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ABSTRACT This paper proposes a complete and novel approach for estimation of impedance and admittance
parameters of transmission lines from phasorial voltage and current measurements. The work uses the
rigorous modeling of the noise on the phasorial measurements, and the solution is obtained based on a
nonlinear approach of the estimation problem. The distortion introduced into the classical nonlinear model
from the noisy data is analyzed by using statistical techniques. Finally, the performance of the estimation
method is studied considering various load conditions, time-varying loads, number of samples, and noise on
the phasorial measurements. The proposed method shows high accuracy in the line parameters estimation,
even with distortions due to high noise levels. In addition, a good performance is also observed with a small
quantity of samples, which is not observed in the linear solutions.

INDEX TERMS Nonlinear least squares method, parameter estimation, phasor measurements, statistical

analysis, overhead transmission lines.

I. INTRODUCTION

The previous knowledge of the electrical parameters of
transmission lines is essential for the parameter adjustment
of equipment in power systems. Such parameters are required
to set digital relays, calculate load flow, control and stability
analysis, determining the propagation characteristics of the
transmission line, and many other applications. In this sense,
the reliability of an entire power system depends on the
previous and accurate knowledge of the electrical parameters
of the transmission lines, i.e. the series impedance and shunt
admittance.

Conventionally, the electrical parameters of overhead
transmission lines are obtained based on the physical and
geometric characteristics of the conductors in bundles, steel
towers, height of each conductor, conductivity of the soil
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under standard conditions, and other approximations. [1].
Furthermore, the calculation of the parameters takes into
consideration some phenomena present in alternating cur-
rent transmission, such as the skin effect in the phase
conductors and the return current through the soil [2].
However, common-place methods for obtaining such param-
eters neglect the dynamic behavior of some very important
constants during the calculation, e.g. soil conductance and
electric permittivity of the air. A major example is in Carson’s
corrections, the soil conductivity is constant throughout the
line length. Such assumption is definitely not true, since
it depends on the local characteristics of the soil, such
as stratification of the soil layers, humidity, and different
geological formation in each region in which the line is
through [3], [4].

One can notice that poor estimations of transmission line
parameters affect several aspects of a power system. For
this reason, to increase the accuracy of the estimations, the
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problem must be considered as a dynamical mathematical
problem. This becomes especially relevant in the new context
of smart grids and modern transmission systems, which
require a more efficient parameter estimation methodology,
in which their dynamic behavior and time-varying nature are
taken into account.

Some parameter-estimation methods have taken place in
the last decade in which dynamical equations are used to
model measurements of transmission lines. In some cases,
the parameter estimation is carried out in the time domain
by employing current and voltage measurements during
transient state at both sending and receiving terminals [5], [6].
Despite these methods show a good performance, the param-
eters estimation is only possible after transient occurrences
(fault, abrupt varying load, lightning etc). On the other hand,
there are also estimation methods that are developed in the
frequency domain by using phasor measurements at both ends
of the line [7]-[11].

Several methods propose the estimation by using equations
based on the well-known m model of the transmission
line, and the Gauss-Newton method for non-linear equa-
tions [12]-[14]. Although these methods can be applied
in a steady state at any time, i.e. it is not restricted only
to eventual transient occurrences, the phasorial methods
do not consider the noise in the phasor measurements.
A relevant improvement was introduced where systematic
errors in the synchrophasor measurements were considered
in the estimation method [15]. In this work, the noise
is properly modeled as a Gaussian term added to the
phase and magnitude of the phasor measurement. Each
noise term related to each phasorial measurement presents
different modeling according to the system load. Although
this work had considered a more complete model for the
phasorial measures, the level used was quite unrealistic,
since the current works [16], [17] have shown that the
phasorial measures present a noise with at least 1 % in
the magnitude and 0.5 rad in the phase. Considering the
estimation methods that use a nonlinear approach and some
noise modeling, the solutions are obtained only by the
Gauss-Newton method [13], [14] and there is no statistical
validation for the model.

