
Received November 17, 2021, accepted December 8, 2021, date of publication December 27, 2021, date of current version January 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3138807

A Survey of Polynomial Multiplication With
RSA-ECC Coprocessors and Implementations
of NIST PQC Round3 KEM Algorithms
in Exynos2100
JONG-YEON PARK 1, YONG-HYUK MOON 2,3, (Member, IEEE), WONIL LEE1,
SUNG-HYUN KIM1, AND KOUICHI SAKURAI 4, (Member, IEEE)
1Samsung Electronics System LSI, Hwaseong-si, Gyeonggi-do 16677, South Korea
2Department of Computer Software, University of Science and Technology, Daejeon 34113, Republic of Korea
3Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
4Department of Informatics, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan

Corresponding author: Yong-Hyuk Moon (yhmoon@etri.re.kr)

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT, Ministry of Science and ICT) (No. 2021-0-00907, Development of Adaptive and Lightweight
Edge-Collaborative Analysis Technology for Enabling Proactively Immediate Response and Rapid Learning).

ABSTRACT Polynomial multiplication is one of the heaviest operations for a lattice-based public key
algorithm in Post-Quantum Cryptography (PQC). Many studies have been done to accelerate polynomial
multiplication with newly developed hardware accelerators or special CPU instructions. However, another
method utilizes previously implemented and commercial hardware accelerators for RSA/elliptic curve
cryptography (ECC). Reusing an existing hardware accelerator is advantageous, not only for the cost
benefit but also for the improvement in performance. In this case, the developer should adopt the most
efficient implementation method for the functions provided by a given legacy hardware accelerator. It is
difficult to find an optimized implementation for a given hardware accelerator because there are a variety
of methods, and each method depends on the functions provided by the given accelerator. In order to
solve the problem, we survey methods for polynomial multiplication using RSA/ECC coprocessors and
their application for Learning With Error (LWE)-based KEM algorithms of National Institute of Standards
and Technology (NIST) PQC round 3 candidates. We implement all known methods for polynomial
multiplication with RSA/ECC coprocessors in a platform, commercial mobile system-on-chip (SoC), the
Exynos2100 Smart Secure Platform (SSP). We present and analyze the simulation results for various legacy
hardware accelerators and give guidance for optimized implementation.

INDEX TERMS Polynomial multiplication, RSA/ECC coprocessor, Kronecker substitution, PQC,
post-quantum cryptography, Lattice-based cryptosystem.

I. INTRODUCTION
The emergence of quantum computers affects widely com-
mercialized encryption algorithms such as RSA and Elliptic
curve cryptography (ECC) algorithms, which have been used
for decades. Shor’s research [1] revealed that RSA and ECC
are no longer secure in quantum computing environments.
To prepare for these changes, the National Institute of

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

Standards and Technology (NIST) started Post-Quantum
Cryptography (PQC) standardization in 2016, and the can-
didates for the third round were selected in 2020 [3], [4].

One of the most-studied areas in which PQC candi-
date algorithms are created is lattice-based cryptography.
Among these algorithms, Learning With Error (LWE)-based
algorithms are often studied due to their efficiency [2].
Polynomial multiplication is one of the most important oper-
ations that constitute an LWE-based algorithm. Therefore,
many researchers are studying high-speed methods that use

2546 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1892-1698
https://orcid.org/0000-0002-6700-1070
https://orcid.org/0000-0003-4621-1674
https://orcid.org/0000-0001-5773-9517

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

FIGURE 1. Technical overview of researches related to polynomial multiplication.

TABLE 1. Comparison of three approaches for PQC implementation.

hardware or software to speed up an LWE-based algorithm
with various implementation techniques; see the software and
hardware implementation approach in Figure 1. The hard-
ware implementation platform that should be considered for
improving performance is ASIC or the field-programmable
gate array (FPGA). For software implementation, a proces-
sor based on ARM or Intel with instructions related to the
selected architecture are considered. After that, the best com-
bination is determined by selecting from among the final
techniques in Figure 1, which are to be discussed in this paper.

However, considering the long transition time to the new
PQC algorithms, utilizing the existing legacy hardware accel-
erator for current public key cryptography algorithms is a
reasonable approach due to its flexibility and ease of deploy-
ment: see the legacy hardware implementation approach in
Figure 1. There are many devices that have a large num-
ber of modular multiplication hardware accelerators for the
RSA/ECC algorithm because RSA and ECC are the most
popular algorithms for public key cryptography.We can com-
pare three approaches to implementing PQC algorithms; see
Table 1. Software implementation is a common and easy way
to realize algorithms. However, it is usually not proper for
embedded devices because it is very slow compared with

hardware-based implementation. We can also achieve a high
speed by making a specific PQC algorithm-dedicated hard-
ware accelerator. In this case, however, we have to spend a
considerable amount of time and money. In Table 1, legacy
hardware refers to the big number modular multiplication
hardware accelerators that are intended for the RSA/ECC
algorithm, and this approach is the main topic of this study.
Note that legacy hardware is used in many industries, includ-
ing the smart card business. Thus, the results of studies for
reusing legacy hardware have been published by research
engineers at companies and organizations in the smart card
business.

In addition to the advantages of this approach, there are
many things that we need to consider. The first is that it is
slower than using PQC dedicated hardware, but it is generally
faster than implementing the PQC algorithm with Software
alone. Therefore, it is considered quite appropriate to use
this approach if the speed with RSA/ECC coprocessor is
sufficiently high. The second is that we need to know it is dif-
ficult to use legacy hardware to implement all kinds of PQC
candidate algorithms. However, we can investigate which
algorithm are better to use. The third is that there are many
kinds of commercial legacy hardware, and a developer should
use a specific legacy hardware. The reason for mentioning
this is that the developer should adopt the most efficient
implementation method using the functions provided by the
chosen hardware. The performance differs according to the
legacy hardware in the actual implementation. The fourth is
that there are several well-known techniques for polynomial
multiplication using RSA/ECC coprocessors. In this paper,

VOLUME 10, 2022 2547

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

we discuss and research these four points, and we describe
our own implementation result and comparison using one
platform, the commercial mobile System-On-Chip (SoC)
Exynos2100 SSP [35]. In addition, we present and analyze
simulation results for various legacy hardware accelerators,
and we offer guidance for optimized implementation.

As we described, there are various legacy hardware accel-
erators for RSA/ECC implementation, and software develop-
ers should adopt the most efficient implementation method
within the functions provided by the given hardware. Possible
functions provided by a given legacy hardware are integer
operations, for example, multiplication, addition, subtraction,
shift, and reduction of big number, see category of legacy
hardware in Figure 1.

However, the functions that can be provided on a device
vary depending on the size of chips and scope of use, so all
commercial legacy hardware is different. The most time-
consuming operation for RSA/ECC operations is modular
integer multiplication with modular reduction, and it is gen-
erally the most widely mounted function. To maximize the
computational speed of RSA/ECC, a manufacturer imple-
ments modular multiplication with a hardware pipeline that is
as fast as possible. If the area allows for further improvement
in performance, addition, subtraction, shift operations are
provided optionally. The maximum size of the calculation
value provided also varies depending on the legacy hardware.
Therefore, the implementation method varies depending on
the specification of the provided size, even if the same kind
of functions can be used.

In order to reuse commercial legacy hardware, a key prob-
lem that must be solved is that it must be possible to perform
polynomial modular multiplication using integer modular
multiplication. To solve the problem, it should be possible
to perform polynomial modular multiplication by moving
the space of the polynomial operation to the integer opera-
tion. A mathematical approach called Kronecker substitution
(KS) [26], [59], which is a method for polynomial multiplica-
tion using integer computational multiplication is suggested.
This is the bridge technique in Figure 1. Variations of KS have
been studied by Harvey [5], Yaman et al. [6], Fateman [10],
and Fateman [10].

We intend to compare actual implementations according
to various techniques on a single platform and to present the
results. In addition, by simulating various legacy hardware
and comparing the results, we would like to help developers
choose the optimal method.
• Can a PQC candidate algorithm be implemented using
an RSA/ECC hardware accelerator?

• Which operations constituting the PQC candidate algo-
rithm can be implemented through the RSA/ECC hard-
ware accelerator?

• Which of the current PQC candidate algorithms can be
implemented using the RSA/ECC hardware accelerator?

• What would be the best way for developers who are
already using a commercial RSA/ECC hardware accel-
erator to implement a PQC candidate algorithm?

To answer the above questions, this paper consists of the
following: in Section II, the relation between polynomial
multiplication and integer multiplication is described, and
KS, a method of substituting polynomial multiplication with
integer multiplication, is described. In Section III, we explain
RSA/ECCCoprocessors for integer operations. In Section IV,
we describe Saber and Cryptographic Suite for Algebraic
Lattices (CRYSTALS) Kyber, which this study focuses on,
and we discuss the characteristics of the polynomial mul-
tiplication used in these two PQC candidate algorithms.
In Section V, we describe additional consideration for the
KS implementation. In Section VI, we describe well-known
techniques that are modifications of KS. Section VII shows
the performance results of the well-known techniques imple-
mented using the RSA/ECC hardware accelerator in Exynos
2100. In Section VIII, the simulation results according to var-
ious types of legacy hardware are shown. In Section IX, the
conclusions are described and future tasks are summarized.

