defense in the presence
of adversaries is equal to pd · (1−α) in the lower right corner
of Table 1, since the defense properly labels a fraction pd if
no adversary is present, and out of these images a fraction α
is successfully attacked, if an adversary is present.

To avoid any fuzziness, we combine both metrics pd and
1 − α into a single ‘δ-metric’: We define δ as the drop in
accuracy from the clean accuracy p of the vanilla scheme in
the non-malicious environment (top left corner) to the accu-
racy of the defense in the malicious environment pd · (1− α)
(bottom right corner):

δ = p− pd · (1− α).

When we analyze the non-malicious environment we are
only interested in the clean accuracy of the defense – because
we do not assume any attack. This gives Figure 2 where the
y-axis corresponds to the accuracy pd for the defense in the
non-malicious environment and the x-axis corresponds to the
accuracy for the defense in the malicious environment – that
is, the x-axis represents the drop δ from clean accuracy of
the vanilla scheme in the non-malicious environment to the
accuracy of the defense in the malicious environment (the
price for resistance against adversarial examples). We notice
that the x-axis and y-axis can map in a straightforward way
to the clean defense accuracy pd and robust accuracy 1− α
themselves, which we could have reported as the x-axis
and y-axis in our plots instead. But this would not visually
make clear what combination (pd , 1 − α) is the best in a
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FIGURE 2. The δ metric vs clean accuracy pd for the boundary attack. The
BARZ results are shown in green and the vanilla result is shown in gray.

malicious environment. We prefer to plot the δ-metric as this
corresponds directly to the (drop in) accuracy of the defense
classifier in the malicious environment.

In practice, when evaluating a defense, we not only take
into consideration the accuracy p − δ of the defense in the
malicious environment but also the accuracy of the defense
in the non-malicious environment given by pd in the top right
corner of Table 1. From a pure machine learning perspective,
we want a defense which does not affect p ‘too much’ – in
other words the drop γ = p− pd should be small and limited
to a couple of percentage points. However, security often does
not come for free and in order to minimize δ we may need to
sacrifice much more than a couple of percentage points. This
means that we need to study a trade-off between minimizing
δ and an acceptable pd . This paper presents such a study
and our defense BARZ is aimed at minimizing δ despite a
possibly significant drop γ from p to pd = p − γ in the
non-malicious environment. It turns out that this leads to a
robust accuracy for BARZ which outperforms those of other
defenses as depicted in Figure 1 and Figure 2.

B. OUTLINE
The rest of the paper is organized as follows: In Section II
we discuss black-box adversaries, why we focus on certain
attacks and our new mixed black-box attack. In Section III
we discuss the defenses we study, the security principles
behind them and why we selected these defenses for analysis.
In Section IVwe introduce the mathematical intuition behind
the security principles in the barrier zone defense. We discuss
how barrier zone are realized in practice and show empiri-
cal proof of them as well, in Section IV. In Section V we
explain how to concisely analyze the efficiency of a defense.

We give experimental results for all 11 defenses and 14
attacks in Section VI. Lastly we offer concluding remarks
in Section VII.

II. ATTACKS
The general setup in adversarial machine learning for
both white-box and black-box attacks is as follows [28]:
We assume a trained classifier f with a correctly identified
sample x with class label y. The goal of the adversary is to
modify x by some amount η such that f (x + η) produces
class label ŷ. In the case of untargeted attacks, the attack is
considered successful as long as ŷ 6= y. In the case of targeted
attacks, the attack is only successful if ŷ 6= y and ŷ = t where
t is a target class label specified by the adversary. For both
untargeted and targeted attacks, typically the magnitude of η
is limited [8] so that humans can still visually recognize the
image.

The difference between white-box and black-box attacks
lies in how η is obtained. In white-box attacks, η may be
computed through backpropagation on the classifier or by for-
mulating the attack as an optimization problem [7], [11], [29]
which takes into account the classifier’s trained parameters.
The white-box adversary has access to the trained parameters
which can be used to compute gradients – in essence, the
white-box adversary has access to a gradient oracle (which
when queried spits out gradient information).

Black-box attacks on the other hand do not have access
to the classifier’s parameters when generating η and must
rely on other information. The black-box adversary may have
access to the classifier itself which upon querying returns a
score vector or the label for which the score is maximized –
we call this a black-box oracle. Besides a black-box oracle,
the black-box adversary may also have information about the
training data that was used to train the classifier.

From a crypto perspective, a white-box adversary is strictly
stronger than a black-box adversary and also has access to the
black-box oracle. However, we often forget that the classifier
parameters known to the white-box adversary can not only be
used to compute a gradient oracle but also a black-box oracle.
This is because we often think that gradient information leads
to more powerful attacks, hence, we may not need to consider
black-box attacks. A defense that demonstrates robustness to
white-box attacks that onlymake use of a gradient oracle does
not always imply robustness to black-box attacks. Gradient
masking makes it possible for a defense to give a false sense
of security [10] against a fully-equipped white-box adversary
as it only thwarts white-box attacks based on the gradient
oracle. This shows that there is a need to also separately test
gradient free attacks, such as black-box attacks.

In this paper, we focus on black-box adversaries which
utilize adaptive attacks [26]. A natural question is why do we
focus on adaptive black-box type attacks? We do so for the
following reasons:

1) State-of-the-art white-box attacks on published
defenses have been extensively studied in the litera-
ture [9]–[11]. The level of attention given to black-box
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attacks in defense papers is significantly less. By focus-
ing on black-box attacks, we seek to complete the secu-
rity picture. This full security picture means that the
current defenses we analyze have not only white-box
attacks (from their own publication), but also adaptive
black-box results (as reported in this paper). Future
defenses can build upon the security concepts devel-
oped in this paper and our experiments, when making
their own analyses. This completed security spectrum
brings us to our next point.

2) By completing the security picture (with black-box
attacks) we allow the readers to compare defense
results. This comparison can be done because the same
adversarial model, dataset and attack is used for each
defense. This is completely different from adaptive
white-box attacks which may require different adver-
sarial models and different security assumptions for
each attack. For example, in [9] to break a detector
defense (The Odds are Odd), a custom objective func-
tion must be employed to achieve a high attack success
rate in the adaptive white-box attack. Alternatively,
creating an adaptive white-box attack on an ensem-
ble model defense (ADP [24]) is much different. The
only requirement is to increase the number of itera-
tion used in a simple gradient based white-box attack,
to make the attack adaptive and effective. Although
both adaptive attacks in our example are white-box, the
latter (the adaptive white-box attack on ADP) techni-
cally only requires being able to backpropagate on the
model. As noted in [30] it is improper to compare the
robustness of two defenses under different adversarial
models.

A. BLACK-BOX ATTACK VARIATIONS
1) PURE BLACK-BOX ATTACK [10], [31]–[33]
The adversary is only given knowledge of a training data
set X0.

2) ORACLE BASED BLACK-BOX ATTACK [26]
The attacker does not have access to the original training
dataset, but may generate a synthetic dataset S0 similar to the
training data. The adversary can adaptively generate synthetic
data and query the defense O to obtain class labels for this
data. The synthetic dataset S0 is then used to train the syn-
thetic model. It is important to note the adversary does not
have access to the entire original training dataset X0.

In this paper, we propose a new version of this attack
which we call the Mixed Black-Box Attack. In this attack,
the adversary is given the entire original training dataset,
the ability to generate synthetic data and query access to the
defense to label the data. The adversary in our attack also has
multiple different adversarial generation methods φ to choose
from to create adversarial examples. In this way, the adversary
can train a synthetic model whose behavior mirrors that of
the defense more precisely. In short, the attacker adapts the

synthetic model to the defense. It is important to note the
earlier version of this attack [26] did not allow full access to
the training datasetX0 and the adversarial generation method
φ was fixed to be the Fast Gradient Sign Method (FGSM).

Experimentally, we show that the mixed black-box attack
outperforms the original attack proposed by Papernot. Our
experiments also show the mixed black-box attack works
better on certain types of randomized defenses when com-
pared to both boundary and pure black-box attacks [10], [25],
[31]–[34]. The pseudo-code for the mixed black-box attack is
given in Algorithm 1 and explained in section II-B.

Algorithm 1 Mixed Black-Box Attack. Oracle O (i.e., the
Classifier With defense) Is Modeled Using Synthetic Model
M Which Is Trained Using Method T for E Epochs With
Starting Dataset X0 ⊆ X0 and Data Augmentation Parameter
λ. The Final Adversarial Samples Are Generated From Input
Set Xclean Using Attack Method φ Within Perturbation ε
1: Input: O, X0, φ, λ, E and Xclean
2: S0← {(x,O(x)) x ∈ X0}
3: //Train model based on initial random parameters θ
4: M (θ0)← T (M (θ ), S0)
5: for e ∈ {1, . . . ,E}:
6: //Augment the dataset with Jacobian technique
JF

7: Xe = {x + λ · sgn(JF (x)) : x ∈ Xe−1}
8: Se← {(x,O(x)) : x ∈ Xe} ∪ Se−1
9: //Train M on the new dataset

10: M (θe)← T (M (θe−1), Se)
11: //Generate adversarial examples with M (θE ) and attack

φ

12: Output: Xadv ← {(x, φ(M (θE ), ε; x, y)) : (x, y) ∈
Xclean}

3) BOUNDARY BLACK-BOX ATTACK [35]
In this type of attack the adversary has query access to the
classifier and only generates a single sample at a time. The
main idea of the attack is to try and find the boundaries
between the class regions using a binary search methodology
and a gradient approximation for the points located on the
boundaries.