A few estimation methods are based on multiple mea-
surements selected in an iterative and adaptive form. The
noise was considered and modeled by using a Gaussian
distribution [8], though the correct noise modeling was not
considered as presented in [17]. It was considered a simplified
model defined just as a percentage of the amplitude. These
measurements compose a system of nonlinear exponential
equations, where each parameter has a standard deviation,
and the solution is found using a numerical procedure
based on Newton’s method. In addition, a method based
on moving-window Total Least Squares (TLS) and Kernel
density estimation was proposed [18]. In this last research,
a load flow approach is used to describe a system with
8 equations with non linearity in all terms. The solution
is obtained by fitting a Kernel density for each parameter.
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Another TLS variant is employed as well [19]. In this
case, the authors focus the modeling on differences between
the measurements obtained from current transformers and
capacitor voltage transformers. This approach leads to a
solution using the Weight Total least Squares method
(WTLS). Both methods do not consider a complete noise
modeling, using a simplified model in which the noise is
added directly in the equations. Thus, this last approach
does not consider the error propagation of the phase and
the magnitude. In a summarized description, some terms are
considered Gaussian and unbiased, which is definitely not
true.

Some accurate statistical models for noise analysis were
also proposed in the technical literature [17], [20]-[22].
For example, in reference [17], a model is developed
based on realistic specifications of ITs and PMUs. Since
the specifications are given in polar coordinates, the con-
version to rectangular coordinates is required to compute
the noise covariance matrix, which is therefore used in
different estimation methods. In this work, the solution
is obtained and compared by using different methods,
more specifically: OLS, TLS, and WTLS methods. Another
important issue is that this work analyzes a transmittance
matrix model for a short-length transmission line. A similar
method was previously proposed in the technical literature,
with an exact linear reformulation of the problem, which
can be solved in closed form [20]. In such case, the
distributed-parameter model for long transmission lines is
considered, and its parameters are estimated in a non-iterative
manner.

A few estimation methods have been proposed by using
Kalman-filter based solutions, where voltage and current
measurements at both line terminals are required to track
parameters of long transmission lines dynamically [23].
Furthermore, these methods are applicable to transmission
lines with different series compensation configurations.
However, the data model is simplistic. In [23], the noise
projection into the real and imaginary axes is not considered.
Moreover, the practical aspects were not developed, e.g,
it was not mentioned if the measures are provided by PMUs
or Supervisory Control and Data Acquisition (SCADA).

Besides the are methods for noise modeling, there are also
works that model the inaccuracy in each equipment as a
non-random term, and use the error propagation based on
the error theory and Monte-Carlo statistical simulations [24],
[25]. These approaches intend to deal with systematic errors
in instrument transformers and how it affects the estimation
process.

It is worth highlighting that nowadays the estimation of
the line impedance of distribution systems corresponds to
a relevant issue derived from the general transmission line
parameter estimation problem. In such case, the equations
are based on the classical state estimation problem, and the
common measures are mixed with PMU data to compose
the problem. From such approach, it is possible to mention
several contribution in the technical literature [26]—[29].
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Currently, most of the estimation methods, available in
the technical literature, solves the line parameters estimation
problem by means of a simplistic linear approach. Further-
more, some of these methods do not consider properly the
presence of noise in the measurements, which represents a
unrealistic situations [13], [30], [31]. There are also some
methods which take into account the noise modeling by using
very simplistic methods, which could also lead to estimation
errors [14], [15]. In this context, we propose a complete
statistical analysis for the nonlinear solution applied to the
transmission line parameter estimation problem.

The main contributions of this research are listed as
« This paper proposes a new set of phasorial equations to

solve the 7 — model;

« The method uses a complete and realistic approach for
phasorial measurements and the solution is obtained as
a nonlinear problem;

o The proposed approach shows an improved accuracy
when compared to linear methods with similar noise
modeling and even with works that employ a simplified
noise modeling;

o The classical nonlinear model and its statistical hypoth-
esis are verified after the application of the method;

o The performance of the solution is analyzed under
several conditions of load, number of samples and noise
level;

o The robust study allowed us to analyze the condition
that leads to the worst accuracy and how to avoid this
situation.