II. RELATION BETWEEN POLYNOMIAL MULTIPLICATION
AND INTEGER MULTIPLICATION
A. MATHEMATICAL RELATIONS
Polynomial multiplication is basically different from integer
multiplication. The main difference is the carry-by-addition
of coefficients. The KSmethod [26] was introduced as a tech-
nique for reducing problems concerning multivariate polyno-
mials to the case of univariate polynomials by evaluating the
polynomial. By this technique, the multiplication in Z[x] can
be changed to multiplication in Z by evaluation. Schönhage
also introduced this property in his research [59]. KS is a
common way to perform modular multiplication in integer
arithmetic for polynomial multiplication. The main property
is described as below,

φ : Z[y]→ Z[y]/(B− y) (1)

A well-chosen B ∈ Z in (1) makes Z[y]/(B − y) iso-
morphic to Z and f (y) ∈ Z[y] is transformed to f (B). This
means a polynomial is transformed to an integer. As a result,
the relation between polynomial multiplication and integer
multiplication is an evaluation with a well-chosen parame-
ter B. This transformation is called ‘‘base-B clumping,’’ and
is also known as an evaluation by B. In the opposite direction,
it is called ‘‘lifting(φ−1),’’ as suggested by Bernstein [22].
We use these terms in later sections. The term ‘‘lifting’’ is
not just defined as the opposite direction of ‘‘clumping’’;
it actually means the transformation to a larger space that
includes the original space. This concept is based on eval-
uation homomorphism, which is a basic concept of abstract
algebra [34].

B. BASIC METHOD OF KS
Harvey introduced KS and its variant in [5]. For example,
given f (x) = 12x + 34 and g(x) = 56x + 78, we want to
know the polynomial product f (x) × g(x) = h(x). We know
the answer is h(x) = 672x2 + 2840x + 2652. To use inte-
ger multiplication instead of polynomial operation, we set

2548 VOLUME 10, 2022

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

B = 104. Thus, the result of clumping is φ(f (x)) = f (104) =
120034 and φ(g(x)) = g(104) = 560078. By equation (1),
φ(f (x) × g(x)) = φ(f (x)) × φ(g(x)) = f (104) × g(104) =
120034 × 560078 = 67228402652 = h(104), ‘‘672 || 2840
|| 2652.’’ Finally, by lifting, which is a reversal of φ, the
number in Z is transformed to h(x) = 672x2+2840x+2652.
This concept illustrates how to use an integer operator for
polynomial operation. An evaluation by ‘‘power of 10’’ is
not an arithmetic operation—indeed, there is no operation
for this, except extracting and storing the values on a proper
buffer by radix 104. For this operation in computers, we will
use the radix ‘‘power of 2.’’ The value of B is important for
the lifting. If B is not adequately large, this transformation
is not invertible. For example, B = 102, f (102) × g(102) =
h(102) = 7006652 is not directly converted to 67228402652.
So, we need to choose a double size of maximum coefficient
for B, which guarantees φ is invertible.

C. A KS VARIANT: KS2
An integer that is too large causes difficulties in the real-
world implementation of PQC. For example, in Saber, the
polynomial degree of a given ring is 256 and the coefficients
of the multiplicands are 13 bits and 3 bits. Thus, the output of
each operand by clumping is at least 6656 bits(256 × 13).
The scale of an RSA/ECC coprocessor does not normally
use 6656 bits, because the RSA key size generally ranges to
4096 bits, and a 2048-bit RSA is recommended until the year
2030 [27]–[29]. Indeed, many products have coprocessors
that support multiplication under about 4096 bits [23]–[25].
Thus, we need to reduce the size of the operation for PQC
polynomial multiplication. A simple example is given in Har-
vey [5], calledKS variant, e.g., ‘‘KS2.’’ There are several divi-
sion techniques, such as Number Theoretic Transform (NTT)
or Nussbaumer [30], [31] as shown below:

h(x) = xh0(x2)+ h1(x2) (2)

As we remember from the previous example, we need
h(104). In addition, h0(104) and h1(104) can be directly con-
verted to h(104). In other words, h1 and h2 are different
representations of h. By the equation (2), we obtain h(102) =
10h0(104)+h1(104) and h(−102) = −102h0(104)+h1(104).
From the two previous equations, we derive

h1(104) =
h(102)+ h(−102)

2
(3)

and

h0(104) =
h(102)− h(−102)

20
(4)

By (3) and (4), h(104) can be computed, and the final lifting
step is the same as the general technique that has already been
described in section II-B. The size is B = 102 instead of
B = 104. Therefore, the size of the integer for multiplication
after clumping is reduced to half. Finally, we can compute
the polynomial multiplication for Saber, which has 6656 bits,
using a 4096 bits multiplicator, because the size of each
polynomial is 6656/2 = 3328 bits.

III. RSA/ECC COPROCESSORS: HARDWARE FOR
INTEGER OPERATIONS
For devices that have limited processing power, such as
embedded secure elements, cryptographic operations need a
hardware accelerator to meet application and service transac-
tion performance requirements, for example, the transaction
flow of VISA card processing should be under 300 ms [17].
In order to meet these requirements more securely, symmetric
key algorithms are usually fully hardware based; we can
verify that most devices for financial purposes have sym-
metric algorithms with a semiconductor intellectual prop-
erty core (SIP core), denoted IP; see the common criteria
security targets of each device [18]. RSA or Elliptic Curve
Cryptography (ECC) are used for the digital signature in
many applications, but the algorithms are too large to be fully
implemented on hardware. However, software implementa-
tions have performance limitations even with a lightweight
ECC [58]. Therefore, only the most time consuming and
critical operations use the hardware accelerator, such as big
number arithmetic in the integer domain.

Because of the trade-off between chip size and perfor-
mance, the accelerator usually supports only core functions,
which are modular multiplication, addition, subtraction, and
barrel shifter, and so on. Generally speaking, addition and
subtraction require a small number of operations. Shift needs
a few more operations. Multiplication is a high-cost oper-
ation. One category of division operations, such as mod-
ular reduction, is a very high-cost integer operation. In a
hardware accelerator, modular reduction and other operations
can be combined. Modular addition is the addition and then
reduction of two integers. Modular addition and subtraction
are not high-cost operations because only one subtraction or
addition is required in the worst case of reduction. In contrast,
modular multiplication is a relatively more complex opera-
tion; modular multiplication is not a simple combination of
multiplication and division. The operational cost of reduction
is much greater than that of multiplication.

Many hardware security chips that support RSA/ECC, i.e.,
NXP [23], Infineon [24], Espressif [25] and Samsung [18],
already have the accelerator for the modular multiplication.
Those devices have optional adders and shifters. In addition,
the pros and cons of the implementation are different depend-
ing on the type of hardware the device has. We organize
the basic hardware that is helpful for the existing public
key operation into the following categories and analyze the
performance of the application with the latest technique using
KS which is described in section VI.
• ‘‘Modular multiplication’’ is utilized in devices as
default.

• ‘‘Add/Subtraction’’ is optional.
• ‘‘Shift’’ is optional.

Therefore, there are four combinations of hardware appli-
cation. However, an ECC-dedicated architecture also exists
for Transport Layger Security(TLS), called the TLS copro-
cessor [40], [41]. The relevant instruction is modular addi-
tion, subtraction, and multiplication by prime number p up

VOLUME 10, 2022 2549

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

TABLE 2. (Algorithm 1): Kyber.cpa.enc (Pseudo Code, Structure overview).

to 256 bits, SHA2-256 [47], and AES-128,256 [46]. We can
find some implementations in Banerjee et al. [39] for
CRYSTALS Kyber [14], FrodoKEM [43], ThreeBears [44],
SPHINCS+ [45] and SIKE [42] with ECC coprocessor.
In particular, the ECC-based algorithm SIKE is well-adapted
to the ECC coprocessor. However, the limitations of the
legacy-only ECC coprocessor is that the size of multiplication
is small, so the big arithmetic of ring LWE-based candidates
is not suitable. Thus, we do not deal with ECC dedicated
coprocessors in this study.

IV. LWE-BASED PQC ALGORITHMS
A. CRYSTALS KYBER
Kyber is part of CRYSTALS along with the signature scheme
Dilithium [14], [16]. Kyber is an IND-CCA2-secure Key
Encapsulation Mechanism (KEM) whose mathematics basis
is the LWE problem in the module lattices (Module-LWE)
problem by Langlois et al. [12]). The mathematical carrier is
the polynomial ring Zq[X]/(X256

+ 1) with q = 3229 and a
256 coefficient polynomial. Kyber512 uses k = 2, Kyber768
uses k= 3, and Kyber1024 uses k = 4, which are the module
sizes for each security level, as shown in Algorithm 1. The
most expensive operations are multiplication over a vector or
amatrix of polynomials, for examplematrixA× vector s. This
algorithm uses NTT for the polynomial multiplication [15].
There are several back and forth transformations between
domains, and the calculation complexity and the size trade-
offs have to be considered carefully in the algorithm, for
example, matrix A is directly sampled in the NTT domain,
and public key t = (A× s+ e) is in the NTT domain.
Algorithm 1 in Table 2, is pseudocode of the Kyber encryp-

tion algorithm. We refer to the algorithm that is based on
Albrecht et al. [7] without the NTT domain. χn is a Centered
Binomial Distribution (CBD) with an n-degree polynomial
shape. The output bit of CBD depends on parameters η1, η2.
The value of η that is the maxium absolute value of χ is
derived from the standard deviation where 0 is the mean.
According to the parameters of Round 3 Kyber, η1 is 3 or 2,
and η2 is always 2. Thus, the output of the CBD is at most
3 bits. The specification of Kyber submitted to Round 3 of
NIST does not exactly followAlgorithm 1 due to the adoption
of NTT, as we explained above.

Algorithm 2 in Table 3 is pseudocode of Kyber with
an encryption algorithm based on NTT. This is the actual

TABLE 3. (Algorithm 2): Kyber.cpa.enc (Pseudo Code, submitted
algorithm in Round 3).

TABLE 4. (Algorithm 3): Saber.cpa.enc (Pseudo Code).

algorithm that was submitted to NIST Round 3. The main
advantage is that the polynomial multiplication can operate
in O(n(longn)). Moreover, to avoid conversion to the NTT
domain, matrix A is set in NTT domain coefficients after
random uniform sampling; see step 2. The operation is well-
defined because any coefficient has a one-to-one correspon-
dence with the normal domain coefficient. In other words,
the NTT domain has the same sampling space as the nor-
mal domain. However, the algorithm must fix the twiddle
factors for the NTT (or inverse NTT) operation, which costs
additional memory space. Moreover, the algorithm for A
matrix generation reduces flexibility and may cause a lack
of compatibility in future implementations.