4) SCORE BASED BLACK-BOX ATTACKS
In the literature, these attacks are also called Zeroth Order
Optimization based black-box attacks [36]. The adversary
adaptively queries the defense to approximate the gradient
for a given input based on a derivative-free optimization
approach. This approximated gradient allows the adversary
to directly work with the classifier of the defense. Another
attack in this line is called SimBA (Simple Black Box
Attack) [37]. Unlike all the previously mentioned attacks,
this attack requires the score vector f (x) to mount the attack,
instead of merely using the hard label.
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The only type of black-box attack we do not consider in
our analysis from the ones enumerated above, is the score
based black-box attack. Just like white-box attacks are sus-
ceptible to gradient masking, score based black-box attacks
can be neutralized by a type of masking [30]. This means
defenses can appear to be secure to score based black-box
attacks, while actually not offering true black-box security.
Furthermore, it has been noted that a decision (hard label)
based black-box attack represents amore practical adversarial
model [25]. Therefore, we slightly focus our scope on the
three other black-box variants.

We implement the pure black-box attack and mixed
black-box attacks. In both these types of attacks adversarial
samples are generated from the synthetic model using six dif-
ferent methods, FGSM [8], BIM [38], MIM [39], PGD [27],
C&W [11] and EAD [40]. We also consider boundary black-
box attacks. Here we implement the original boundary attack,
the Hop Skip Jump Attack (HSJA) [25], as well as the
newly proposed Ray Searching Attack (RayS) [34]. In total
these attacks represent fourteen different ways to generate
black-box adversarial examples.

B. ATTACK SUCCESS RATE
For classifier C we define X (C) as the set consisting of
image label pairs (xi, yi) from the training data set X0 that
are correctly classified by C , i.e.,

X (C) = {(xi, yi) ∈ X0 : C(xi) = yi}.

We say X (C) represents the set of clean images with respect
to classifier C .

We broaden our description of a classifier C by allowing
it to output a ‘do not know’ symbol ⊥. This may happen if
C computes a score vector f (x) on input x where the scores
do not clearly favor any label. Later we will also interpret
⊥ as the ‘adversarial’ symbol indicating that it may be an
adversarial example.

We define the attack success rate α for classifier C with
respect to a particular adversarial sample generation tech-
nique φ as

α(C, φ) = 1−
1

|X (C)|

∑
(xi,yi)∈X (C)

Pr[C(φ(xi, yi)) ∈ {yi,⊥}].

Here, the probabilities are over the coin tosses used in φ
and C . The attack success rate reflects when an adversarial
example is successful meaning thatC will predict a legitimate
label, that is 6= ⊥, which is not equal to the correct class label,
that is 6= yi.
We note that φ is separately trained/modeled/generated

using the information available to the black-box adversary.
This information may consist of sets X0 and set X (C), and
based on these sets a self-generated synthetic model M (θ ),
where θ denotes the parameters of the synthetic model.
Implicitly, φ incorporates a perturbation parameter ε indi-
cating into what extent an adversarial example φ(xi, yi) may
differ from the original image xi.

The attack success rate estimates the fraction of clean
images ofC for which successful adversarial examples can be
generated. Successful meansC(φ(xi, yi)) 6= yi, i.e., the adver-
sarial example φ(xi, yi) is misclassified to an incorrect label
even though it is close to the original image xi (with respect
to perturbation parameter ε). Here we consider so-called
untargeted attacks where the adversary is only interested in
misclassification to some other legitimate but wrong label.
(An adversarial example for a targeted attack are defined to
be successful if the classifier labels it with a target class label
specified by the adversary.) In practice we estimate α(C, φ)
by taking a subset Xclean ⊆ X (C) and compute the fraction
of adversarial examples φ(x, y), (x, y) ∈ Xclean, that are
successful.

The above applies to the mixed-box black attack, see
Algorithm 1, as follows. By oracleO we denote the classifier
with defense to which the adversary has access. The attacker
starts with some starting data X0 ⊆ X0, generally, we assume
the worst-case for the defender, i.e., the adversary uses all
the training data X0 = X0 as a starting point. Data augmen-
tation is used to recursively generate an augmented dataset
Se where queries to oracle O are used to find labels. Some
training method T (based on mathematical optimization for
machine learning) learns new parameters θe for model M
based on Se with initial parameters θe−1. The final synthetic
model M (θE ) can be attacked by using a white-box attack
method φ (this is possible because the black-box adversary
knows parameters θE , hence, a gradient oracle for its syn-
thetic modelM (θE ) is available). At the final step adversarial
examples are generated for Xclean and we can compute the
fraction for which these are successful – and this estimates
α(O, φ(M (θE ), ε; ·)).

III. DEFENSES
The field of adversarial defenses is rapidly expanding,
with multiple defense papers released almost every month.1

To examine every proposed defense is beyond the scope of
this paper. Instead, we focus our analysis on ten recent, related
and/or popular defenses. In this section we describe the
related defenses, their common security elements andwhywe
selected them for comparison. The related defenses we con-
sider are Barrage of Random Transforms (BaRT) [22], The
Odds are Odd (Odds) [23], Ensemble Diversity (ADP) [24],
Madry’s Adversarial Training (Madry) [27], Multi-model-
based Defense (Mul-Def) [21], Countering Adversarial
Images using Input Transformations (Guo) [20], Ensemble
Adversarial Training: Attacks and Defenses (Tramer) [14],
MixedArchitectures (Liu) [33],Mitigating adversarial effects
through randomization (Xie) [18], Thresholding Networks (a
basic proof of concept defense developed in this paper) and
Barrier Zones (BARZ), the main technique proposed in this
paper. In general, adversarial defenses can be divided based
on several underlying defense mechanisms. We note this type

1https://nicholas.carlini.com/writing/2019/all-adversarial-example-
papers.html
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of division is common in other defense papers as well [41].
While the definitions for categorization we provide here are
by no means absolute, they give us a way to better understand
and analyze the field.

1) Multiple Models - The defense uses multiple classifiers
for prediction. The classifier outputs may be combined
through averaging (i.e. ADP), randomly picking one
classifier from a selection (Mul-Def) or through major-
ity voting (Mixed Architecture).

2) Image Transformations -The defense applies image
transformations before classification. In some cases,
the transformation may be randomized (Xie and BaRT)
or fixed (Guo).

3) Adversarial Training - The classifier is trained to cor-
rectly recognize adversarial examples with their correct
label. Madry, Mul-Def and Tramer all use adversarial
training.

4) Adversarial Detection - The defense outputs a null
label if the sample is considered to be adversarially
manipulated. Odds employs an adversarial detection
mechanism, as does the vanilla thresholding network
we consider as a proof of concept defense in this paper.

5) Randomization - The defense employs some form of
randomization during prediction that is not known a
priori to the attacker. BaRT and Xie both apply random
image transformations at run time to the input.

A. BARRAGE OF RANDOM TRANSFORMS (BaRT)
Barrage of Random Transforms (BaRT) by [22] is a defense
that applies a set of image transformations i1, . . . ir to the
input x before classification. There are ten types of image
transformations that BaRT employs: JPEG compression,
image swirling, noise injection, Fourier transform perturba-
tions, zooming, color space changes, histogram equalization,
grayscale transformations and denoising operations. For each
input x, the number of transformations, the order of the
transformations and the parameters in the transformations are
randomly selected at run time.

Why we selected it: As the defense we propose (BARZ)
also uses image transformations, BaRT is a natural candidate
to compare to. In building the defense, BaRT trains a single
network on multiple image transformations. In contrast, our
defense trains multiple networks, each on its own smaller
set of image transformations. Comparing these two different
ways of building image transformation based defenses is of
interest.

B. THE ODDS ARE ODD (ODDS)
The Odds are Odd was first introduced in [23] as a statistical
test for detecting adversarial samples. The concept behind
the test is based on a simple observation: clean samples and
adversarial samples have different values in the logits layer
l(·). Here we define the logits layer as the layer before the
soft-max layer. When given an input x, the test works by
creating multiple copies of the input each with random noise

added x̂1, . . . , x̂p. The statistical test uses l(x̂1), . . . , l(x̂p))
as input to distinguish between adversarial and clean
examples.

Why we selected it: In the black-box setting adversarial
detection is one possible way to make the defense stronger
as the attacker has to produce a wrong class label and avoid
the defense marking the input as adversarial (⊥). In the
defense proposed in this paper (BARZ) we also employ
detection by using a threshold voting method with multiple
classifiers. As security through detection is precisely what
Odds attempt to achieve, it makes sense to compare statistical
detection methods to voting based detection defenses such
as BARZ.

C. IMPROVING ADVERSARIAL ROBUSTNESS VIA
PROMOTING ENSEMBLE DIVERSITY (ADP)
Using multiple classifier in a defense is a straight-forward
concept based on the notion that it is more difficult to break
an ensemble of classifiers as opposed to a single one. In [24]
they further this notion by specifically training an ensemble of
classifiers to avoid the case where the majority of classifiers
simultaneously misclassify an adversarial example. In this
defense, security is achieved during training in which an
adaptive diversity promoting (ADP) regularizer is used. The
ADP regularizer pushes the non-maximal predictions of each
ensemble classifier to be mutually orthogonal.

Why we selected it: ADP uses an ensemble of classi-
fiers without image transformations or adversarial training.
BARZ on the other hand, uses multiple classifiers with image
transformations. If it were possible to achieve black-box
robustness in an ensemble without image transformations
(e.g. with only special training like in ADP) this would negate
the need for special image transformations in a black-box
defense. Therefore, testing ADP and comparing it to BARZ
has important black-box security implications.