Il. TRANSMISSION LINE MODEL

A symmetric and balanced three-phase transmission line,
classified as medium-length in the literature, is modeled in
this work [32]. The equivalent circuit (positive sequence)
for this line is presented in Fig. 1, where VS, Vr, is, i, are
respectively the voltage and the current at the sending and
receiving ends.

From the equivalent circuit in Fig. 1, it is possible to
describe the phasor equations of the proposed estimation
method for the transmission line parameters R, b, X. Being
b and X defined as

b=wC, X =oL,

where w is the angular frequency of the system.
By applying such laws to the circuit, the following
equations are obtained:

‘_/Si + ‘_/ri == __Isr - _Irrv (1)

‘_/sr + Vrr = =l + -1y, (2)
o _ b

Vsr - Vrr = R+ (_Isi + §Vsr> Xv (3)

_ b -

R + (Isr + EVSi> X’ (4)

b- - b-

—EVri_Irr)R‘i‘ <_§Vrr +Iri) X, (5)
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FIGURE 1. 7-model for a medium-length transmission line.

- — b - - b - -
Vsi— Vi = (Evrr - Iri) R+ <_§Vri _Irr> X. (6)

where Vg, V,,, I, I, are the real parts of the exact phasor
measurements, i.e without noise, and Vy;, V4, I;, I; are the
imaginary parts of the exact phasor measurements.

It is possible to write the set of equations as the following
matrix equation

Y =£(0). (7

In the Equation (7), the vector of parameters (#) is given
by

6= R X .

The other elements of the matrix equation are presented in
appendix X.

Ill. NOISE MODELING

Considering the works which deal with transmission line
parameter estimation, there are some ways to incorporate
the inaccuracy of the measures into the method. In general,
the noise is totally neglected [12] or considered in a simple
way as a additive term in each equation which composes the
estimation method [8], [14] [18], [19]. In the latter cases, all
measures are considered with normal distribution and zero
mean, which is not verified in field case [17].

The complete model for the data obtained from a PMU
was presented by [33]. Following the approach given by this
work, a generic phasorial measure w = Xe? is corrupted by
a zero-mean Gaussian noise in the magnitude and phase. The
magnitude term is denoted by A, ; and the phase is Ay ..
Therefore, a generic field PMU measure can be approximated
by

w=(X+ Ap,x)eq;‘m‘f’-".

The noise on the measures represents the inaccuracy of
each component that composes the measurement system.
The main resources of inaccuracies are the instrument
transformers (ITs), i.e, current transformers and voltage
transformers, and the PMUs. The total noise could be
considered as the sum of the noise from ITs and the noise
from PMUs [17].
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TABLE 1. Errors present in ITs [17].

Class of operation Ngzo r‘fzflg)“ig;;‘]ie erig??bghﬁf p)
0.1 0.1 1.5 x 1073
0.2 0.2 3x 1073
0.5 0.5 9x 1073
1.0 1 18 x 1073

Individually, the PMU has a precision better than 1% in
the magnitude and 1us for measures of time [34], for 60 Hz
of rated frequency, this value is equal to 3.77 x 10™* rad.
Concerning the ITs, the inaccuracy depends on the class of
operation. The main class of operations is shown in Tab. 1.

As the noise has a Gaussian distribution, the maximum
values presented in Tab. 1 must be converted to the standard
deviation. Fixing the standard deviation as the maximum
value divided by three, the measurements lie to the interval
bounded for the maximum value with a probability of 0.9973.
Thus, such relation was used to model the noise.

Considering noise in all terms, the equation (7) is not more
consistent, i.e

Y £f0).

where Y is the vector Y considering noise in the measures
and f(@) is the vector function f (@) when the noise is
incorporated.

Now, the residual vector is defined as

r0)=Y —f(0).

The optimization problem P1, which corresponds to the
solution by using the nonlinear approach is represented by

Py 6 = arg min||r(@)|I*

where @ is the solution that minimizes the 2-norm of the
residual vector.

IV. LEVENBERG-MARQUARDT METHOD (LMM)
The Gauss-Newton method is the most common method
to solve nonlinear least-squares problems. This method is
simple to implement, however, it presents a poor convergence
when the Jacobin matrix is near to the singular matrix [35].
Furthermore, the solution in the Gauss-Newton method is
strongly dependent on the initial guess. Thus, the method
might be present a poor accuracy when the initial guess is
far from the optimal solution [36].