B. SABER
The Saber is based on the Module Learning With Round-
ing (MLWR) problem, which is a variant of the LWE
problem [13]. The algorithm utilizes a module structure,
as introduced by Langlois et al. [12]. The polynomial ring
is Zq[X]/(X256

+ 1) with q = 213. We do not need modu-
lar arithmetic, as modular reduction can be done by simple
shifting because it uses a 2n modulus, and the rounding
operation is also easily done by chopping. LightSaber, Saber,
and FireSaber consist of 2×2, 3×3, and 4×4 modules (poly-
matrix) with a 256 coefficient polynomial for each module.

Algorithm 3 in Table 4, is a pseudo code of Saber encryp-
tion algorithm. We refer to the algorithm from the official
Saber documentation [13]. l can be 2, 3 or 4, which is
the module size of each security level. The main difference
between Saber and CRYSTALS Kyber is shown below.
• There is no error addition presented in e1, e2 of
steps 4 and 5 in Algorithm 1 and steps 5 and 6 in

2550 VOLUME 10, 2022

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

Algorithm 2. Instead of modification of the value by
error, Saber uses shift (rounding) of the variables in
step 5 and 7 in Algorithm 3. The advantage of this prop-
erty does not need to be mentioned in this paper.

• This algorithm is not an NTT-based scheme. Saber uses
pure polynomial multiplication, which helps the algo-
rithm utilize the RSA/ECC coprocessor directly, and
this leads us to various efficient methods that can be
used for polynomial operations, in contrast to Kyber and
Dilithium, which propose algorithms with NTT for the
polynomial multiplication.

V. ADDITIONAL CONSIDERATIONS FOR
KS IMPLEMENTATIONS
A. GENERAL PRE-PROCESSING
To apply polynomial arithmetic with the RSA/ECC copro-
cessor, additional preprocessing is inevitable. In the above
example f (x) = 12x + 34 is stored in two memory spaces,
e.g., F0 = 12 and F1 = 34. However, after clumping, the
integer is 120034. Even this simple transformation, like pro-
ducing 120034 fromF0 andF1, requires additional operations
that cannot be overlooked e.g., the save, store, and bit shift
operations. KS2 needs more precomputing than KS1, and
each method has its own preprocessing. In real-world imple-
mentation, these additional ‘‘non-computing steps’’ should be
counted.

B. PREPROCESSING FOR INTEGER REDUCTION
Montgomery or Barrett methods are used in general for effi-
cient modular reduction [19], [20]. Each method requires
precomputing for multiplication, e.g., R = bm mod n in the
Montgomery method to convert to the Montgomery domain,
bm
n where b is the radix of operation [21], which is normally
a power of 2. As the modular value for PQC is fixed and
m is a value where bm > n, we do not need to consider
general precomputing methods for unknown modular values.
In addition, some RSA/ECC coprocessors offer precomput-
ing by hardware. Montgomery multiplication is conducted as
below,

Mont(A,B)← ABR−1 (5)

Thus, if we need the value A × B, there are two choices:
computing AR first and then performing (5), or (5) and then
Mont(AR−1,R2). AR is also computed using Mont(A,R2).
Furthermore, one additional multiplication is required as a
default when Montgomery multiplication is used.

C. GENERAL POST-PROCESSING
After integer multiplication, the value must be recovered in
the polynomial form. In general KS, final lifting is required.
For example, 67228402652 is not the desired form. Each
coefficient of the polynomial should be extracted, such as
h(x) = 672x2 + 2840x + 2652. One of the differences
between polynomial multiplication and integer multiplication
is the way negative values are dealt with. Coefficients in

polynomials have their own independent signs. However, in
the integer world, there is no independent coefficient, so we
have to recover the real signed values for each coefficient.
For example, f (x) = 5x3 − 2x2 + 3x + 1 and f (10) =
5× 1000− 2× 100+ 3× 10+ 1. The output is represented
as 4831, but the desired result is 52̂31 (the hat denotes a
negative number). Therefore, we need a reference number to
decide whether a number is negative or positive. For example,
if (x > 5) then x ← (10 − x). The 8 is changed to 2, the
borrow from 4 will be added, and finally 4 becomes 5. Thus,
one can know that 4831 is actually 52̂31. This post processing
impacts the overall performance because one must check the
size of all coefficients, change values, and add carry bits.

VI. KNOWN METHODS FOR POLYNOMIAL
MULTIPLICATION WITH RSA/ECC
COPROCESSORS
In this section, we explain three techniques that use different
strategies for polynomial multiplication based on KS. To the
best of our knowledge, these three techniques cover for most
of the related studies until now. The techniques are verified
by real implementation and simulation.

A. DIVISION AND MULTIPLICATION (DM)
This section describes the research presented by
Albrecht et al. [7]. The main contribution of this paper
is using KS combined with low-degree polynomials, using
Karatsuba-based polynomial multiplication and KS1 and
KS2 on SLE78 [24]. The asymmetric coprocessor on SLE78
has an operator of approximately 2048 bits. The main target
algorithm is Kyber-768, which originally included polyno-
mial multiplication by NTT [31], [48] in submitted algorithm
in NIST round 3. Kyber does not use pure polynomial multi-
plication, which has already been explained in SectionIV-A.
The size of the polynomial for KS1 is at least 5376 bits
for multiplication in Fq[x]/(x256 + 1). Thus, we need the
polynomial to use a small operator hardware accelerator.
In order to divide the polynomial, Schönhage’s method is
used. This technique is quite useful, as many theories are
based on it e.g., KS2, NTT, Nussbaumer, and many other
methods stated in D.J. Bernstein [22].

1) DIVISION POLYNOMIAL BY SCHÖNHAGE’S TECHNIQUE
Schönhage’s technique is a method for separating polynomi-
als using the transformation shown below,

9 : Z[X]/(Xn + 1)→ (Z[Y]/(Y n/t + 1)[X]/(Y − X t) (6)

for example, f (x) = 12 + 34x + 56x2 + 78x3 ∈ Z[X]/
(X4
+ 1) is transformed with t = 2, y = x2, f (x, y) =

(12 + 56y) + (34 + 78y)x in (Z[X]/(Y 2
+ 1)[x]/(Y − X2).

Thus, the multiplication of the polynomial is divided into a
two-parts coefficient polynomial about y in Z[Y]/(Y 2

+ 1).
The number of multiplications for 2-polynomials is 22 = 4;
in general, the number of multiplications is t2.

VOLUME 10, 2022 2551

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

2) REDUCTION IN INTEGER DOMAIN
The original KS method is based on general polynomial
multiplication. However, polynomial operation in ring LWE
includes modular reduction by a given polynomial. The can-
didate algorithms in NIST Round 3 use x256 + 1 as the
polynomial for reduction. Indeed, one could easily compute
the polynomial reduction after getting output of polynomial
degree 512, which is h′(x) ← f (x) × g(x)in Z[x], and then,
h(x) ← h′(x) mod (x256 + 1). The cost of this operation
can be considered not to be high because the polynomial
x256 + 1 is so efficient, as only 256 small coefficient sub-
tractions are required. However, subtraction by Software can
have very high-cost compared with that of a hardware copro-
cessor. Albrecht et al. [7] use modular multiplication using an
RSA coprocessor by evaluating 2l of KS f (2l) × g(2l) mod
(2l×256 + 1).

3) COMBINATION WITH KARATSUBA TECHNIQUE
After polynomial separation, we can use the Karatsuba mul-
tiplication quoted in D.J. Bernstein [22]. It is a well-known
technique with a complexity according to the number of
multiplications 3log2t . (Ax+B)× (Cx+D) = ACx2+ (AD+
BC)x + BD, concluding with four multiplications and three
additions. In order to reduce the number of multiplications,
we computeA+B andC+Dfirst, andP = (A+B)×(C+D) =
AC + BC + AD + BD. Finally, (AD + BC) is computed by
P with one subtraction, so only three multiplications, which
are AC , BD and P, are required and two additional additions
are needed. This process can be done recursively with t > 2,
and then the number of multiplications is converged to 3log2t .

4) COMBINATION WITH TOOM COOK TECHNIQUE
Toom-Cook is one of the most widely used algorithm for
polynomial or integer multiplication [11]. Depending on the
depth of the operation, the Toom–Cook method can be gen-
eralized from Toom–Cook 2 to Toom–Cook (n). Regardless
of the size of n, polynomial multiplication is calculated using
the following three steps. f (x)× g(x) = h(x),

1) Evaluation—The polynomials f (x), g(x) are converted
into a constant by evaluating g(1), g(−1), f (−1), g(−1),
and so on with other integers, which is easily computed
and is denoted by f (bi), g(bi), where i is an index.

2) Multiplication—By multiplying f (bi)× g(bi) = h(bi).
3) Interpolation—h(x) is finally recovered with h(bi).