D. MADRY’S ADVERSARIAL TRAINING (MADRY)
Madry’s adversarial training [27] is a widely used defense
with clear security objectives. As CNNs misclassify adver-
sarial examples, the authors in [27] proposed generating the
adversarial examples and subsequently learning to classify
them correctly during training. In general adversarial training
can be broken down into two steps. In the first step, for a given
clean dataset and classifier, the defender uses a white-box
adversarial attack φ to derive an adversarial dataset. In the
second step, the classifier is trained with the adversarial
examples and the original clean labels. These two steps are
repeated during training multiple times to create a robust
adversarial trained classifier.

Why we selected it:Madry’s adversarial training is one of
the most commonly accepted adversarial machine learning
defenses due to its intuitive design and robust results. While
the security principles that Madry’s adversarial training are
based on do not directly overlap with BARZ, it nevertheless
is a defense standard to compare to.
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E. MULTI-MODEL-BASED DEFENSE (MUL-DEF)
In [21] they proposed a defense against white-box attacks
based on multiple networks, each with the same architecture.
The authors in [21] developed their defense based on a spe-
cialized training technique. They first start with a classifier
C1 that has been trained on the clean dataset X . A white-
box attack φC1 is done on C1 to generate a set of adversarial
examples S1. A new training set is formed from the original
dataset and adversarial examples: X ∪ S1. This new set is
used to train the next classifier C2. This process is repeated
such that classifier Cj is trained on X ∪ S1 ∪ . . . ∪ Sj−1.
During prediction the final output is randomly selected from
classifiers C2, . . . ,Cm where m is the number of specially
trained classifiers in the Mul-Def.

Why we selected it: Mul-Def has overlapping security
concepts with BARZ. Both use multiple models in the
defense and both try to create distinct classifiers (Mul-Def
through special training and BARZ through training on trans-
formed data). In the randomized form of BARZ, a random
subset of model outputs is used similar to Mul-Def. The main
difference between the two defenses is that Mul-Def does not
employ any voting among themodels and does not implement
any adversarial detection. If an ensemble defense could avoid
having to implement detection, this would clearly boost the
clean accuracy of the defense. This is due to the fact imperfect
detection methods mark some clean samples as adversarial
(false positives). Due to their similar security concepts, it is
logical to compare Mul-Def to BARZ.

F. COUNTERING ADVERSARIAL IMAGES USING INPUT
TRANSFORMATIONS (GUO)
In [20], the designer selects a set of possible image transfor-
mations for a single classifier and keeps the selection of the
chosen image transformations secret. The main security idea
in this defense (Guo) is that the image transformations will
distort the adversarial noise enough such that it is no longer
causes the classifier to misclassify the adversarial example.

Why we selected it: While we do not directly test the
original Guo image transformations, the security concepts
behind the Guo defense are the same as a single network in
BARZ. Essentially, the security principles in the Guo defense
(single network and image transformations) are a special case
of BARZ when the number of classifiers m = 1. Since
Guo defense has already been proposed, it would be redun-
dant to propose BARZ, if BARZ-1 (i.e. the Guo defense)
already offered substantial security. Therefore, it is necessary
to experiment with the Guo defense.

G. ENSEMBLE ADVERSARIAL TRAINING: ATTACKS AND
DEFENSES (TRAMER)
The authors in [14] proposes another type of adversarial train-
ing method. In this defense, adversarial examples are gener-
ated by attacking multiple networks with multiple different
attack methods. After this the designer trains a new network
with the generated adversarial examples. The authors in [14]

argued that this adversarial training can make the adversar-
ially trained network more robust against (pure) black-box
attacks because it is trained with adversarial examples from
different sources (i.e., pre-trained networks).

Why we selected it: The Tramer defense has natural secu-
rity concepts parallel to BARZ. Both defenses rely on multi-
ple models. In BARZ these models are used for consensus
voting, in the Tramer defense they are indirectly relied on
(for generating new adversarial examples). Both defenses are
also designed with black-box adversaries in mind. Hence, the
Tramer defense is a natural choice to test when considering
black-box threat models.

H. MIXED ARCHITECTURE (LIU)
In [33], the authors studied the transferability between CNNs
with different architectures for the ImageNet dataset. They
found that adversarial samples do not always transfer between
different architectures, i.e. adversarial samples misclassified
by C1 are not always misclassified by C2. Based on this study
one could propose a defense made up of different CNNS
C1, . . . ,Cm each with a different structure.
Why we selected it: While not directly proposed in [33],

the question of the viability of a mixed architecture defense
arises from the results of [33]. As BARZ uses multiple mod-
els, would it make a significant difference in robustness if the
architectures of the models are mixed? By testing the mixed
architecture defense (Liu) we try and empirically answer this
question.

I. MITIGATING ADVERSARIAL EFFECTS THROUGH
RANDOMIZATION (XIE)
In [18] a defense is developed using a single classifier where
a random image transformation ir is applied to the input
x at run time. Unlike BaRT or BARZ, this method does
not require retraining the classifier on the different image
transformations i1, . . . ip.
Why we selected it: The Xie defense uses image transfor-

mations just like BARZ. Hence this defense presents a unique
competing concept: achieve security through randomization
without costly retraining. Whether gaining this robustness
without retraining is possible under a black-box adversary is
why we study the Xie defense in this paper.

J. THRESHOLDING NETWORK (VANILLAT)
The thresholding network is a simple defense demonstrated
in this paper to highlight the challenging nature of creating
robust barrier zones. The threshold network is a detection
type of defense that uses a vanilla classifierC and threshold t .
If the highest probability p from classifier C falls below
threshold t , the sample is marked as adversarial: ⊥.

Why we selected it: When considering barrier zones
defenses, the first intuition might be that simply thresholding
a vanilla classifier could work. That would mean robustness
could be achieved without multiple classifiers or image trans-
formations. We develop the thersholding network defense to
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empirical demonstrate that a single classifier barrier zone is
not sufficient.

IV. BARRIER ZONE DEFENSE (BARZ)
With so many different kinds of defenses, a natural question
is why do we propose another? In short, the answer is because
no current defense we analyze performs well against ALL
types of black-box attacks and offers a flexible trade-off
between security and clean accuracy. For example, adver-
sarially trained networks like Madry perform poorly against
pure black-box attacks (less than 65% robust accuracy on
CIFAR-10 [27]). Randomized defenses like Xie andMul-Def
work well against boundary attacks but fail against mixed
black-box attacks which can adapt to the randomization (we
show results for this in sectionVI). If wewant to increase their
security, it is not immediately clear howmuch clean accuracy
will be impacted. Likewise, if wewant greater clean accuracy,
without completely abandoning the defense, it is not obvious
how this can be accomplished. In BARZ by adding more
networks this trade-off between security and clean accuracy
is transparent. BARZ is also one of the only defenses that
performs well across all types of black-box attacks (pure,
mixed and boundary).

We present full experimental results in section VI to sup-
port these claims and give an individual analysis of every
defense with respect to black-box attacks in the appendix.
Our main focus is to create a defense where the other pro-
posed methods fall short. We strive to create a high fidelity
defense (BARZ) that provides flexibility between security
and clean accuracy.

A. SECURITY PRINCIPLES OF BARRIER ZONES
The BARZ defense is based on the concept of barrier zones.
Barrier zones are the regions in between classes where if an
input falls in this region, it is marked as adversarial. For any
new defense the first question is why is it effective, or in this
case why do barrier zones provide security? Here we give the
mathematical intuition behind this concept.

Suppose we have m classifiers Cj with corresponding
attack success rates αj = α(Cj, θj), where adversarial sample
generation technique θj is specific to classifier Cj. Let us
construct a new classifier C which uses each Cj to predict a
label and outputs the majority decision. If more than one label
has the same majority vote, then C outputs ⊥ representing
that it does not know how to assign a label. To output a
legitimate label, C needs to have a clear majority vote which
is not shared by multiple labels.

Consider an adversarial sample generation technique φ
tuned to C . Let vote Vk be defined as

Vk (xi, yi) = |{1 ≤ j ≤ m : Cj(φ(xi, yi)) = k}|

(assuming deterministic algorithms Cj and φ for simplicity).
Only if Vyi > Vk for all labels k 6= yi, classifier C will
output the correct label yi. The adversarial example φ(xi, yi)
is successful if a label different from yi and ⊥ is output. That

is, there exists a label ŷ 6∈ {yi,⊥} such that Vŷ > Vk for all
legitimate labels k 6= ŷ.

This shows that the difference

A(yi, k) = Vyi − Vk

represents the ‘advantage’ of choosing yi over k in classifier
C . By using notation A(., .) and translating our character-
ization of successful adversarial examples, we have attack
success rate α = α(C, φ) equal to

α =

∣∣∣∣{ (xi, yi) ∈ X (C) :
∃ŷ∈K\{yi,⊥} ∀k∈K\{ŷ} A(ŷ, k) > 0

}∣∣∣∣
|X (C)|

, (1)

where K is the set of all legitimate class labels together
with ⊥.

This establishes the conditions for a successful attack on
multiple standard classifiers when the output is determined
by themajority.We nowdemonstrate how two security princi-
ples in BARZ increase the difficulty of the attack conditions.