An alternative to overcome these issues is the Levenberg-

Marquardt method, in which the objective function is given
by

178, 8“)II* + 20110 — 8| 2.

where, 8% is the vector of parameters in the iteration k,
#(0,0%)) is the first order Taylor approximation of r(f)
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FIGURE 2. Schematic representation of the simulation structure.

centered in 0%, and A% is a positive parameter updated in
every iteration.

It is worth highlighting that the Levenberg-Marquardt
method is a multi-objective formulation, where the aims are
to minimize the norm of the affine approximation of r( . )
and to choose new approximations that are near to previous
iterations.

For this algorithm, the solution is calculated as

P2: 0*+D = arg min |7(6; 0% + 20110 — 0@y

With: #6; 0%) = r@®) + J(6©) 0 — %)
andA® > 0.

The operator J (%) is the Jacobian matrix of the function
r(.) calculated in 8%,

Since A® is positive, the solution can be calculated as a
variation of the classical least-squares solution [37]

e+ — gt _ (J(0(k))T_](0(k)) + )\(k)l)*l
JO)'r6®).  (®)

V. SIMULATION ASPECTS
In this section, we will present the simulation structure used
to obtain the phasorial measures and the different scenarios
considered in the work. The transmission line analyzed in this
paper has the parameters presented in appendix X, obtained
from [38].

Each lumped parameter R, L, and X is calculated by
multiplying the distributed parameter R’, L', and X’ to the line
length /, i.e:

R=R-I, X=X-1,C=C"-1

In Fig. 2, Rgpun: 1S necessary to ensure numerical conver-
gence of the simulation, and its numerical value should be
small compared to the other lumped parameters of the line.
Therefore, the shunt resistance was set to Ry = 0.05 Q.
We have analyzed the load as a percentage of the Surge
Impedance Loading (SIL), defined in [38]. In our case, the
SIL of the line is 140 MW.

A. ALGORITHM DESCRIPTION

The algorithm implemented in this work can be divided
into three different parts. The first part corresponds to the
numerical modeling for the real data from field applications
of three phase transmission lines. In such part, the structure
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presented in Fig. 2 is used to create the phasorial measures
without noise. Then, the noise is artificially added upon the
absolute value and the phase of each measure, according
to that it was described in Section III. It is important to
emphasize that the noise has two components, the first
originated by the ITs («, B) and the second related to
the PMUs (popyu-¢pmu). The algorithm 1 represents the
pseudo-code of the real data generation process. The variable
N represents the number of samples used on the estimation
method. The vector function used on the estimation method,
denoted by f,,..(#), is the concatenation of the function
f () for each set of phasorial equations, i.e the function has
dimension 6N. It guarantees more stability for the method
since the method has more linearly independent equations.

Algorithm 1 Generation Data
0: Run MATLAB Simulink using Table 6

0: Obtain VS, Vr, is, i, without noise
0: Define N, ppymu, ¢rmu, @, B

0: Ay = ppmy + o [%]

0: Ay = B + ¢pyu [rad]

0: for x in [VS, Vr, i,, is] do

0: Ape < N (0,42 - abstx). N)
e (U 8

0: [x] < |x[+ Apx

0 arg(x) <— arg(x) + Agyx

0 X, < |x| cos(arg(x))

0 X; < |x]| sin(arg(x))

0

:end for =0

The second part of the algorithm corresponds to the
implementation of the Levenberg-Marquardt method to solve
the nonlinear least squares problem. For the proposed
study, the Levenerg-Marquardt implementation chosen was
the common-place design presented in [39]-[41]. Such
implementation can be accessed through the built-in func-
tion presented in MATLAB called Isgnonlin. A simplified
flowchart for the proposed solution is shown in Fig. 3.
The Levenberg-Marquardt part is based on the algorithm
presented in [42].

Finally, the last part is dedicated to analyzing the results
obtained from the estimation process. The quality of the
calculated parameters is verified by using the absolute value
of the relative error (9)

p=r

p/
where p is the estimated parameter and p’ is the exact
parameter.