In order to recover h(x) with h(bi) by interpolation effi-
ciently, one can use matrix arithmetic. Because interpolation
is the reverse of evaluation, the matrix for interpolation is
computed using the inverse of the evaluation matrix. The
input of the interpolation matrix is h(bi) and the output of
the matrix is all coefficients of h(x). Toom–Cook 2 divides
f (x) and g(x) into two large polynomials, and also uses
the 9 function of Schönhage’s technique; see Equation(6).
F(x) = a0 + a1x + a2x2 + . . . + an−1xn−1, can be sepa-
rated into F(x) = (a1 + a3x2 + a5x4 . . . + an−2xn−2)x +
(a0 + a2x2 + a4x4 + . . . + an−2xn−2), and then changed by

F(x, y) = (a1+a3y+a5y2 . . .+an−2y(n−2)/2)x +(a0+a2y+
. . . + an−2y(n−2)/2) where x2 = y. In this way, given F(x)
and G(x), we can get F(x, y) = xf1(y) + f0(y) and G(x, y) =
xg1(y)+g0(y) where f0 and g0 are separated polynomials with
even indexed coefficients, and f1 and g1 have an odd index.
If two polynomials F(x, y) andG(x, y) for x with degree 1 are
multiplied, the product H (x, y) becomes a cubic polynomial
for x. Finally, we obtain H (x, y) = f0g0 + (f1g0 + f0g1)x +
(f1g1)x2. In the same way, where x4 = y, Toom–Cook 4
is applied. For example, in order to obtain multiplication of
the two 255-degree polynomials, 255-degree polynomial is
divided into four 63-degree polynomial, and the operation of
3-degree polynomials with coefficient which is a 63-degrees
polynomial is performed. The product of two cubic poly-
nomials is a sixth-order polynomial, so there are a total of
seven coefficients. There must be seven output coefficients.
Therefore, Toom–Cook 4 requires 7 evaluations and multi-
plications for each polynomial. Toom–Cook 2 requires three
polynomial operations with degree m/2, where the original
polynomial degree ism. Toom–Cook 3 requires 5 polynomial
operationswith degreem/3, Toom–Cook 4 requires 7 polyno-
mial operations with degreem/4 and Toom–Cook(n) requires
2n− 1 polynomial operations with degree m/n.

5) REAL-WORLD IMPLEMENTATION OF DIVISION
AND MULTIPLICATION (DM)
From the beginning to the end, until we obtain the output of
polynomial multiplication, the operation steps are as shown
below,
(A) Polynomial Separation of k polynomials
(B) Evaluation by 2l for KS
(C) Polynomial multiplication by hardware
(D) Post-Processing

Step (A) is regarded not to be an even operation,
and Albrecht et al. [7] calls step (B) SNORT, and step(D)
SNEEZE. In a real-world implementation, the process in
detail is as below,

(A) Polynomial separation of k polynomials
- Changing the order of polynomial coefficients using

equation (6). There is no arithmetic operation in this step.
(B) Evaluation by 2l for KS
- This step can be ignored in the operation if each coef-

ficient is stored in a 32 bit array. This is regarded as the
output the evaluation l = 232. By the same logic, l is chosen
according to the power of 2 that is the basic size of the
computation, such as 28 or 216, which are an unsigned char
and an unsigned short.

(C) Polynomial multiplication by hardware
- If Karatsuba is used, addition operations are required

before the evaluation. The first number moves to the
Montgomery domain that is described in Section V-B,
f (232)R← f (232).

- Multiplication h(232) ← Mont(f (232)R, g(232)): This
step must be performed by the hardware.

- The number of multiplications depend on DS, Karatsuba,
or Toom–Cook.

2552 VOLUME 10, 2022

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

(D) Post-Processing
- Addition and subtraction of multiplication outputs. The

number of addition and subtraction operations depends on the
method, e.g., Karatsuba or normal DM.

- Composite array of addition outputs for single h(x). This
step is the reverse of (A).

- Final reduction by prime field (in Kyber and Dilithium
only).

B. Kronecker+
Kronecker+ is introduced by Bos et al. [8]. This method
focuses on minimizing the number of separations with a
generalization of KS2.

1) GENERALIZATION OF KS2
According to VI-A, the main purpose of these techniques
is to reduce the size of the polynomial. However, a smaller
polynomial causes a greater number of multiplications. The
original variant of KS, which is KS2 (see II-B), is a smart
way to reduce the size of the multiplication by evaluating
a smaller number, but KS2 does not reduce the size of the
polynomial recursively. In other words, KS2 has nomore sep-
aration compared with DM which can separate polynomial
more, but Kronecker+ suggests a method or reducing the
multiplicand to use multiplication by generalization, which
is of the techniques of KS2 [8]. On the other hand, KS2 is
based on 2-way division, as shown below,

f (x) = f0(x2)+ xf1(x2) (7)

f (10) = f0(102)+ 10× f1(102) (8)

If one more split is required, it is possible with ±
√
10

and ±
√
10i of f0 and f1. However, when t = 4, equation

(7) expands equation (9) by Schönhage’s technique. The
background will be explained in the next section.

f (x) = f0(x4)+ xf1(x4)+ x2f2(x4)+ x3f (x4) (9)

Then the evaluation of the polynomial by ‘10’ in the pre-
vious example for KS2 is,

f (10) = f0(104)+ 10f1(104)+ 102f2(104)+ 103f (104)

(10)

To use KS2, there are four different polynomials for point-
wise multiplication. Two polynomials, f (10) and f (−10),
obviously exist as below,

f (10) = f0(104)+ 10f1(104)+ 102f2(104)+ 103f (104)

(11)

f (−10) = f0((−10)4)+−10f1((−10)4)

+((−10)2)f2((−10)4)+ ((−10)3)f ((−10)4)

= f0(104)− 10f1(104)+ 102f2(104)− 103f (−104)

(12)

We would like to know f (104), so we need two more
equations. Thus, we need four values for x = 104, which are

10,−10, 10i,−10i. However, we do not have i in Z. In order
to compute the evaluation of i, Bos et al. [8] used Nuss-
baumer’s technique, which is quoted in Bernstein [22]; this
technique is called Kronecker+. By this technique, we can
split a polynomial into smaller segments than with KS2.
KS2 is a 2-way example of Kronecker+, so Kronecker+ is
generalization of KS2.

2) NUSSBAUMER
For the description of Nussbaumer’s technique, we recall
equation (6).

9 : Z[X]/(Xn + 1)→ (Z[Y]/(Y n/t + 1)[X]/(Y − X t) (13)

In CRYSTALS Kyber, Dilithium, and Saber,
Z[X]/(X256

+ 1) is used for reduction. It can be rewritten as
Z[Y]/(Y 256/t

+ 1)[X]/(Y − X t). This means that the degree
of the equation for Y is less than 256/t , and the degree of the
equation for X is less than t . The degree of the multiplication
of two polynomials in Z[Y]/(Y 256/t

+ 1)[X]/(Y −X t) is less
than 2t about x. Equation (13) can be naturally lifted to

Z[Y]/(Y 256/t
+ 1)[X]/(X2t

− 1) (14)

If we need to conduct one multiplication of two polyno-
mials in Z[Y]/(Y n/t + 1)[X], the space can be lifted again
(Y 256/t

+ 1)[X] without the reduction part. By the defini-
tion of general homomorphism [34], we can do an eval-
uation by xi for 9(f (x)) × 9(g(x)) = 9(h(x)), such as
9(f (xi)) × 9(g(xi)) = 9(h(xi)) where xi ∈ Z[Y]/(Y n/t +
1)[X], by the 2t evaluation of 9(g(xi)) and 9(f (xi)) and
pointwise multiplications. One can make 2t equations, such
as {9(h(x0)), 9(h(x1)), 9(h(x2)), . . . , 9(h(x2t−1))}. Now,
by linear transformation of the system of equations, one can
compute 9(h(x)). On the other hand, to simplify the system
of equations, the value of the evaluation is chosen by the
primitive 2t-th root of unity with the property xn = −1 and
yn/t = −1.We know (yn/t

2
)2t = 1, so yn/t

2
is the primitive 2t-

th root of unity, denoted yn/t
2
= ζ2t , ζ2t2t = 1 and ζ2t t = −1,

where ζn is primitive n-th root of unity.
The evaluation of 9(f) and 9(g) with the root of unity

ζ i can be carried out using the Cooley-Tukey butterfly algo-
rithm [31]. The total number of operations for one polyno-
mial multiplication by Nussbaumer is 2t for polynomials of
degree (n/t), initial evaluation and final evaluation that is the
same algorithm to initial evaluation. By the evaluation of the
primitive root (which is also polynomial with y) can split a
given ring.

For example, n = 8, t = 2, y = x2, 9(f (x)) = y3 − 3y −
3 + (−3y3 − 2y2 − y)x, 9(f (ζ4)) = 9(f (y2)) = y3 − 3y −
3+ (−3y3 − 2y2 − y)y2 = y3 − 3y− 3+ (−3y5 − 2y4 − y3).
9(f (ζ4)) = y3 − 3y− 3+ (3y+ 2− y3) = −1 By y4 = −1.
It is a very lucky case. The output is in Z[Y]/(Y n/t + 1)[X],
so this reduces the original polynomial to half degree.

VOLUME 10, 2022 2553

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

3) COMBINATION OF NUSSBAUMER AND
GENERALIZATION OF KS2
Equation (14) expands the space of the actual area; that is
Z[X]/(Xn + 1) ∼= Z[Y]/(Y n/t + 1)[X]/(X t − 1). If there
are t elements Z[Y]/(Y n/t + 1) that satisfyX t + 1 = 0, t
equations evaluated by the elements can be utilized in t point-
wise multiplications, like NTT. However, no element exists
in Z[Y]/(Y n/t + 1) for X t − 1 = 0. To solve this limitation,
Kronecker+ does not evaluate the polynomial using the coef-
ficients in Z[Y]/(Y n/t + 1). In other words, an evaluation by
the primitive wt root of unity, (ζ2t0, ζ2t1, ζ2t2, . . . , ζ2t2t−1),
is utilized for Nussbaumer, but the primitive t root of
unity, (ζ2t0, ζt1, ζt2, . . . , ζt t−1), is finally used to evaluate
the polynomial in Kronecker+. Those elements all satisfy
X t/2 = −1 due to the multiplication by x.