1) ABSOLUTE CONSENSUS MAJORITY VOTING
Instead of using simple majority voting, in BARZ we use
absolute consensus majority voting. This means if all classi-
fiers do not agree on the same label, the sample is interpreted
as adversarial/suspicious, labeled ⊥, and the attack fails.
We can see that this specifically changes the threshold > 0
in (1) to ≥ m for a successful attack. Note that while the
threshold is now higher, the base conditions for a successful
attack, advantages A(ŷ, k), did not change in value. Our next
security principle deals with the base conditions.

2) INPUT TRANSFORMATIONS
In BARZ each classifier Cj implements its own unique
secret input linear transformation ψj. It is important to note
that in this subsection we discuss the secret transforma-
tions φj abstractly without designating the specific type
of transformation. Theoretically, this allows us to develop
the mathematical formulation of the attack success rate of
the adversary without assuming the type of transformation.
However, for experimentation and defense implementation
the image transformation is important and we discuss its
choice further in Section IV-B. Once the secret input linear
transformation ψj is applied, a classifier C ′j is executed:

Cj = C ′j ◦ ψj.

The reason for individual transformations is to further
increase the difficulty in crafting adversarial example
φ(xi, yi). It has already been shown in the literature that
vanilla classifiers have high transferability [33]. Therefore,
using standard vanilla classifiers without transformations (for
all k , ψk is the identity function), does not significantly
improve the security for the following reason: If

C ′1(φ(xi, yi)) = ŷ 6= yi,

then due to transferability there is a high probability that all
standard vanilla classifiers C ′k output the same wrong label ŷ.
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FIGURE 3. Decision regions with and without barrier zones.

This implies that the absolute consensus majority voting with
vanilla classifiers yields a high attack success rate α. See
necessary condition in (1) with absolute consensus majority
vote ≥ m.
We can rewrite φ(xi, yi) as the corresponding clean image

and noise: φ(xi, yi) = xi + ηi. Under this formulation we
can reformulate (by using linearity of ψj) the base condition
A(ŷ, k) to

|{1 ≤ j ≤ m : C ′j (φ(xi, yi)) = ŷ}|

− |{1 ≤ j ≤ m : C ′j (φ(xi, yi)) = k}|

= |{1 ≤ j ≤ m : C ′j (ψj(xi)+ ψj(ηi)) = ŷ}|

− |{1 ≤ j ≤ m : C ′j (ψj(xi)+ ψj(ηi)) = k}| (2)

There are several important takeaways from (2). While the
transformation ψj changes between classifiers, the noise the
adversary crafts ηi does not change. In essence for a single
sample xi the adversary must generate noise ηi that is invari-
ant to the set of transformations ψ1, . . . , ψm. Specifically
the condition for a successful attack is now: C ′1(ψ1(xi) +
ψ1(ηi)) = ŷ, . . . ,C ′m(ψm(xi) + ψm(ηi)) = ŷ for some ŷ 6∈
{yi,⊥}. That is, noise ψj(ηi) must fool classifier Cj, for all
j simultaneously, while the adversary can only construct a
single noise value ηi.
When we combine (2) with absolute consensus majority

voting our final attack success rate for the adversary can be
concisely written as:∣∣∣∣{ (xi, yi) ∈ X (C) :

∃ŷ∈K\{yi,⊥} ∀
m
j=1 C

′
j (ψj(xi)+ ψj(ηi)) = ŷ

}∣∣∣∣
|X (C)|

.

In the original multi-classifier attack formulation (1) only a
majority of the classifiers had to miss classify the adversarial
example φ(xi, yi) to a label ŷ such that A(ŷ, k) > 0 for
any k 6= ŷ. Under the BARZ defense it is clear the new
conditions requires ALL classifiers and each transformation
to be bypassed.

B. REALIZING BARRIER ZONES
In practice barrier zones forces the adversary to add noise η
greater than a certain magnitude in order to overcome the
barrier zone. Because an attack fails if the noise becomes
visual perceptible to humans, the adversary is limited in terms
of the magnitude of η. In many cases this means the adversary
may not be able to overcome the barrier zone and therefore

cannot fool the classifier. Barrier zones are shown both in
a theoretical diagram and with actual experimental results
in Figure 3. The natural question is how can barrier zones
be implemented in classifiers? In this subsection we discuss
different techniques that can be used to create barrier zones.

1) MULTIPLE CLASSIFIERS
Barrier zones can be created through the use of multiple clas-
sifiers. A naïve approach to this method would be to simply
use CNNs with different architectures. However, we show
that merely using different architectures does not yield secu-
rity. Specifically, we test such a defense in our results by
using one VGG16 and one ResNet56 with majority voting
(we denote this as the Liu defense). This has also been shown
in the literature in [33]. Other examples of architectural
defenses not yielding security include ADP and Mul-Def
(which we test in this paper). Instead to break transferability
between networks we introduce secret image transformations
for each classifier. Our defense composed of multiple clas-
sifiers (each with their own transformations) is depicted in
Figure 4. Each CNN has two simple unique secret image
transformations as shown in Figure 4. The first is a fixed
linear transformation c(x) = Ax + b, where A is a matrix
and b is a vector.

After the linear transformation a resizing operation i is
applied to the image before it is fed into the CNN. The CNN
corresponding to c and i is trained on clean data {i(c(x))}.
Multiple CNNs are used, each with their own resizing opera-
tion and A and b components as shown in Figure 4.

From [22] we know adversarial examples are sensitive to
image transformations which either distort the value of the
pixels in the image or change the original spatial location
of the pixels. It is important to note that in this paper we
experimentally established that image resizing and linear
transformations can reduce transferability. However, there
may be other image transformations that can also accomplish
this goal.

2) IMAGE TRANSFORMATION DEFENSES
A few simple questions arise when dealing with image trans-
formations in security. For example, can only one network
with image transformations be used without retraining? We
test this concept using the defense by Xie (and we show it per-
forms worse than BARZ under the mixed black-box attack).
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Can only a single network with image transformations and
retraining work? In essence we test a single network, with one
set of transformations (Guo) and a single network retrained
on multiple random transformations (BaRT). Both of these
defenses perform worse than BARZ for the mixed black-box
attack.

Another valid question is can only detection of adversarial
samples be employed? We test this hypothesis in the follow-
ing way, we use a vanilla network and a confidence threshold,
i.e. any sample below a certain confidence score is marked
as adversarial. We also test the Odds defense which employs
its own adversarial detection method. In section VI we show
that neither thresholding nor the Odds defense are able to
outperform BARZ.

It is important to note that it may be possible to further
combine other defense techniques such as adversarial train-
ing, randomizing some of the image transformations or any
number of other techniques. However, the goal of this paper is
not to exhaustively test every possible defense combination.
The goal is not to test every defense in the literature either.
The objective of this work is to provide a defense frame-
work against black-box adversaries that offers clear trade-offs
between clean accuracy and security.

C. BARRIER ZONE GRAPHS
In Figure 3 we show barrier zone graphs for various defenses
for a single image fromCIFAR-10. These graphs are based on
the decision region graphs originally presented in [33]. In our
graphs, each point on the 2D grid corresponds to the class
label of an image I ′. Green represents that I ′ has been classi-
fied correctly, while red and blue regions represent incorrect
class labels. Gray represents that the null (adversarial) class
label has been assigned. The image I ′ is generated from the
original image I :

I ′ = I + x · g+ y · r . (3)

Here g represents the gradient of the loss function with
respect to I . In (3) r represents a normalized random matrix
that is orthogonal to I (note g is also normalized). Variables,
x and y represent the magnitude of each matrix which is
determined based on the coordinates in the 2D graph.

In essence the graph can be interpreted in the following
sense: The origin is classification of the original image with-
out adversarial perturbations or random noise added. As we
move along the x-axis in the positive direction, the magnitude
of the gradient matrix x increases. Moving positively along
only the x-axis is equivalent to the FGSM attack, where the
image is modified by adding the gradient of the loss function
(with respect to the input). If we move along the y-axis only,
the magnitude of the random noise matrix y increases. This
is equivalent to adding random noise to the image. Moving
along the positive x-axis and any direction in the y-axis means
we are adding an adversarial perturbation and a random noise
to the original image I . The further from the origin, the greater
the magnitude of x and y and hence the larger the distortion
that is applied to create I ′.

In the case where a defense uses multiple networksm, each
network i will have a different gradient matrix gi. To com-
pensate for this, we average the individual gradient matrices
together before normalizing to get g. It is important to note
that while the graphs shown in Figure 3 give experimental
proof of the concept of barrier zones, they cannot be used to
attack BARZ defenses in practice. When creating the graphs,
we have knowledge of the individual gradient matrices gi for
each individual network i. With a black-box adversary only
the final output of the defense, O(x) is known. Individual
network outputs are not obtainable. Hence it is not possible
to precisely estimate the individual gradients gi to construct
a barrier zone graph under a black-box adversarial model to
the best of our knowledge.

FIGURE 4. Top picture: design of a single network with transformations in
BARZ. Bottom picture: the complete BARZ defense comprised of multiple
networks. Each network has its own set of transformation. The final
output is decided through absolute consensus majority voting. If an
absolute consensus is not reached, then the sample is marked as
adversarial.

V. MEASURING DEFENSE PERFORMANCE
In general, when building a defense, there are two primary
aspects to consider. The first aspect is security. In the field
of adversarial machine learning, security is represented by
robust accuracy. When building a defense, the second aspect
to consider is the cost. In adversarial machine learning, this
cost usually comes in the form of a drop in clean accuracy,
γ . In the ideal case, security would be free, i.e., γ = 0.
In adversarial machine learning, it is well documented that
robustness (security) is not free. There is an inherent trade-off
between clean accuracy and robustness [42], [43]. Under
these circumstances the natural question is, if a cost is always
incurred how do we judge a defense?