A, = , ©)
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FIGURE 3. Flowchart for the proposed solution.

Furthermore, in order to complete the statistical description
for the method, we proposed a residual analysis for the model
based on the ordinary definition for the residuals in nonlinear
least squares problems [43]

r=Y —f@).
where r can be described by six entrances, defined as
reln o onors orell

VI. RESULTS

In this section, the application and performance of the
estimation method will be discussed through computational
simulations. First, the estimation method will be analyzed
considering that the line carrying an active power corre-
sponding to 0.9 SIL. For that case, the class of errors in
ITs chosen was class 0.1, which leads to A, = 1.1% and
Ay = 19 103 rad. The number of samples (N) was
considered equal to 200. The other parameters, necessary
to set the Levenberg-Marquardt algorithm, were considered
equal to the default value present in the optimization toolbox
from MATLAB [44]. In order to establish a fair comparison of
the proposed method and others given by the literature, it was
used the methodology presented in [45], [46]. The result of
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this analysis is shown in Tab. 4. It is worth emphasizing
that the methods, chosen to compose the comparison, have a
similar approach to estimate the transmission line parameters,
i.e, these methods are using phasorial measures (from PMU
or SCADA), consider some noise modeling upon the data,
and evaluate the result by using the relative error.

The result in Tab. 4 shows that the proposed method
has better accuracy compared with others in the literature,
even with those with a very small noise level [15], [17].
Another relevant aspect is the number of samples used in
the estimation. We reached better results using a reduced
number of samples when compared with [8]. However, this
last method does not consider the error propagation and
neither the relationship between correlated measures, which
becomes the solution more stable, although less realistic.

A. ANALYSIS OF THE RESIDUALS

The standard nonlinear regression model can be represented
as [43]

yi=fxi, 0 +¢e, (=1,2,...,m). (10)

where x; represents represents a vector of known variables
associated with the ith observable response y;, 6 is a p x
1 vector of unknown parameters, the response function f is
assumed to be known, continuous and twice differential in 6,
and the residual vector

e=|[ere ... sm]T

’

should be follow the under assumptions:
e &, Yi=1, ..., mhas Gaussian distribution;

o Elgi]=0,Vi=1,...,m,
« ¢ and ¢; are independent V i # j;

o The residuals have constant variability around x;.
The operator E[ . ] represents the expected value of a

random variable [47].

However, the noise modeling for the phasorial measures
and the set of equations lead to a distortion in the standard
nonlinear model. Basically, it occurs due to two reasons. First,
the noise is independent and identically distributed (i.i.d) for
the absolute value and the phase of each measure, but it is
not true for the projections in the real and imaginary axis.
Second, the set of equations mix the observations measures
(x;) and the output measures (y;). Then, it is not possible
to separate the residual term as an additive term in the
equation. Therefore, we propose to analyze such modification
introduced by the modeling in the residuals as a form to
improve the statistical discussion for the method.

Using the estimated value for each parameter (p), it is
possible to construct a histogram of the residual for the model.
Remembering that the residual is a vector, then there are six
different histograms for the residual. To illustrate the behavior
of the residual in the method, we present the QQ-plot for rq,
presented in Fig. 4.

The histogram and the QQ-plot show that the residuals
has approximately a normal distribution, with a small
perturbation for negative high values. The same behavior
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FIGURE 4. QQ-plot for r; using LMM.

TABLE 2. P-values for the residuals in LMM.

Entry of the residual vector | p-value
1 0.363
T 0.00164
T3 0.0697
T4 0.739
5 0.0612
T6 0.924

is observed for the others entries. In order to establish if
each entry has mean zero, it is possible to do a two tailed
hypothesis test, using the following definition

Hy:p,=0
HI:I'LI‘,'#O

Using the definition of the p-value for each sampling
distribution presents in the residual vector [48], it was
obtained the results shown in Tab. 2.

Fixing the level of confidence in 95%, it is possible to
affirm that the average value of the entries ry, r3, r4, rs, r¢ and
the supposed mean (u,; = 0) do not have significant
statistical difference, while the average value of the entry
r2 have. Thus, the noise modeling and the estimation method
introduced a bias in the second entry of the residual vector.