We can describe KS2 in a different way. f (x) = f0(x2) +
xf1(x2) is re-written by Schönhage f (x) = f0(y) + xf1(y) ∈
(Y n/2+ 1)[X]/(X2

− Y), and ζt = yn/2 is primitive 2-nd root
of unity. Thus, the elements for evaluation are (xζ20, xζ21).
Therefore f (xζ20) = f (x) and f (xζ21) = f (−x) are required
for KS2. Now, we can use KS alone, which is exactly KS2
(See Section II-B).
For one more split from KS2, denote For 4-way

separation, the domain of operation is (Y n/4 + 1)[X]/
(X4
− Y). A shape of element is above equation (9), and

the primitive 4-th root of unity is ζ4 = yn/16. We evalu-
ate f (x) using (x, xζ41, xζ42, xζ43). We obtain four outputs,
f (x), f (xζ41), f (−x) and f (xζ43). Now ζ4

2
= −1, so ζ4 is

regarded as imaginary number i, and consider the example
of evaluation by 10. Equation (8) has four results of evalu-
ation, e.g., f (10), f (10ζ4), f (−10) and f (−10ζ4). f (10ζ4) =
f0(104)+10ζ4f1(104)−102f2(104)−103ζ43f3(104) by x = y4.
Note that the evaluation in (Y n/4+1)[X]/(X4

−Y) bymapping
X ← 10ζ4 is different from the evaluation in Z[X]/(Xn+ 1).
The final mapping is X ← 10yn/16, Y ← 104. f (10ζ4) =

f (10yn/16) = f0(104) + 10 × 104n/16f1(104) − 102 ×
f2(104)−103×(104n/16)

3
f3(104). Note that (104n/16)

2
= −1,

so (104n/16)
2
+ 1 = 0. Thus, if an RSA/ECC coprocessor

with modular reduction is used for the algorithm, one can use
reduction by (104n/16)

2
+ 1. This means the evaluation of the

polynomial can be done with Z[X]/(Xn + 1).

4) REAL-WORLD IMPLEMENTATION OF Kronecker+
Table 5 describes how to use Kronecker+ from the beginning
to the end, until we obtain the output of polynomial multipli-
cation. The operation steps are below.
(A) Evaluation (SNORT in [7]). This is step 1 in

Algorithm 4.
(B) Polynomial multiplication by hardware. This is step 2

in Algorithm 4.
(C) Post-processing. This is steps 3 and 4 in Algorithm 4.
In a real-world implementation, the process in detail would

be as shown below,
(A) Evaluation by 2l for KS
- This is also considered evaluation by 2l , but unlike

DM [7], it needs t different type of evaluations. It is not

TABLE 5. (Algorithm 4): Pseudo-algorithm of Kronecker+.

neglect able time-consumption. Additional consideration of
Kronecker+ is the size after polynomial evaluation. This is
because the Bos et al. [8] use evaluation byMi = 22iln/t

2
·2l/t

where f (x) =
∑n−1

i=0 fiX
i.

This is also considered evaluation by 2l , but unlike DM [7],
it needs t different types of evaluations. The time con-
sumption is not negligible. An additional consideration of
Kronecker+ is the size after polynomial evaluation. This is
because Bos et al. [8] used evaluation by Mi = 22iln/t

2
· 2l/t

where f (x) =
∑n−1

i=0 fiX
i. - Therefore, additional reduction is

required. One reduction is replaced by one subtraction.
(B) Polynomial multiplication by hardware
- The first number moves to the Montgomery domain,

as described in Section V-B. f (Mi)R← f (Mi).
- Pointwisemultiplication, h(Mi)← Mont(f (Mi)R, g(Mi)).

This is the same as DM.
(C) Post-Processing
- Recombination for h(x). This is step 3 of Algorithm

4. Every element in the summation
∑t−1

j=0 2
2i(t−j)ln/th(Mj) is

multiple of t ·2il/t , which seems quite complicated compared
with KS2. The troublesome point is that it also causes many
shift operations. If numerator is calculated at the first and we
start to divide by the denominator, then the total number of
operations is extremely high. Therefore, to avoid this situa-
tion, before each addition of numerator, we shift by t · 2il/t

and add with modular reduction by 2ln/t + 1.
- Processing negative values for the final output.
- Final reduction by the prime field (in Kyber andDilithium

only)

C. SMALL COEFFICIENT MULTIPLICATION
Greuet et al. [9] proposed two specific optimizations of poly-
nomial multiplication when one of the operands has coef-
ficients close to 0, namely Kronecker Substitution Variant
using small coefficients (KSV) and Shift&Add. In particular,
Greuet et al. [9] proposed optimization for embedded devices
that have an RSA/ECC coprocessor that provides efficient
large-integer arithmetic.

1) KSV
Suppose there are two polynomials, f (x) and g(x). Let g(x) =
g2x2 + g1x + g0. Here, we focus on the case where gi is

2554 VOLUME 10, 2022

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

a very small coefficient. Then,f (x)g(x) = f (x)g2x2 +
f (x)g1x + f (x)g0. Let f (x) = 8x2 + 3x + 2 and g(x) =
5x2 + 4x + 1. Then, f (102)g(102) = f (102)g2(102)2 +
f (102)g1(102)+ f (102)g0 = f (102)× 5× (102)2 + f (102)×
4 × (102) + f (102) × 1 = 80302 × 5 × (102)2+ 80302 ×
4 × (102) + 80302 × 1 = 4015100000 + 32120800 +
80302 = 4047301102. The resulting polynomial is recovered
with radix conversion like in classical KS. The multiplication
of two large integers is replaced with three multiplications
of a large integer by a small coefficient and some additions
and shifts. This technique can be used when we consider
the multiplication of a polynomial with small coefficients.
Such multiplications are used in some lattice-based KEM,
CRYSTALS Kyber and Saber.

2) SHIFT&ADD
There is no need to perform multiplication in Shift&Add.
It relies only on additions and left-shifts. This technique is
of interest when one of the operands has small coefficients.
The basic idea is explained in the following example.

Let f (x) = 9x2 + 8x + 3 and g(x) = g2x2 + g1x + g0 =
2x2 − 1. Let r = 0. The computation of f (x)g(x) is done as
follow: Step 1. Evaluate f : f (103) = 9008003 Step 2. Since
g2 = 2 :
1. r ← r + f (103)× (103)2

2. r ← r + f (103)× (103)2

Step 3. Since g1 = 0, do nothing;
Step 4. Since g0 = −1, r ← r − f (103)× (103)0;
This leads to

f (103)g(103) = 2f (103)(103)2 − f (103)

= 2(9008003× (103)2)− 9008003

= 18015996991997

By radix conversion,

f (x)g(x) = 18x4 + (15+ 1)x3 − (103 − (996+ 1))x2

−(103 − (991+ 1))x − (103 − 997)

= 18x4 + 16x3 − 3x2 − 8x − 3.

Greuet et al. [9] also show practical results to compare
the above two methods using Kyber and Saber. Between
KS variants and Shift&Add, we cannot say one is always
more efficient that the others. However, in the case of
Kyber512R1, KSV is more efficient than Shift&Add. In the
case of Kyber1024R1 and KyberR2, Shift&Add is more
efficient than KSV. We give only the simulation results for
the hardware barrel shifter and adder. We do not implement
polynomial multiplication with this method for the reasons
given below.

1) In our environment, the multiplication of small variables
and large variables is equal to the multiplication of two large
variables. Therefore, KSV offers no advantage.

2) There is no barrel shifter in our environment, so we
cannot take advantage of the ‘‘shift and add’’ technique.
Actually, the shift operation is very slow for big number
arithmetic. Nevertheless, this technique can be applicable to

an environment that has a hardware barrel shifter and adder,
but no hardware modular multiplication operator.

VII. IMPLEMENTATION OF MULTIPLICATION
ON Exynos2100 SSP
Exynos2100 is a SoC for Mobile phones [36]. It contains
a security module for cryptographic operations, which is
called Strong Box [35] and SSP [56], [57]. It has functions
for asymmetric cryptography RSA, ECC, which is a mod-
ular multiplication based on Montgomery reduction up to
4096 bits.

In this environment, we use hardware modules such as
modular multiplication by Montgomery reduction and addi-
tion, and subtraction up to 512 bits only for ECC. The
addition and subtraction hardware does not help big opera-
tions because hardware operations need extra data relay for
hardware control. It doesn’t have a barrel shifter. Therefore,
we use only modular multiplication with 4096 bits maximum.

Finally, there are three meaningful hardware conditions
for our research, the first is the big addition and subtraction
operator, the second is the barrel shift operator, and the third
is the modular multiplication operator. Our environment is
satisfactory with only the third condition, and we also dis-
cuss other conditions in the remaining sections. We imple-
ment division and multiplication (DM), Karatsuba as quoted
in Albrecht et al. [7], and Kronecker+ by Bos et al. [8] by
2-way separation and 4-way separation. In our environment,
a 2-way split works sufficiently, but we give an additional
prospect of more splitting with the result of 4-way separation.

More separations such as 8-way and 16-way are not prac-
tical in any environment for two reasons. Firstly, as of today,
we expect that commercial devices with RSA/ECC copro-
cessors have a modular multiplication operator of more than
2048 bits. Secondly, if an operator for less than 2048 bits
multiplication is used in some environments, there is no
remarkable advantage compared to the full implementation
of Software multiplication. The compiler is ARM compiler
version 6, and optimization -O0 because speed optimization
removes the side channel attack countermeasures such as
dummy operations, duplication code, etc. Furthermore, we do
not choose code optimization by compiler, as countermea-
sures should not be deleted unintentionally.

The number of clock cycles in the following experiments
is based on the external clock, so it is not estimated by
clock cycles of operation in Exynos2100 SSP directly. The
operation clock for the multiplication is secret hardware IP
information. It gives a relative estimation of the speed of
operations.

A. ADDITIONAL CONSIDERATIONS OF IMPLEMENTATION
1) PREPROCESSING FOR MONTGOMERY REDUCTION
In our environment, the hardware uses Montgomery multipli-
cation. For Montgomery reduction, the inputs are moved to
the Montgomery domain. The constant for the Montgomery
domain,R, is a form of 2m, andm is a constant that depends on

VOLUME 10, 2022 2555

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

TABLE 6. Number of clock cycles for DM [7] by 2-way
separation(Exynos2100).

the hardware specification. Thus, for KS, A×2m mod 2n+1,
where A < 2n + 1, is carried out by shift and subtraction.
If m is a multiple of l, which is the Kronecker parameter
for evaluation (see Algorithm 4), the rotation of the index is
replaced by shift. For example, the shift of 32bits does not
need to be calculated with ‘unsigned int’ variable. This can
be done with index-change of the array.