In this paper, we answer this question by using a metric
that measures this trade-off by taking into account both the
robustness and clean accuracy. We introduce the δ-metric to
properly understand the combined effect of:

1) A drop γ in clean accuracy from an original clean
accuracy p to clean accuracy

pd = p− γ (4)

for the defense. Here, clean accuracy p corresponds to
a vanilla scheme without defense strategy in a non-
malicious environment. Similarly, clean accuracy pd
represents the accuracy for the defense measured in
the non-malicious environment without adversaries.
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(We take ‘‘clean’’ to have the additional meaning of
being in a non-malicious environment.)

2) The attacker’s success rate α against the defense. If the
defense recognizes an adversarial manipulated image
as an adversarial example, then it outputs the adversar-
ial label ⊥ and the attack is not considered successful.
When defining α, we restrict ourselves to adversar-
ial examples for those images which the defense (in
their original non-attacked form) properly classifies by
their correct labels. The attacker’s success rate is then
defined as the fraction of adversarial examples that
manipulate these images in such a way that the defense
produces labels different from the correct labels and
different from the adversarial label ⊥. For complete-
ness, literature defines the robust accuracy or defense
success rate as 1 − α. (We notice that most defenses
cannot recognize an adversarial manipulated image as
an adversarial example and do not have an adversarial
label as possible output.)

Proper classification by the defense in the presence of
adversaries is one of the following: An image (possibly after
adversarial manipulation) is recognized by its correct label
(implying the attack did not work). Or, an adversarial manip-
ulated image is given the adversarial label ⊥ (if the defense
offers this possibility).

The probability of proper/accurate classification by the
defense in the presence of adversaries is equal to (p−γ )(1−α)
(since the defense properly labels a fraction p − γ if no
adversary is present and out of these images a fraction α
is successfully attacked if an adversary is present). In other
words (p − γ )(1 − α) is the accuracy of the defense in the
presence of adversaries (malicious environment). Going from
a non-malicious environment without defense to a malicious
environment with defense gives a drop in accuracy of

δ = p− (p− γ )(1− α) = γ + (p− γ )α. (5)

δ can be used to measure the effectiveness of different
defenses, the smaller the better. If two defenses offer roughly
the same δ, then it makes sense to consider their (γ, α) pairs
and choose the defense that either has the smaller α or the
smaller γ .

From a pure ML perspective, in order for a defense to
performwell in a non-malicious environment, wewant γ very
small or, equivalently, pd close to p. From a pure security
perspective, in order for a defense to perform well in a
malicious environment, we want δ to be small. Therefore,
for properly comparing defenses we focus on tuples (δ =
γ + (p − γ )α, pd = p − γ ), where α corresponds to the
best attacker’s success rate across the best known attacks from
literature. Notice that the vanilla scheme can be considered in
a malicious environment as well and this will correspond to
some (δvan, pd = p). Clearly defenses that result in δ ≥ δvan
do not improve over implementing no defense at all (which is
the plain vanilla scheme).

In the ideal case δ = 0when the attack always fails (α = 0)
and there is no cost in using the defense (γ = 0). Due to

adversarial attacks, α > 0 and, hence, this condition does
not occur. Therefore, we look for a defense with the smallest
δ, e.g. a defense that has both a low α and low γ . If two
defenses have similar δ values, we may simply consider the
one with the better clean accuracy, which is precisely what we
do in this paper. It is important to note the δ metric is simply
one way to understand the trade-off between robustness and
clean accuracy. It is by no means the definitive or only way
to do so. In this paper, we focus on measuring defenses using
the δ metric due to its concise ability to capture both sets of
information, α (security) and γ (cost). For those interested
in other metrics, we provide all the accuracy measurements
separately in graphs and tables in the appendix for all attacks
and defenses covered in this paper.

VI. EXPERIMENTAL RESULTS
In this section we provide experimental results to show
the effectiveness of the BARZ defense. We also show the
improvement our mixed black-box attack gives. We exper-
iment with two popular datasets, Fashion-MNIST [44] and
CIFAR-10 [45]. Unlike other reported results in the litera-
ture, for every defense, we construct it using the same net-
work architecture whenever possible. We apply the defense
to the same dataset and we run every defense under the
same set of attacks. This allows us to provide an unprece-
dented comparison of adaptive black-box attack results.
We also provide code related to our experiments on Github:
https://github.com/MetaMain/BARZ.

FIGURE 5. The δ metric vs clean accuracy pd = p− γ for the mixed
black-box. The BARZ results are shown in green and the vanilla result is
shown in gray.

A. THE MIXED BLACK-BOX ATTACK
As stated in Section III, our mixed black-box attack is an
expansion of the Papernot attack. The original paper [26]
experimented with only a single method for generating
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FIGURE 6. Robust accuracies for the untargeted mixed black-box (top),
untargeted pure black-box (middle) and untargeted boundary attack
(bottom). Note if the defense is listed but no bar is present it means the
defense has a 0% robust accuracy against the attack. That is the attack
works 100% of the time on the defense.

FIGURE 7. The attack success rate of the original Papernot attack and the
new mixed black-box attack proposed in this paper. Further comparison
and full descriptions to reproduce the experiments are given in the
appendix.

adversarial samples, the fast gradient sign method (FGSM).
We compare results for the Papernot attack and mixed
black-box attack in Figure 7 for the ‖l‖∞ norm with max-
imum perturbation ε = 0.05 for CIFAR-10 and ε = 0.1
for Fashion-MNIST. The attack success rate is measured

using 1000 samples from the test set. Overall, by providing
the adversary with more data, the untargeted attack suc-
cess rate on a vanilla network can increase by 49.4% for
CIFAR-10 and by 31.1% for Fashion-MNIST. More exper-
imental details for these results are given in appendix. Some
may argue against the practicality of an adversary that has
training data access. However, as a defense designer we want
to consider the strongest possible hard label black-box adver-
sary. Hence, the mixed black-box attack is clearly necessary
for defense validation.

B. PURE BLACK-BOX AND BOUNDARY ATTACKS
In addition to the mixed black-box attack, we also consider
the pure black-box and boundary attack. Each of these attacks
can be further categorized based on how the adversarial sam-
ples are generated. For both the pure and mixed black-box
attack (proposed in this paper) we use six different adversarial
generation methods (FGSM, IFGSM, PGD, MIM, C&W and
EAD). For pure black-box attacks we use the same set of
generations methods (but the model used in conjunction with
the attack is not adaptively trained). For the boundary attacks,
we consider HSJA and RayS. In total this represents four
types of black-box attacks and 14 different ways adversarial
samples can be generated. For CIFAR-10, the maximum
perturbation we allow is ε = 0.05 and for Fashion-MNIST
the maximum perturbation is ε = 0.1. For RayS we allow
10,000 queries per sample and for HSJA we use a vari-
able query style attack (which we explain in detail in the
appendix). Note in Table 2 some attacks are not applicable
to certain defenses. This occurs only for boundary attacks
for 2 defenses (BaRT and Odds). This is due to computa-
tional complexity issues of non-parallelizable prediction for
the run time of the boundary attacks. We fully explain this
in the appendix along with precise attack details for all the
attacks.

C. DEFENSES
We experiment with 11 defenses (BARZ, vanilla thresh-
olding, Guo, Liu, ADP, Xie, Madry, Tramer, Mul-Def,
BaRT and Odds). In terms of network architecture, we use
ResNet56 [46] for the networks in the CIFAR-10 defenses
and VGG16 [47] for the networks in the Fashion-MNIST
defenses. It is important to note that the results reported
here do not always match the literature results identically.
This is due to difference in architectures and datasets. For
example, the authors of BaRT never published a CIFAR-10
version of their defense, so our BaRT implementation will
have different accuracy than what they report for ImageNet.
Likewise, Madry’s original CIFAR-10 defense was trained
using a Wide ResNet where as we use ResNet56V2. We use
the same base architecture for every defense (whenever possi-
ble) and the same dataset to make our comparisons as valid as
possible. Due to the limited space, we cannot describe the full
implementation details of every defense here. We encourage
the reader to examine the appendix for further details if
interested.
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TABLE 2. δ values and clean accuracies for all the defenses under different attacks. The best δ for every category is shown in bold. Note robust accuracy
for every type of attack (e.g. HSJA, RayS, mixed black-box MIM, pure black-box PGD etc. are given in the appendix.

FIGURE 8. The δ metric vs clean accuracy pd = p− γ for the pure
black-box. The BARZ results are shown in green and the vanilla result is
shown in gray.

1) BARZ AND THRESHOLDING DEFENSES
In this paper we experiment with BARZ and also a naive
defense which we call vanilla thresholding. A common mis-
conception is that by merely thresholding the output of a
vanilla classifier (i.e. marking a sample as adversarial if the
network is not confident in its prediction) then all black-box

attacks can bemitigated.We provide results for the 70%, 95%
and 99% thresholding network to show this is simply not the
case.

For BARZ, we realize the barrier zones through image
transformations. Specifically, each network has an image
transformation selected from mappings c(x) = Ax + b.
We explain how we chose the randomized A and b based
on the dataset in the appendix. We can consider an image
transformation cj(x) as an extra randomly fixed layer added
to the layers which form the j-th CNN. We tested three of
these designs: One with 8 networks (BARZ-8) each using a
different image resizing operation from 32 to 32, 40, 48, 64,
72, 80, 96, 104. The second with 4 networks (BARZ-4) being
the subset of the 8 networks that use image resizing opera-
tions from 32 to 32, 48, 72, 96. The third with 2 networks
(BARZ-2) being a subset of the 8 networks that use image
resizing operations from 32 to 32 and 104.