In order to verify the effect of the noise modeling and the
estimation method on the correlation of each residual vector
entry, we proposed to use the Pearson coefficient (p) of the
random variables X and Y, defined as [49]

Cov(X,Y)
p= VVarX)Var(Y)’
where Cov(X, Y) is the covariance between X and Y, Var(X)
represents the variance of the random variable X, and p €
[—1, 1] The result is presented in Tab. 3.

As can be seen in Tab. 3, the residual vector presents
a high distortion considering the correlation between each
entry. This can be explained by analyzing the set of phasorial
equations and noise modeling. If the model is ideal, the
residual vector is directly related to the output vector (¥)
and this vector has some identical entries, more precisely
the second is equal to fourth and the second is equal to the
sixth. Then, before applying the method, it was expected

, i=1,2,...,6.
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TABLE 3. The correlation coefficient of each entry in the residual vector.

1 2 3 T4 75 "6
1 1.0 0.78 -0.050 | -0.44 | 0.081 | 0.42
T 0.78 1.0 -0.046 | -0.31 | 0.098 | 0.42
rg | -0.050 | -0.046 1.0 -0.37 | 0.81 | -0.42
ry | -0.44 -0.31 -0.37 1.0 -042 | 0.77
rs | 0.081 | 0.098 0.81 -0.42 1.0 -0.36
76 0.42 0.42 -042 | 0.77 | -0.36 1.0
88— :
& = Susceptance
S6r =—Reactance P d
=] == Resistance P
.a;) 4r - -
[a) -
2 -~
% 2; _ - -
& e T ‘ iaassszass .
0.25 0.5 0.75 1 1.25 1.5 1.75 2
SIL

FIGURE 5. Analysis of the load influence on the relative deviation for
each parameter.

that such entries might present a high correlation. Moreover,
the noise modeling introduces on the equations terms are
correlated, e.g, the terms V,; and V,, are correlated because
the phase for both has the same model. Therefore, the set
of phasorial equations and the noise modeling give to the
model an intrinsic correlation for the residual vector entries.
As the proposed noise modeling is the most generic and
rigorous form to include noise on the measures [16], [22],
the behavior shown in Tab. 3 can be considered acceptable
since the values of the estimated parameters do not present a
significant deviation.

VII. INFLUENCE OF THE LOAD ON ESTIMATION METHOD
According to demand of the power system, the transmission
line can carry different active powers during a day of
operation. In order to study the influence of the load condition
within the deployment time-window of the estimations,
we have simulated different load conditions, as a percentage
of the natural power. The result of the relative deviation for
each parameter using a different load is presented in Fig. 5.

By observing Fig. 5, it can be seen that the relative error
for the susceptance increase when the load increase. Such
behavior can be explained by the problem formulation. Note
that the first and second equations depend on the susceptance
only. Basically, it is possible to write two simple equations to
calculate this parameter

b=_2<u)’ b=2(M>’ (11)
Vsi + Vri Vsr + Vrr

where each projection of a phasorial measure on complex
plan is a random variable as described in Section III.

The deviation present in parameter b is related to the bias
introduced in (11) by the noise modeling. Such bias (v) can
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be defined as

1 1
v=b —E|—2 (Lt (12)
Vsi + Vri

where b’ is the actual value of the parameter b and [E[ . Jis the
expected value operator [48]. To prove the relation between
the behavior present in Fig.5 and the bias, we performed a
numerical analysis of the absolute bias for all load conditions.
The result is present in Tab. 5.

Comparing the relative deviation for the parameter b
present for each load and the corresponding bias, it is possible
to establish a direct relationship between the bias and the
relative deviation. The noise modeling leads to a bias on b
calculation, such bias affects the method and it is reflected
on the relative deviation. The remaining parameters present a
relative deviation smaller than 1% for. Besides, with respect
to these parameters, it is possible to affirm that they present an
oscillating value, i.e, it is not increasing or decrease with the
load. Such fact occurs because the equations used to calculate
these parameters are nonlinear. Then, the behavior is more
difficult to predict than the susceptance case.