2) MODULAR REDUCTION OF COEFFICIENTS
For the implementation of the PQC algorithm, the domain
of each operation is different for each algorithm. In Saber,
modular reduction by 213 is removable because the com-
puter operates variables over a power of 2, for example
16bits(short) or 32bits(int). However, Kyber needs a final
reduction by q of Kyber parameters. This additional operation
affects the overall operation time, but it is implemented only
by software, we do not cover its implementation.

B. RESULT OF MULTIPLICATION
In this section, we present the result of DM in Section VI-A
and Kronecker+ in Section VI-B. We have explained the rea-
sonwhywe do not implement small coefficientmultiplication
(see Section VI-C.).

Table 6 shows the result for the number of clock cycles
of DM [7] by 2-way separation. The Kronecker parameter l
is set to 32. Theoretically, we can choose the parameter
l > 26 in Saber and Kyber. However, a parameter with
32 bits is small enough to operate a variable that is less
than 4096 bits with 2-way separation. If we choose l = 26,
this also requires 2-way separation without the advantage
for operation complexity. There is one more advantage: the
evaluation by 232 actually needs no operation, as it’s the basic
data size (unsigned int), and the polynomial shift of this result
does not require a barrel shifter because changing the index is
substituted for shifting by 32 bits. Pointwise multiplication in
Table 6 means polynomial multiplication by KS. In this case,
there are four polynomial multiplications to be executed.

Table 7 shows a detailed analysis of pointwise multipli-
cation in Table 6. This result does not contain the number of
clock cycles for the function call. For multiplication, we need
an additional data copy operation as well as hardware multi-
plication inZ itself. It’s over 15% in pointwise multiplication.
Our environment does not have a Direct Memory Access
block (DMA) [37]. If there is a DMA in the environment, the

TABLE 7. Number of clock cycles of each steps in a ‘‘4096 bits Pointwise
multiplication’’(Exynos2100).

TABLE 8. Number of clock cycles of each steps for Karatsuba [7] by 2-way
separation(Exynos2100).

TABLE 9. Number of clock cycles of each steps for DM [7] by 4-way
separation(Exynos2100 SSP).

cost will be reduced. However, DMA involves many security
concerns and leakages [38], so it may not be an advantage.
Themove to theMontgomery domain also occupies over 15%
in pointwise multiplication. For optimization of the opera-
tions, we apply the technique described in Section VII-A1.
Processing negative signs is also a main post-processing after
KS, so we explain this in Section V-C. In summary, the
pure multiplication consumes only approximately half of the
whole computational time.

Table 8 is the number of clock cycles for Karatsuba [7]
using 2-way separation. By Karatsuba, there are three multi-
plications and more additions required, instead of four mul-
tiplications with additional memory. If the implementation
environment has enough memory for the intermediate result
of addition, Karatsuba is efficient solution for reducing the
operation.

Tables 9 and 10 present the 4-way separation by the DM
and Karatsuba methods. Because of the number of polyno-
mial multiplications t2 in DM, the operation time is almost
twice that of the 2-way separation. Even though the polyno-
mial is half the size, pointwisemultiplication is not divided by

2556 VOLUME 10, 2022

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

TABLE 10. Number of clock cycles of each steps for Karatsuba [7] by
4-way separation(Exynos2100 SSP).

TABLE 11. Number of clock cycles of each steps for Kronecker+ [8] by
2-way separation(Exynos2100 SSP).

TABLE 12. Number of clock cycles of each steps for Kronecker+ [8] by
4-way separation(Exynos2100 SSP).

a quadratic number. As you can see in Table 7, multiplication
by hardware is under 50% in pointwise multiplication, so the
number of clock cycles is not reduced with 1/t2. The shift
of polynomial coefficients in Karatsuba and DM is different
from the shift of number in Kronecker+ (see Table 11). Poly-
nomial shift is just array shifting by changing the index of the
buffers; in contrast, the shift of number is quite complicated in
the Software implementation. Therefore, the polynomial shift
is more advantageous than Kronecker+’s shift of number.

Tables 11 and 12 present the clock cycles of the imple-
mentation of Kronecker+ by 2-way separation and 4-way
separation, respectively. An interesting point is that the per-
formance is indeed not better than that of Karatsuba (see
Tables 8 and 10). As we mentioned above, the main reason

TABLE 13. Number of clock cycles of each steps for Toom-Cook 4 with
RSA/ECC Coprocessor(Exynos2100 SSP).

for the low performance is the integer bit shifter. The perfor-
mance enhancement will be discussed in Section VIII.

There are many reductions due to Step 3 in Algorithm
4(Kronecker+). The size of each intermediate result of the
summation causes big size addition, but if we reduce each
intermediate result in the summation, we can reduce the size
of the next addition. Actually, the whole operation is almost
the same (or big size addition and just one reduction may be
somewhat better). In order to increase the credibility of the
simulation, we just unify only operations of the same size.

Table 13 shows the result of Toom–Cook 4 with an
RSA/ECC coprocessor. Toom–Cook 4 is Saber’s application
method for reference and optimized assembly code. In Toom–
Cook 4, there are seven multiplications, which are also called
pointwise multiplication. The degree of multiplication is 64,
so this is the same as the application when Karatsuba or DM
uses 4-way separation. Karatsuba needs nine multiplications,
but Toom–Cook 4 with KS requires 2 fewer multiplications.
However, the final result is worse than that of Karatsuba
because the interpolation and evaluation step needmanymore
operations, which account for 59.5% in Toom-Cook 4.

Table 14 summarizes all implementation results without
the number of each operation. The best performance of
‘C’ implementation in Exynos2100 is Karatsuba (k = 2),
because the proportion of the remaining operations, except
for pointwise multiplication, is relatively low, and the number
of pointwise multiplications is also low. Thus, we mainly use
Karatsuba(k = 2) in the Saber implementation for compari-
son with the result of only using software.

C. APPLICATION TO 3 ROUND KEM BASED ON LWE
In our experiments, we implement CRYSTALS Kyber and
Saber. The main difference between these two candidates is
whether NTT is used or not. As our purpose in this study
is to analyze and compare each KS and variant implemen-
tation, we refer to CRYSTALS Kyber clean code [14] and
Saber reference code [13]. We do not use AVX2, Cortex-M4
optimization, or PQC variants that utilize SHA2 and AES
because,
• The instructions for each ARM architecture are all dif-
ferent. The available optimized code based on Cor-
tex M4 in the NIST submission mainly uses DSP
instructions [54], which have parallel operations and
also known as SIMD(Single Instruction Multiple Data).
However, in our environment, DSP is not available.

• AVX2 is only for Intel CPU [55], so we do not use
optimization with AVX2.

VOLUME 10, 2022 2557

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

• In our environment, hardware for AES [46] acceleration
exists, but we see the main submissions are consistent
with SHA3. There are PQC variants with sampling using
AES. M.R. Albrecht et al. [7] shows KS with an AES
sampler. It can achieve high performance due to the
hardware. However, we do not use AES hardware for
the implementation of the actual submitted algorithms.

Our strategy for applying KS is Karatsuba k = 2, because
this achieved the best performance of our experimental results
in the previous section. Other results of KS variants will
be discussed in the simulation section. We implement only
algorithms with level 5 security, e.g., Kyber1024 and Fire-
Saber, because level 5 algorithms show more characteristics
of the impacts of each configuration

1) SABER
Saber can directly utilize KS techniques because pure polyno-
mial multiplication is used in Algorithm 3. The technique in
the reference code is Toom–Cook 4, quoted in Bernstein [22].
Table 15 shows a comparison between Toom–Cook 4 and KS
with an RSA/ECC coprocessor by Karatsuba k = 2, which is
the same result an in Table 8 and in the ‘C’ implementation
of Table 21. The relative operation ratio in the Tables means
the relative ratio of the third columns (in this case, Karatsuba
k = 2) to the second column (in this case, Toom–Cook).

Only 15.4% of the time (clocks) is required for polynomial
multiplication with KS compared with Toom–Cook using
only Software. The result of Saber is shown in Table 16.
The result using KS is approximately 3× faster compared
with using Software. Surprisingly, the performance is quite
enhanced by changing the polynomial multiplication to the
KS technique.

2) CRYSTALS KYBER
CRYSTALS Kyber uses NTT, which is similar to Saber,
which uses Toom–Cook 4 for ring multiplication. There are
three steps for polynomial multiplication in NTT, such as
forward NTT, inverse NTT, and pointwise multiplication.
All of these three stepsmust be sequentially combined for one
multiplication. Table 17 shows a comparison between NTT
and Karatsuba k = 2 with KS. The total number of clock
cycles of NTT for one polynomial multiplication is 54644,
which is a very high cost compared with Karatsuba k = 2,
when NTT domain changes happen.

Every variable for multiplication in the original submitted
algorithm, described in Algorithm 2, are in represented in the
NTT domain. As we introduced in Algorithm 1, the basic
structure is based on multiplication of ring Zq[x]/(x256 + 1).
Although NTT reduces the cost of operations from O(n2)
to O(n(log(n))), the sequence from NTT to iNTT (inverse
NTT) is less than 2× faster than Toom–Cook 4. Additionally,
Saber does not have coefficient reduction by q. Thus, to speed
up the algorithm, Kyber uses NTT domain representation
directly for the interface. This dramatically reduces the num-
ber of total NTT and iNTT in matrix A in Algorithm 1 and
Algorithm 2. We call Algorithm 2 the Kyber NTT domain,

denoted Kyber NTTD, and Algorithm 1 Kyber NTT mul-
tiplication, denoted Kyber NTTM without NTT domain
parameters.