We also consider a randomized version of BARZwhich we
denote as BARZ-xRy. In this version, a subset of y networks
(selected from x networks) are used to do the absolute major-
ity vote on a sample. For instances, in BARZ-8R2 every time
a sample is submitted, two of the eight networks are randomly
selected to classify the sample.

D. EXPERIMENTAL ANALYSIS
The main results for our paper are given in Table 2 for
CIFAR-10 and Fashion-MNIST and the robust accuracy is
visually shown in Figure 6. We compute the δ metric for
every defense based on the attack that the defense is weakest
to (i.e. has the lowest robust accuracy). For example, if the
BARZ-8 defense has a robust accuracy of 60% against RayS
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(60% of the adversarial samples do not fool the defense) and
a robust accuracy of 39% against HSJA, then HSJA is used to
compute the BARZ-8 boundary δ metric. Visually the results
for the worst case δ metric for the pure black-box attack,
mixed black-box attack and boundary attack adversaries are
given in Figures 5, 8 and 2.

In terms of performance, our proposed defense (BARZ)
outperforms every other defense for both CIFAR-10 and
Fashion-MNIST. On CIFAR-10, BARZ-4 gives the best
tradeoff between security and accuracy for δ mixed and δ
pure, and BARZ-8 has the best robust accuracy (92.6% for
mixed and 92.8% for pure). For boundary attacks BARZ-8R6
gives the best trade-off for CIFAR-10 as well as the
best robust accuracy (87%). Likewise, for Fashion-MNIST
BARZ-8 has the lowest δ for the mixed and pure black-
box attacks. For Fashion-MNIST BARZ-8 also has the best
pure and mixed robust accuracy with 90.6% and 89.9%
respectively. For the boundary attacks for Fashion-MNIST,
we can see BARZ-8R2 gives the best trade-off but Madry
gives slightly better robust accuracy (96% for Madry versus
92% for BARZ-8R2). For those interested in the conventional
robust accuracy measurement, we give the overall result
in Figure 1. This figure shows the minimum robust accu-
racy across all black-box attacks for each defense. We can
only summarize the main results within this section. In the
appendix, we go in depth further comparing results for the 11
defenses.

VII. CONCLUSION
In this paper, we advance the field of adversarial machine
learning by providing a new black-box attack and a novel
black-box defense based on barrier zones. Our new attack is
experimentally shown to be stronger than the original Paper-
not attack. It also outperforms boundary and pure black-box
attacks on defenses like Xie and Mul-Def. Second, and most
importantly, we develop a new barrier zone based defense.
Our defense outperforms all 10 other defense methods we
tested under pure, mixed and boundary based black-box
attacks. When comparing across all black-box attacks and
datasets tested in this paper, our best defense configura-
tion gives over 85% robust accuracy for CIFAR-10 and
Fashion-MNIST, an improvement of over 30% compared to
the next best defense. Overall we develop the first barrier
zone defense (BARZ), experimentally shown to be robust
against 14 different types of black-box attacks.

APPENDIX A
EXPERIMENTAL DEFENSE RESULTS
In this section, we present our supplementary experimental
results for

• the mixed targeted and untargeted black-box attacks,
• the pure targeted and untargeted black-box attacks and
• the boundary attacks – untargeted HopSkipJump [25]
and RayS [34].

We run these attacks on ten different defenses strate-
gies, Barrage of Random Transforms (BaRT) [22], The

FIGURE 9. Robust accuracies for the targeted mixed black-box (top) and
targeted pure black-box attacks (bottom).

Odds are Odd (Odds) [23], Ensemble Diversity (ADP) [24],
Madry’s Adversarial Training (Madry) [27], Multi-model-
based Defense (Mul-Def) [21], Countering Adversarial
Images using Input Transformations (Guo) [20], Ensemble
Adversarial Training: Attacks and Defenses (Tramer) [14],
Mixed Architecture (Liu) [33], Mitigating adversarial effects
through randomization (Xie) [18], Thresholding Networks
(a basic proof of concept defense developed in this paper)
and Barrier Zones (BARZ) with the CIFAR-10 [45] and
Fashion-MNIST [44] datasets. The adversarial sample gen-
eration is done by running white-box attacks on synthetic
models (a model obtained from either a pure or mixed black-
box attack). The six white-box attacks used for adversarial
sample generation are FGSM [8], BIM [38], MIM [39],
PGD [27], C&W [11] and EAD [40]. We also test the defense
under boundary black-box attacks (Hop Skip Jump [25] and
RayS [34].

We start our section with a discussion on the robustness of
defenses under the black-box attacks in this paper.

A. ROBUSTNESS OF THE DEFENSES
Figures 6 and 9 represent the robust accuracies of the
defenses under the different black-box attacks with the
Fashion-MNIST and CIFAR-10 datasets. For targeted
attacks, Figure 10 shows how the defenses perform in two
dimensions, clean accuracy versus delta (δ). We have the
following main observations from these figures.

1) Mixed black box attacks are stronger than pure
black-box attacks and untargeted attacks are more
powerful than targeted ones. Compared to pure black-
box attacks, mixed black-box attacks are given more
information about the target model (original training
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FIGURE 10. The δ metric vs clean accuracy for the targeted mixed black-box and targeted pure black box attacks. The
BARZ results are shown in green and the vanilla result is shown in gray.

data and query access to the target model to label
generated synthetic data); for this reason mixed black
box attacks should be stronger than pure black box
attacks. Because targeted attacks can be considered as
an optimization problem with more constraints than
untargeted attacks, targeted attacks should take more
effort to run than untargeted ones, and are therefore less
powerful.

2) Targeted pure black-box attacks seem to not present a
strong attack model. This is supported by the fact that
the vanilla scheme (which implements no defense at
all) already offers very good robustness (i.e., it already
has a high defense accuracy against targeted pure
black-box attacks). As a result, almost all considered
defenses offer good robustness and clean accuracy
under this threat model. This explains why the defenses
are relatively close together in the plots for targeted
pure black-box attacks in Figure 10.

3) As observed and discussed above, mixed black-box
attacks are stronger than pure black-box attacks. This
explains why a subset of the considered defenses can
still significantly improve over the vanilla scheme for
targetedmixed black box attacks as shown in Figure 10.

4) For the untargeted boundary attacks, there are many
defenses which have 0% robust accuracy. Hence, we do
not see any bars for these in Figure 6, for example
Vanilla, VanillaT-0.7, etc. have 0% robust accuracy.

5) The most interesting and important observations from
Figures 5, 8, 2, 6, 9, and 10 are as follows:
a) There exists a group of defenses which enjoy

a high robustness and clean accuracy, i.e., the

defenses lie in the upper left corner with small
delta value and high clean accuracy and

b) BARZ defenses always belong to that group in
any of the aforementioned scenarios.

These observations show that the BARZ family offers a
good robustness and clean accuracy compared to other
defenses in all scenarios.

We present more detailed attack and defense results in the
next sections for Fashion-MNIST and CIFAR-10. Note that
all the detailed results in the next two sections have been
visualized in Figures 5, 8, 2, 6, 9, and 10, where the most
important discussions and observations on these detailed
results have been summarized above.

B. FASHION-MNIST: ATTACKS AND DEFENSES
The results for Fashion-MNIST are described in
Tables 3, 4, 5, 6, and 7. Recall the formula for the δ metric:

δ = γ + (p− γ )α = p− (p− γ )(1− α) = p− pd · β, (6)

where p is the clean accuracy of the vanilla classifier (i.e.,
no defense at all and without any adversarial presence), γ is
the drop in clean accuracy, i.e., γ = p−pd for pd representing
the clean accuracy of the defense while no attacker is present,
α is the attacker’s success rate against the defense and β is the
robust accuracy or defense success rate (also called defense
accuracy) and is equal to 1− α.
δ can be used to measure the effectiveness of different

defenses, the smaller the better. If two defenses offer roughly
the same δ, then it makes sense to consider their (γ, α) pairs
and choose the defense that either has the smaller α or the
smaller γ .
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TABLE 3. Fashion-MNIST targeted mixed black-box attack results. Note the β column refers to the minimum robust accuracy across all targeted mixed
black-box attacks.

TABLE 4. Fashion-MNIST targeted pure black-box attack results. Note the β column refers to the minimum robust accuracy across all targeted pure
black-box attacks.

For Fashion-MNIST and CIFAR-10, p = 0.9356 and
0.9278, respectively. The value of δ is computed by combin-
ing p of the vanilla classifier and pd of the considered defense,
and by looking at the best attack among all implemented
attacks on the given defense (this corresponds to the maxi-
mum over the attacker’s success rates α for the specific set
of attacks considered, similarly, this corresponds to the mini-
mum over the various defense success rates β). For example,
the δ metric for BARZ-8 in Table 3 is computed as follows:
we substitute p = 0.9356, pd = 0.7779, and the minimal β =
0.986 among all (currently known) targeted mixed black-box
attacks (in this case corresponding to the FGSM-T attack)
into formula (Eq. 6) for δ. This results in δ = 0.168591.

Discussion: We have the following observations from the
aforementioned tables:

1) The BARZ family achieves the smallest δ for any attack
scenario. Figures 5, 8, 2 and 10 reflect this fact.

2) Many defenses (such as Guo, Liu, ADP, Tramer) have
a very high clean accuracy (i.e., close to the clean
accuracy of the vanilla classifier), but have a very large
δ. If we have a close look at the results presented in
Figures 6 and 9 or Tables 3, 5, 6 and 7, we can see
that they are vulnerable to black-box attacks. In other
words, they offer no security.