Another explanation on the susceptance case is that
the transmission line represents a capacitor circuit during
operation with low load demand, i.e. the reactive power is
mainly concentrated in the shunt capacitance in the equivalent
circuitin Fig. 1. Otherwise, for a higher load profile, most part
of the reactive power is concentrated in the series inductance
because of the high current demand from the load. Thus, best
estimation values for susceptance are obtained from lower
power demands whereas more accurate series parameters are
estimated from higher load values.

Besides the linear variation of the load represented in
Fig. 5, it is possible to analyze the behavior of the method
under a non-linear variation of the noise, i.e, considering an
abrupt variation of the active power carried through the line.
For such analysis, the load profile is shown in Fig. 6.

In order to verify the accuracy of the proposed method
under the load profile presented in Fig. 6, it was performed
a study of the relative deviation of the parameters. The result
of such analysis is given by Fig. 7.

Observing the Fig. 5, it is possible to conclude that the
method has a stable performance even when the load is
abruptly varied. Moreover, it is worth highlighting that the
susceptance and the resistance have an opposite behavior. The
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TABLE 4. Comparison of the proposed solution with others in the literature.

Reference  consider noise  simplified noise noise level measurement largest relative  snapshots/samples
modeling device deviation
observed (%)
Proposed yes no PMU 2.0236 200
A, =1,1%
Ay =19-1073rad
[17] yes no PMU 4 2500
A, =0,1%
Ay =1-10"*rad
[20] yes no SCADA 3.88 1000
A, =0,5%
Ay =9-10"3rad
[15] yes no SCADA 3.51 100000
Ay = 0,04%
A =0,03%
Ag=3-10"*rad
[42] yes yes Avi ez 10%3% SCADA 2.35 17280
[8] yes yes Avr.po=6% SCADA 2.460 200

TABLE 5. Variation of the bias due to load condition.

Load (% SIL) | |v|(uS)

10 1.4658

20 2.1814

30 2.9729

40 3.7916

50 4.7808

60 5.8062

70 6.8218

80 7.7712

90 8.7552

100 9.8676
4 : ‘
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==Reactance

3r S b
usceptance

—_
|

Relative Deviation (%)
[\*]
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Time Samples (N)
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FIGURE 7. Relative deviation for the parameters under a nonlinear load
profile.

resistance has poor accuracy for small loads, for example,
when the load is 0.05 SIL the relative deviation for the
resistance is approximately 1 %, whereas for the susceptance
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the relative deviation increases when the load increases.
Nevertheless, for all load conditions the accuracy is better
than 10%, the value presented as desirable in [50].

VIll. THE INFLUENCE OF THE NOISE STANDARD
DEVIATION ON THE ESTIMATIONS

The standard deviation of the noise is related to the quality
in which the phasorial measurements are obtained in a power
system. The main parts of the errors present in phasorial
measurements are associated with measurement instruments.
Such errors are difficult to estimate. Then, the standard
deviation can variate in a large range of values according to
the situation [51].

Therefore, by varying the total standard deviation of the
noise (sum of the noise from ITs and PMUs), it is possible
to observe the performance of the proposed methods with
respect to this factor. For this analysis, the number of samples
was fixed in N = 10000 and the load condition fixed in
0.9 SIL. First, we fixed the noise related to the phase in
8 - 1073 rad and variate the standard deviation related to the
magnitude, the result obtained in this analysis is shown in
Fig. 8. After, the standard deviation related to the magnitude
was considered fixed equal to 1% and the term related to the
phase was modified as shown in Fig. 9.

Comparing with the load, the standard deviation of the
noise has a higher influence on the relative deviation
for each estimated parameter. Especially, when it is ana-
lyzed the results presented by the susceptance in the case in
which the standard deviation for the magnitude was modified.
All the parameters present a poor performance when the
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FIGURE 8. The influence of noise standard deviation related to the
magnitude on the estimation method.
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FIGURE 10. The influence of the number of samples.

standard deviation level assumes a high value, it can be
explained by analyzing the noise modeling. As presented
in [17], the bias present in the measures is affected by the
standard deviation of the noise. Then, a high value of the
standard deviation leads to a high bias on the measures,
and, consequently, the residual vector presents a high norm.
Therefore, the relative deviation for the estimated parameters
presents a bad performance.