Thus, the final submission for the parameters of the public
key and private key with Kyber NTTD is even faster than with
Kyber NTTM (see Table 18). To apply KS, Kyber NTTD
requires many inverse NTT operations for normal domain
operations by matrix A in Algorithm 2. Therefore, the result
of Karatsuba k = 2 incurs greater operation cost than does
NTT with only software. Karatsuba 2-way separation is com-
pared with Kyber NTTD in Table 19 and Kyber NTTM in
Table 18.
Indeed, Kyber NTTM is more appropriate for KS. Table 20

shows the estimated number of clock cycles for CRYSTALS
Kyber Algorithm 1 (Kyber NTTM), software alone vs. Kyber
with the KS variant, Karatsuba k = 2. There is an enhance-
ment with KS, unlike the application to Kyber NTTD.

In conclusion, CRYSTALS Kyber is not suitable for mod-
ular multiplication with integer arithmetic due to its NTT
domain representation. The only way it is meaningful for KS
is if the algorithm is changed to anNTTM-like scheme, which
is Algorithm 1.

3) APPLICATION TO OTHER ALGORITHMS IN NIST PQC
ROUND 3 CANDIDATES
• NTRU [49] is a candidate of NIST Round 3 candidate
KEM. This algorithm also has polynomial multiplica-
tions and reductions. The coefficient of reduction is
a form of 2k or 3. The degree of the polynomial is
approximately from 500 to 900, so many more sepa-
rations are required. NTRU is not dedicated to using
NTT. It may be more suitable to use RSA/ECC copro-
cessors, because polynomial multiplication is more than
98% in the encapsulation of NTRU algorithms. The
disadvantage of KS is the operation cost by splitting;
we already showed this property in Section VII-B. This
implementation will be our future work.

• CRYSTALS Dilithium [16] has almost the same prop-
erty as CRYSTALS Kyber. In order to enhance the per-
formance of the algorithm, signature generation is the
main target, because there are many rejected steps that
cause unpredictable redundancy. Matrix A is generated
and stored in an NTT representation like Kyber. The
size of the matrix in Dilithium 5 that is submitted with
security parameters that satisfy security level 5 is 8× 7,
so 56 inverse NTT operations are required by default
to utilize KS. Moreover, the coefficient in Dilithium is
Zq where q = 223 − 213 + 1. The minimum size after
evaluation by 2l is 14080 bits, which requires at least
4-way separation. As a result, Round 3 Dilithium is not
suitable for KS. As a Kyber example, we can suggest
a modified specification, but it does not achieve better
performance compared with an NTT-based scheme.

• FALCON [50] is a signature algorithm in the NIST
Round 3 candidates. Most operations are based on
floating-point operations. There is no RSA/ECC

2558 VOLUME 10, 2022

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

TABLE 14. Number of clock cycles and operation portion where DM [7] (k = 2, k = 4), Karatsuba [7] (k = 2, k = 4), Kronecker+ [8](k = 2, k = 4) and
Toom-Cook 4 with Kronecker Substitution - estimated by ‘C’ implementation optimized level 0. The empty space(-) means that the operation is not
applied for the method(Exynos2100 SSP).

TABLE 15. Estimated Number of clock cycles for Toom-Cook 4(Software
only) vs Karatsuba k = 2(with RSA/ECC co-procossor) in Exynos2100 SSP.

TABLE 16. Estimated Number of clock cycles for Saber(Software only) vs
Saber with Karatsuba k = 2(KS with RSA/ECC Coprocessor) in
Exynos2100 SSP.

TABLE 17. Estimated Number of clock cycles for NTT(Software only) vs
Karatsuba k = 2(KS with RSA/ECC Coprocessor) in Exynos2100 SSP.

coprocessors that support floating operations. Recently,
an integer-based structure was suggested, the so called,
ZALCON [52], with which we can find a way to use
RSA/ECC coprocessors with integer-based schemes.

• Rainbow [53] is also one of the three NIST post-
quantum signature finalists. The dominant operation of
rainbow is matrix operation. Each element is in Galois

TABLE 18. Kyber performance, Round 3 Submission(Algorithm 2, Kyber
NTTD, Software only) vs Karatsuba 2-way separation(Algorithm 1, Kyber
NTTM with RSA-ECC Coprocessor) in Exynos2100 SSP.

TABLE 19. Estimated Number of clock cycles for Crystals Algorithm
2(Kyber NTTD), Kyber Software only vs Kyber with Karatsuba k=2(KS with
RSA-ECC Coprocessor) in Exynos2100 SSP.

TABLE 20. Estimated Number of clock cycles for Crystals Kyber Algorithm
1(Kyber NTTM), Kyber Software only vs Kyber with Karatsuba k=2(KS with
RSA-ECC Coprocessor) in Exynos2100 SSP.

Field such as GF(4), GF(16), or GF(256), which is not
directly related to polynomial operation. This is also
unsuitable for utilizing RSA/ECC coprocessors directly.

VOLUME 10, 2022 2559

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

TABLE 21. Comparison of multiplication among environments with reference H/W + Software(Assembly) - clock cycles(smaller is faster).

• Classic McEliece [51] has matrix multiplications in
finite extension fields(GF(2m)) dominantly. It is also not
directly related to polynomial operation of integers.

• Other PQC algorithms based on Ring-LWE also can be
applied for KS not in NIST round 3 candidates.They
have the same properties to CRYSTALSKyber or Saber.

VIII. SIMULATION BY HARDWARE
PERFORMANCE VARIATION
We show the result of simulations in different environ-
ments with three methods. In our Exynos2100 SSP envi-
ronment [56], only modular multiplication is supported by
hardware; other operations must be implemented by Soft-
ware. However, there are several environments that have
different hardware IP. Table 21 shows the result of sim-
ulating the clock cycles of various IP hardware, such as
Modular Multiplication only (MM only), modular multi-
plication + Barrel Shifter (+BS), modular multiplication
+ Addition(+Add(Sub)), modular multiplication + barrel
shifter + addition (+BS +Add(Sub)). Table 21 shows the
results of implementation by ‘C’ and assembly optimized
implementations, which have the same environment as the
experimental result of Exynos2100. Here are some consid-
erations of the simulation results. The hardware performance
is referred to as relative speed in Table 22.

• Clock cycles of reduction by modular 2nl + 1 is the
same as clock cycles of subtraction. Thus, the hardware
clock cycles of subtraction, addition, and reduction are
equivalent.

• All hardware operates in Z, so polynomial addition and
subtraction are also not applied directly as in modular
multiplication. However, after converting the numbers in
Z to polynomials, which is called negative processing,
addition and subtraction can be carried out with hard-
ware. Thus, every polynomial addition and subtraction
is changed to operations in Z.

• We cannot know the exact performance of addition and
shift. This depends on how the register transistor loca-
tion is designed and the size of the hardware. One thing
that is known is that both need few operations. We set

TABLE 22. Estimated ratio of each operations on H/W VS Software for
4096 bits.

operation time of addition and shifter are 0.0066 both
comparing with the time operation of the modular mul-
tiplication equals 1. More important than the absolute
performance is the relative performance with software.
Even if the performance is very fast compared with
software, the result in Table 21 should be similar.

• The software performance of modular multiplication is
not useful information for us. It is definitely extremely
high. It also even slower than Software NTT or
Toom–Cook.

• The result of the Shift&Add algorithm is valuable when
both shifter and adder exist, because one of them is used
hundreds of times. Using Software in one of the opera-
tions is too slow. In addition, this method is affected by
the absolute performance of addition and shift hardware.
Thus, one needs clocks of real-world performance of
different hardware if the method is considered one’s own
product.

According to the result in Table 21, if addition or/and
shift hardware is added to MM, Kronecker+ produces better
efficiency. However, in the real world, we should note that
hardware for addition that supports more than 1024 bits is
not necessary for RSA and ECC. For similar reasons, shift
hardware is also not essential. Therefore, the algorithms
in Table 21 that is most appropriate should be determined
according to each situation.

The assembly code is implemented in an ARM Cortex
M35P-based Exynos2100 environment, which does not have
SIMD (DSP). Therefore, assembly optimized code is indeed
not really different from ‘C’ code with an optimized level
-O3 (or -Ofast). However, the ‘C’ code result is compiled
with optimized level -O0, so the result of the assembly

2560 VOLUME 10, 2022

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

FIGURE 2. Performance Comparison in Exynos2100 with Modular
multiplication(Assembly Optimization).

FIGURE 3. Performance Comparison of ‘‘best case’’ in each
environment(Table 21 and Multi-moduli NTT [60]).

code is much faster than that of ‘C’ code. The infinity sym-
bol (∞) means two things. The first is not applicable, for
example, if a given device supports only Add(Sub) and Shift,
as DM(t = 2) cannot be implemented. The second is that the
expected performance must be extremely slow, for example,
the Shift&Addmethod can be implementedwithout hardware
‘‘Shifter and Adder’’ but it is meaningless to estimate.

Figure 2 shows a comparison of the results in
Exynos2100 only, with the results in blue color (‘C’ code)
and in yellow (Assembly) in Table 21. Each result represents
the result of the column on the far left side of the table.

Figure 3 shows the results of the best performance for
each hardware set. Additionally, one more result is added
in Figure 3, namely multi-moduli NTT, a method proposed
by A. Abdularhan et al. [60]. This method achieves the best
results as far as we know. The study implemented Saber using
NTT in Cortex M3, and in Cortex M4 using SIMD. Our
environment is similar to Cortex M3. This is because ‘‘no
floating-point registers’’ and ‘‘no SIMD instructions’’ are the
same in our environment. The clock cycles of multi-moduli
NTT are converted to our timer clocks for the comparison,
so the estimated clock cycles is different from the number in
the referenced paper.

TABLE 23. Comparison between Saber Software vs Saber with
Kronecker+ k = 2(simulation).