3) By combining the drop γ in clean accuracy and the
increment in robust accuracy β, the δ metric can be
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TABLE 5. Fashion-MNIST untargeted mixed black-box attack results. Note the β column refers to the minimum robust accuracy across all untargeted
mixed black-box attacks.

TABLE 6. Fashion-MNIST untargeted pure black-box attack results. Note the β column refers to the minimum robust accuracy across all untargeted pure
black-box attacks.

used for understanding how well a defense performs
in the presence of attackers. In order to have a further
detailed evaluation, we need to separately look at the
attack success rate α (or, equivalently, robust accuracy
β) and clean accuracy of the defense pd .

4) From Tables 3, 4, 5 and 6 we conclude that
mixed black-box attacks are more efficient than pure
black-box attacks and untargeted black-box attacks are
stronger than targeted ones. When looking at Table 7,
boundary attacks are much stronger than mixed and
pure black-box attacks.

5) BARZ can realize different combinations of defender
accuracy pd and attacker’s success rate α by tuning the
number of classifiers in the defense.

6) BARZ-8R2, Madry and MulDef have the smallest δ
values for boundary attacks. For the BARZ andMulDef
defenses the reason is that for a given input x, for
each evaluation, these defenses introduce some ran-
domness. As a consequence, the output class label
can be changed. This strongly affects the efficiency
of boundary attacks which need to accurately esti-
mate the gradients of many images (and due to the
introduced randomness these estimates become less
accurate).

C. CIFAR-10: ATTACKS AND DEFENSES
The results for CIFAR-10 are described in
Tables 8, 9, 10, 11 and 12.
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TABLE 7. Fashion-MNIST untargeted boundary attack results. Note the β

column refers to the minimum robust accuracy across all untargeted
boundary black-box attacks.

Discussion: We have the following observations from
aforementioned tables (identical to Fashion-MNIST with a
slight difference in item 6):

1) The BARZ family achieves the smallest δ for any attack
scenario. Figures 5, 8, 2 and 10 reflect this fact.

2) Many defenses (such as Guo, Liu, ADP, Tramer) have
a very high clean accuracy (i.e., close to the clean
accuracy of the vanilla classifier), but have a very large
δ. If we have a close look at the results presented in
Figures 6 and 9 or Tables 8, 10, 11 and 12, we can see
that they are vulnerable to black-box attacks. In other
words, they offer no security.

3) By combining the drop γ in clean accuracy and
the increment in robust accuracy β, the δ metric
can be used for understanding how well a defense
performs in the presence of attackers. In order
to have a further detailed evaluation, we need to
separately look at the attack success rate α (or, equiv-
alently, robust accuracy β) and clean accuracy of the
defense pd .

4) From Tables 8, 9, 10, and 11 we conclude that
mixed black-box attacks are more efficient than pure
black-box attacks and untargeted black-box attacks are
stronger than targeted ones. When looking at Table 12,
boundary attacks are much stronger than mixed and
pure black-box attacks.

5) BARZ can realize different combinations of defender
accuracy pd and attacker’s success rate α by tuning the
number of classifiers in the defense.

6) BARZ-8R6/2, Xie and MulDef have the smallest δ
values for boundary attacks. The reason is that for a
given input x, for each evaluation, these defenses intro-
duce some randomness. As a consequence, the output

class label can be changed. This strongly affects the
efficiency of boundary attacks which need to accurately
estimate the gradients of many images (and due to
the introduced randomness these estimates become less
accurate).

APPENDIX B
EXPERIMENTAL ATTACK RESULTS
As we mentioned in the main body of the paper, the mixed
black-box attack can be thought of as an extension of the
Papernot attack. In this sectionwe give experimental evidence
with the CIFAR-10 dataset to support our claims. In Figure 11
we show a graphical representation of the attack success rate
as a function of training data. On the x-axis of the graph is the
percent of training data used at the start of the attack to build
the synthetic model. On the y-axis of the graph is the attack
success rate of the attack on a vanilla (undefended) model.

For this experiment we fix several variables in order to
make the comparison. We use the FGSM attack on the syn-
thetic model with ε = 0.05 to create adversarial samples.
We fix the number of iterations in the attack to be N = 4
for all the experiments and λ = 0.1. In Papernot’s original
attack on an MNIST classifier 0.3% of the original training
data is used. We show that as you increase the amount of
training data (and subsequent queries) the attack success rate
increases.When the percent of training data reaches 100%we
have what we refer to as the mixed black-box attack. This rep-
resents a substantial increase in the success rate of the attack.
In our experiment for CIFAR-10 we show it increases from
24.7% to 66.6%, an attack success rate increase of 41.9%.

On certain defenses the mixed black-box attack also out-
performs other attacks. For example consider the randomized
Xie defense. The robust accuracy for CIFAR-10 is 85% under
untargeted boundary attacks. However, the robust accuracy
is the lowest under the untargeted mixed black-box attack,
at just 26.2%. Likewise, the mixed black-box attack out-
performs the boundary attacks on MulDef-4 and MulDef-8
(although pure black-box attacks here are the strongest by a
slim 1%margin). If we consider Fashion-MNIST we also can
see defenses on which the mixed black-box outperforms the
other attacks. On Fashion-MNIST the lowest robust accuracy
is obtained under the mixed black-box attack for the Xie,
MulDef and Madry defenses.

To conclude the purpose of our analysis here is two-fold.
First through our experiments we show that when the con-
ditions are held the same, the mixed black-box attack clearly
outperforms the original Papernot attack. Secondwe show the
mixed black-box attack is the most effective attack against
certain defenses. To be clear we DO NOT claim to have the
universally strongest black-box attack. We merely show that
as different defenses employ different defense techniques,
certain black-box attacks will be more effective than others.
Thus, it is imperative to test a wide range of black-box attacks
(as is done in this paper). From this range of attacks to be
tested, the mixed black-box is clearly necessary for validation
of a defense.
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TABLE 8. CIFAR-10 targeted mixed black-box attack results. Note the β column refers to the minimum robust accuracy across all targeted mixed
black-box attacks.

TABLE 9. CIFAR-10 targeted pure black-box attack results. Note the β column refers to the minimum robust accuracy across all targeted pure black-box
attacks.

APPENDIX C
ADVERSARIAL ATTACK DESCRIPTIONS
D. PURE AND MIXED BLACK-BOX ATTACK
As we mentioned in the main paper, the mixed black-box
attack is an extension of the original attack proposed by
Papernot [26]. Here we denote g as the synthetic network
for the oracle based black-box attack from [26]. The attacker
uses an oracle O which represents black-box access to the
target model f . The oracle access in this case provides a
class label F(f (x)) for a query x (and not the score vector
f (x)). Initially, the attacker has part of the training data set
X , i.e., they know D = {(x,F(f (x))) : x ∈ X0} for some
X0 ⊆ X . Notice that for a single iteration N = 1 reduces

the attack to an algorithm which does not need any oracle
access toO build the synthetic model; this reduced algorithm
is the one used in the pure black-box attack [10], [33], [48].
In the mixed black-box attack we assume the most capable
black-box adversary in Algorithm 1 with access to the entire
training data set X0 = X (notice that this excludes the test
data used for evaluating the attack success rate).

In order to construct a synthetic network the attacker
chooses a-priori a substitute architecture G for which the
synthetic model parameters θg need to be trained. The
attacker uses known image-label pairs in D to train θg using
a training method M (e.g., Adam [49]). In each iteration the
known data is doubled using the following data augmentation
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TABLE 10. CIFAR-10 untargeted mixed black-box attack results. Note the β column refers to the minimum robust accuracy across all untargeted mixed
black-box attacks.

TABLE 11. CIFAR-10 untargeted pure black-box attack results. Note the β column refers to the minimum robust accuracy across all untargeted pure
black-box attacks.

technique: For each image x in the current data set D, black-
box access to the target model gives label l = O(x). The
Jacobian of the synthetic network score vector g with respect
to its parameters θg is evaluated/computed for image x. The
signs of the column in the Jacobian matrix that correspond
to class label l are multiplied with a (small) constant λ – this
constitutes a vector which is added to x. This gives one new
image for each x and this leads to a doubling of D. After N
iterations the algorithm outputs the trained parameters θg for
the final augmented data set D.

E. ADVERSARIAL SAMPLE GENERATION
After the synthetic model is trained, adversarial samples need
to be created from the synthetic model to attack the defense.

Hence any white-box attack can be run on the synthetic
model to create an adversarial example. The adversary can
then check if this example fools the defense. To reiterate,
in this paper we focus on a black-box adversary so running
white-box attacks directly on any defense is not within the
scope of our adversarial model. We briefly introduce the
following commonly used white-box attacks that we use for
adversarial sample generation:
Fast Gradient Sign Method (FGSM) – [8]: Computes x ′ =

x ′+ε×sign(∇xL(x, l; θ ) where L is a loss function (e.g, cross
entropy) of model f .
Basic Iterative Methods (BIM) – [38]: x ′i = clipx,ε(x

′

i−1 +
ε
r × sign(∇x ′i−1L(x

′

i−1, l; θ )) where x
′

0 = x, r is the number of
iterations, clip is a clipping operation.
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TABLE 12. CIFAR-10 untargeted boundary attack results. Note the β

column refers to the minimum robust accuracy across all boundary
attacks.