Considering that accuracy in line parameter estimation
below 10% would be desirable [50], it is possible to affirm
that the proposed method present a efficacy for A, < 3.0 %
and Ay < 30-107 rad.

IX. INFLUENCE OF THE NUMBER OF SAMPLES

We have simulated the line with a load of 90% of the SIL and
varied the number of samples. The noise level was considered
the same as presented in Section VI. The result of such
analysis is shown in Fig. 10.
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The values presented in Tab. 10 show that the relative
deviation for each parameter is small affected for the
number of samples. Analyzing the results for each parameter,
the same order of magnitude is observed for the relative
deviation. As all deviations are less than 10% [50], they can
be considered acceptable. Another relevant aspect is that the
relative deviation is oscillating with respect to the number
of samples. It occurs for one main reason, the solution is
calculated using a nonlinear least square approach. Then, the
intrinsic correction given by the iterative method provides
more stability for the final estimated parameter. It can be
proved when such solution is compared with OLS, TLS, and
WLS solution, where the relative deviation depends strongly
on the number of samples [17]. For those estimators, the
result present by the method using a large number of samples
is compared with the present in this work when they are
used less than 100 samples. Therefore, the proposed method
presents an advantage when compared with the others present
in the literature since it is possible to obtain the same relative
deviation using small samples.

An important aspect related to interactive methods is
the computational cost when compared with non-iterative
methods. Indeed, if the number of samples is the same for the
methods, a non-iterative one presents a lower computational
cost. However, the non-iterative estimation methods present
in the literature [17], [20], [22] use a large number of samples
to obtain a satisfactory performance for the parameters, such
methods employed more than 1000 samples in the estimation
process. The presented method shows good performance even
for less than 200 samples. Besides, the interactive method
presented a fast convergence in the studied problem. For all
conditions, the number of iterations was less than eight.

X. CONCLUSION

A novel nonlinear formulation has been presented in this
paper to estimate the positive sequence parameters of a three
phase transmission line. The complete and rigorous modeling
for the noise was incorporated into the phasor measurements.
The influence of such modeling on the classical nonlinear
model was analyzed and it was possible to show numerical
proof that some entries of the residual vectors present a
distortion in the mean value and mainly the residual vector
present entries strongly correlated. These facts lead the
estimation to present a systematic error in the estimated
parameters.

The simulation performed in this paper showed the impor-
tance of the accuracy in which the phasor measurements
are obtained for the transmission line parameters estimation.
Besides, we verify the efficacy of the method for many
conditions of load, number of samples, and noise modeling.
Comparing the proposed method with the others that consider
the rigorous noise modeling as well, but using a linear
approach, the method presents a better performance for many
conditions. Also, the nonlinear approach presented a good
performance even for a small number of samples.
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APPENDICES A
DESCRIPTION OF THE EXACT MATRIX EQUATION
The elements of the exact matrix equation are described by

£ =

[ E_/ei + ‘:/si
‘_/er + ‘_/sr
= Ver — V.
Y = "er Vsr ,
Yei - ‘_/si
‘{er - Ysr

L Vei — Vi
i _(z/b)iw - (2/b)i9r
Q2/b)Lei + 2/b)s;
(ier + (b/z)‘_/et) R+ (_iei + (b/z)‘_/er) X
(iei - (b/z)‘_/er) R+ (ier + (b/2)‘_/ei) X
(_(b/z)‘_/si - jsr) R+ (_(b/z)‘_/sr + isi) X

L ((b/z)‘_/sr - _si) R+ (_(b/z)‘_/si - sr) X

APPENDICES B
SIMULATED SYSTEM DATA

TABLE 6. Transmission line parameters.

A 230 kV
R’ 0.05 Q/km
r 1.2945 mH /km
c’ 8.9419 nF/km
Rated frequency (f) 60 Hz
Length (1) 100 km
Zc 380 Q2
SIL 140 MW
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