Momentum Iterative Methods (MIM) – [39]: This is a
variant of BIM using momentum trick to create the gradient
gi, i.e., x ′i = clipx,ε(x

′

i−1 +
ε
r × sign(gi)).

Projected Gradient Descent (PGD) – [27]: This is also a
variant of BIM where the clipping operation is replaced by a
projection operation.
Carlini and Wagner Attack (C&W) – [11]: We define

x ′(ω) = 1
2 (tanhω + 1) and g(x) = max(max(si : i 6=

l) − si,−κ) where f (x) = (s1, s2, . . .) is the score vector
of input x of classifier f and κ controls the confidence on
the adversarial examples. The adversary builds the following
objective function for finding the adversarial noise.

min
ω
‖x ′(ω)−x‖22 + cf (x

′(ω)),

where c is a constant chosen by a modified binary search.
Elastic Net Attack (EAD) – [40]: This is the variant of

C&W attack with the following objective function.

min
ω
‖x ′(ω)−x‖22 + β‖x

′(ω)−x‖1 + cf (x ′(ω)).

APPENDIX D
EXPERIMENTAL IMPLEMENTATION DETAILS AND MISC
F. IMPLEMENTATION OF BARZ
In the BARZ, we use image transformations that are
composed of a resizing operation i(x) and a linear transfor-
mation c(x) = Ax + b. In a CNN implementation one can
think of i(c(x)) as an extra layer in the CNN architecture
itself. We refer to this extra layer as the protected layer.
An input image x at a protected layer in BARZ is linearly
transformed into an image i(c(x)) before it enters the corre-
sponding CNN network.

For the resize operations i(·) used in each of the protected
layers in BARZ, we choose sizes that are larger than the orig-
inal dimensions of the image data. We do this to prevent loss

FIGURE 11. FGSM mixed black-box attack success rate as a function of
the % of training data used in the attack.

of information in the images that downsizing would create
(and this would hurt the clean accuracy of BARZ). In our
experiments we use BARZ with 2, 4, and 8 protected layers.
Each protected layer gets its own resize operation i(·). When
using 8 protected layers, we use image resizing operations
from 32 to 32, 40, 48, 64, 72, 80, 96, 104. Each protected layer
will be differentiated from each other protected layer due to
the difference in how much resizing each layer implements.
This will lead to less transferability between the protected
layers and as a result we expect to see a wider barrier zone
which diminishes the attacker’s success rate. When using 4
protected layers, we use a copy of the 4 protected layers
from BARZ with 8 networks that correspond to the image
resizing operations from 32 to 32, 48, 72, 96. When using 2
protected layers, we use a copy of the 2 protected layers from
BARZ with 8 networks that correspond to the image resizing
operations from 32 to 32 and 104.

For each protected layer, the linear transformation c(x) =
Ax + b is randomly chosen from some statistical distribution
(the distribution is public knowledge and therefore known by
the adversary). Design of the statistical distribution depends
on the complexity of the considered data set (in our case
we experiment with Fashion-MNIST and CIFAR-10).For
CIFAR-10 we take matrices Ai to be identity matrices (this
also makes A the identity matrix in the vector representation
of c(x)) and we use the same matrix b for each of the matrices
bi, i.e.,

b′ = b1 = b2 = b3.

This means that we use the same random offset in the red,
blue, and green values of a pixel. The reason for making this
design decision is because for CIFAR-10 we found that fully
random A creates large drops in clean accuracy, even when
the network is trained to learn such distortions. As a result,
for data sets with high spatial complexity like CIFAR-10,
we do not select A randomly. We choose A to be the identity
matrix. Likewise for b′ we only randomly generate 35% of
the matrix values and leave the rest as 0. For the randomly
generated values, we choose them from a uniform distribution
from −0.5 to 0.5.
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For datasets with less spatial complexity like
Fashion-MNIST, we equate matrices A′ = A1 = A2 = A3
and b′ = b1 = b2 = b3 and select A′ and b′ as random
matrices: The values of A′ and b′ are selected from a Gaussian
distribution with µ = 0 and σ = 0.1.

G. ATTACK AND DEFENSE PARAMETERS
In order to implement a black-box attack we first run
Algorithm 1 which trains a synthetic network g. Next, out
of the test data (each dataset has 10,000 samples in our
setup) we select the first 1000 samples correctly identified
by the defense. For each of the 1000 samples we run a certain
white-box attack to produce 1000 adversarial examples. The
attacker’s success rate is the fraction of adversarial examples
which change l to the desired new randomly selected l ′ in a
targeted attack or any other label l ′ 6= ⊥ for an untargeted
attack.

The parameters for the adversarial generation techniques
(white-box attacks) used in conjunction with our syn-
thetic model for both the mixed black-box attack and pure
black-box attack can be found in table 13. For all attacks we
use the ‖l‖∞ norm except for the Carlini and Wagner attack.
For the Carlini and Wagner attack only the ‖l‖2 implemen-
tation (given by the authors) has a run time efficient enough
for our current hardware setup (to test on 10 defenses and 2
datasets). Future work may include trying mixed black-box
attack with the ‖l‖∞ if efficient implementations of the Car-
lini and Wagner attack become available in the future.

TABLE 13. Attacks’ parameters. i - number of iterations, d - decaying
factor, r radius of the ball for generating the initial noise, c - constant
value of C&W attack, ε - noise magnitude, β - constant value of EAD
attack. Binary Search = Bi.Sr.

The precise set-up for our experiments is given in
Tables 14, 15, and 16. Table 14 details the training method T
in Algorithm 1. For the evaluated data sets Fashion-MNIST
and CIFAR-10 without data augmentation, we enumerate
in Table 15 the amount |X0| of training data together with
parameters λ and N (λ = 0.1 and N = 6 are taken from the
oracle based black-box attack paper of [26]; notice that a test
data set of size 10,000 is standard practice; all remaining data
serves training and this is entirely accessible by the attacker).
Table 16 depicts the architecture G of the CNN network

of the synthetic network g for the different data sets; the
structure has several layers (not to be confused with ‘pro-
tection layer’ in BARZ which is an image transformation
together with a whole CNN in itself). The adversary attempts
to attack BARZ and will first learn a synthetic network g
with architecture G that corresponds to Table 16. Notice that
the image transformations are kept secret and for this reason

TABLE 14. Training parameters used in the experiments.

TABLE 15. Mixed black-box attack parameters.

TABLE 16. Architectures of synthetic neural networks g from [11].

the attacker can at best train a synthetic vanilla network.
Of course the attacker does know the set from which the
image transformations in BARZ are taken and can potentially
try to learn a synthetic CNN for each possible image trans-
formation and do some majority vote (like BARZ) on the
outputted labels generated by these CNNs. However, there are
exponentially many transformations making such an attack
infeasible.

H. BOUNDARY ATTACK COMPUTATIONAL COMPLEXITY
AND TARGETED BOUNDARY ATTACKS
In the main body of the paper we mention that both the Odds
are Odd (Odds) and Barrage of random transforms (BaRT)
are not applicable for boundary attacks. For pure and mixed
black-box attacks we can efficiently parallelize the evaluation
of many samples using either the GPU or multiple CPUs (in
the case of image transformations). However, the boundary
attacks require large number of evaluations done sequentially
(e.g. 10,000 queries) so we cannot take advantage of the
previously mentioned parallelism. This causes the run time
of boundary attacks for these defenses with our standard
implementation to be on the order of weeks. These attacks
are not applicable for our current setup (28 core CPUmachine
and 2 Titan V GPUs).

It is also worth noting in this paper we do not directly
consider targeted boundary attacks. Although we do provide
experimental details for some other black-box target attacks,
in this paper our main focus is on the untargeted attack.
As we already have 12 targeted attacks presented in this paper
(6 mixed black-box and 6 pure black-box types) we leave the
targeted boundary attack as potential future work.
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I. FUTURE WORK
There are several promising directions for possible future
work. From a security perspective, our paper has demon-
strated the effectiveness of image transformations for
black-box robustness. We experimented with a set of image
transformations that we found to be effective in creating bar-
rier zones. However, large scale studies on the transferability
of single and fixed combinational image transformations has
not yet been done, to the best of our knowledge. Determining
exactly which image transformations are capable of distorting
adversarial noise while maintain robustness would bring the
field much closer to establishing a set of image transforma-
tions as security primitives.

On the machine learning side, enhancement to the clean
accuracy of the BARZ defense may be possible through
the introduction of novel architectures. Specifically, the Big
Transfer Models [50] are a class of CNNs that have shown
remarkable performance on datasets like CIFAR-10 and
CIFAR-100. Using these new architectures could be one pos-
sible way to improve the clean accuracy of the BARZ defense.

On the attacker side in this work, we only consider an
adversary that is interested in misclassification (either tar-
geted or untargeted). The attacker starts with a clean example
and specifically tries to avoid having the sample marked with
the correct label or marked with the adversarial label. To the
best of our knowledge, work has not been extensively done
on what might be considered the inverse of this problem i.e.,
the attacker tries to overwhelm the system with legitimate
examples that are marked as adversarial. While an interesting
problem in its own right, this is beyond the scope of our
current work. It may be a problem future defense designers
would want to take into account and try to mitigate.

Lastly from the attacker side, optimizations can still be
made to the adaptive black-box attack. In our paper, we found
one simple CNN architecture (through experimentation) that
was both simple to train and yielded highly transferable
adversarial examples. However, it may still be possible to
optimize the architecture in the attack, to potentially increase
the attack success rate. In addition, as white-box attacks
continue to improve, it may be possible to substitute the MIM
adversarial generation method in the adaptive black-box
attack with an even stronger technique.
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