Finally, Table 23 is the result of Saber simulation with
Kronecker+, which is an environment with hardware addi-
tion and shifter using ‘c’ code implementation. Indeed, this
is the best case of our simulation. The result makes Saber
performance approximately four times faster without any
hardware support for the sampler, for example, AES or SHA
of hardware.

IX. CONCLUSION
Recent studies on the optimization of PQC have mainly been
conducted to develop new dedicated hardware or Software
with special instructions, such as SIMD. However, for rapid
commercialization, if a legacy hardware accelerator is used,
it can make a meaningful contribution. This paper shows the
value of reusing legacy RSA/ECC coprocessors and its imple-
mentation result using various specific methods. Developers
can determine the best way by referring to these implemen-
tation results.

In this paper, we showed and explained the following
findings:
• We explained the method of using existing legacy hard-
ware in the implementation of the PQC candidate algo-
rithm and various limitations to be considered when
implementing it.

• We also showed that it actually works by implementing
Karatsuba, Toom–Cook, Kronecker+, and a variety of
variants of KS using legacy RSA/ECC coprocessors on
an Exynos2100 platform, which is currently commer-
cialized and used in mobile phones.

• We subdivided the operations of polynomial multiplica-
tion for each method into several steps and expressed
the ratio of time-consumption to analyze the compu-
tational characteristics of each method and facilitate
performance prediction when a specific step is replaced
with hardware.

• The implementation results and predictive performance
for various methods in several legacy hardware setups
were simulated and shown.

• Through comparison of the performance for polyno-
mial multiplication with the fastest results [60] recently
implemented based on NTT, this paper also showed that
the performance of legacy RSA/ECC hardware acceler-
ators was better.

In the future, we plan to conduct the following studies:
• Research on more efficient methods based on KS.
• A study to apply legacy RSA/ECC hardware acceler-
ators to other PQC candidate algorithms that is based
on not only LWE lattice cryptography but also on other
mathematical foundations.

VOLUME 10, 2022 2561

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

REFERENCES
[1] P. W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms

and factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci., Nov. 1994,
pp. 124–134.

[2] W. Beullens, J. D’Anvers, A. Hülsing, T. Lange, L. Panny, C. Guilhem,
and N. P. Smart. (May 3, 2021). Post quantum cryptography:
Current state and quantum mitigation. Enisa. [Online]. Available:
https://www.enisa.europa.eu/publications/post-quantum-cryptography-
current-state-and-quantum-mitigation

[3] NIST. Announcing Request for Nominations for Public-Key Post-Quantum
Cryptographic Algorithms. Accessed: Dec. 2016. [Online]. Available:
https://federalregister.gov/a/2016-30615

[4] NIST. NIST 3rd Round Finalist and Alternate Candidates. Accessed:
Oct. 2020. [Online]. Available: https://csrc.nist.gov/News/2020/pqc-third-
round-candidate-announcement

[5] D. Harvey, ‘‘Faster polynomial multiplication via multipoint Kronecker
substitution,’’ J. Symbolic Comput., vol. 44, no. 10, pp. 1502–1510,
Oct. 2009.

[6] F. Yaman, A. C. Mert, E. Öztürk, and E. Savas, ‘‘A hardware accelerator
for polynomial multiplication operation of CRYSTALS-KYBER PQC
scheme,’’ in Proc. DATE, Feb. 2021, pp. 1020–1025.

[7] M. R. Albrecht, C. Hanser, A. Hoeller, T. Pöppelmann, F. Virdia, and
A. Wallner, ‘‘Implementing RLWE-based schemes using an RSA co-
processor,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2019,
no. 1, pp. 169–208, Nov. 2018.

[8] J. W. Bos, J. Renes, and C. van Vredendaal, ‘‘Post-quantum cryptography
with contemporary coprocessors beyond Kronecker, Schönhage–Strassen
& Nussbaumer,’’ Cryptol. ePrint Arch. Rep. 2020/1303. [Online]. Avail-
able: https://ia.cr/2020/1303

[9] A. Greuet, S. Montoya, and G. Renault, ‘‘On using RSA/ECC coprocessor
for ideal lattice-based key exchange,’’ in Proc. COSADE, Oct. 2021,
pp. 205–227.

[10] R. J. Fateman, ‘‘Can you save time in multiplying polynomials by
encoding them as integers?’’ Univ. California Berkeley, Berkeley, CA,
USA, Tech. Rep. CA 947220-1776, Aug. 2010. [Online]. Available:
http://people.eecs.berkeley.edu/~fateman/papers/polysbyGMP.pdf

[11] D. E. Knuth, The Art of Computer Programming, vol. 2. Reading, MA,
USA: Addison-Wesley. 1981.

[12] A. Langlois and D. Stehlé, ‘‘Worst-case to average-case reductions for
module lattices,’’ Des., Codes Cryptogr., vol. 75, no. 3, pp. 565–599,
Jun. 2015, doi: 10.1007/s10623-014-9938-4.

[13] SABER. (Oct. 21, 2020). SABER: Mod-LWR Based KEM(Round 3
Submission), NIST PQC Round 3 Submission. [Online]. Available:
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/

[14] National Institute of Standards and Technology. (2019). CRYSTALS-
KYBER. [Online]. Available: https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

[15] T. Pöppelmann and T. Güneysu, ‘‘Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,’’ in Progress in
Cryptology—LATINCRYPT 2012 (Lecture Notes in Computer Science),
vol. 7533, A. Hevia and G. Neven, Eds. Berlin, Germany: Springer, 2012,
doi: 10.1007/978-3-642-33481-8_8.

[16] CRYSTALS-Dilithium—Submission to Round 3 of the NIST Post-Quantum
Project. Specification Document (Part of the Submission Package).
Accessed: Oct. 1, 2020. [Online]. Available: https://pq-crystals.org/

[17] EMVco. (Feb. 2016). Contactless Specifications for Payment System,
Book C-2 Kernel 2 Specification, Version 2.6. [Online]. Available:
https://www.emvco.com

[18] Common Criteria. Samsung SSP01 of S5E9830With Specific IC Dedicated
Software Revision 1.1. Accessed: Mar. 18, 2018. [Online]. Available:
https://www.commoncriteriaportal.org/products/#IC

[19] P. Barrett, ‘‘Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,’’ in Advances
in Cryptology—CRYPTO’86 (Lecture Notes in Computer Science),
vol. 263. Berlin, Germany: Springer, pp. 311–323.

[20] P. L. Montgomery, ‘‘Modular multiplication without trial division,’’Math.
Comput., vol. 44, no. 170, pp. 519–521, Jan. 1985.

[21] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996.

[22] D. J. Bernstein. (1997). Multidigit Multiplication for Mathematicians.
[Online]. Available: https://cr.yp.to/papers/m3.pdf

[23] NXP. NXP Secure Microcontroller SmartMX P71D321. [Online]. Avail-
able: https://www.nxp.com/docs/en/fact-sheet/P71D321.pdf

[24] Infineon. SLE 78CAFX1M1SPHM. [Online]. Available: https://www.
infineon.com/cms/en/product/security-smart-card-solutions/security-
controllers/sle-78/sle-78cafx1m1sphm

[25] Espressif Systems. ESP32 Technical Reference Manual. v4.6. Accessed:
Nov. 30, 2021. [Online]. Available: https://www.espressif.com/sites/
default/files/

[26] L. Kronecker, ‘‘Grundzüge einer arithmetischen theorie der algebraischen
Grössen,’’ J. die Reine und Angewandte Math., vol. 92, pp. 1–122, 1882.

[27] Recommendation for Key Management, Standard NIST SP 800-57,
Revision 5, May 2020.

[28] Mécanismes Cryptographiques—Règles et Recommandations, ANSSI,
Paris, France, Revision 2.03, Feb. 2014.

[29] Cryptographic Mechanisms: Recommendations and Key Lengths,
Standard BSI TR-02102-1, Version 2020-01, Mar. 2020.

[30] H. Nussbaumer, ‘‘Fast polynomial transform algorithms for digital convo-
lution,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28, no. 2,
pp. 205–215, Apr. 1980, doi: 10.1109/TASSP.1980.1163372.

[31] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine calculation
of complex Fourier series,’’ Math. Comput., vol. 19, no. 90, pp. 297–301,
Apr. 1965.

[32] NIST. (Apr. 16, 2015). SHA-3 Standardization. [Online]. Available:
https://csrc.nist.gov/Projects/Hash-Functions/SHA-3-Project/SHA-3-
Standardization

[33] Intel. (Aug. 20, 2013). AVX-512 Instructions. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-
512-instructions.html

[34] J. B. Fraleigh, A First Course in Abstract Algebra, 7th ed., 2003.
[35] SAMSUNG. Exynos2100: Exynos on Official Reply. Accessed:

Jan. 12, 2021. [Online]. Available: https://www.youtube.com/watch?v=
qcBqg6Y_cnw

[36] SAMSUNG. Galaxy S21 5G, S21 + 5G. [Online]. Available:
https://www.samsung.com/us/smartphones/galaxy-s21-5g/

[37] O. Adam, An Introduction to Microcomputers: Basic Concepts, vol. 1,
2nd ed. New York, NY, USA: McGraw-Hill, Apr. 1982, pp. 5–64.

[38] Microsoft. (Mar. 4, 2011). Blocking the SBP-2 Driver to Reduce 1394
DMA Threats to BitLocker. [Online]. Available: https://support.
microsoft.com/en-us/topic/blocking-the-sbp-2-driver-and-thunderbolt-
controllers-to-reduce-1394-dma-and-thunderbolt-dma-threats-to-
bitlocker-bf0ef10b-f563-5cfc-9740-8340b1d86a0c

[39] U. Banerjee, S. Das, and A. P. Chandrakasan, ‘‘Accelerating post-
quantum cryptography using an energy-efficient TLS crypto-processor,’’
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5, doi:
10.1109/ISCAS45731.2020.9180550.

[40] U. Banerjee, C. Juvekar, A. Wright, Arvind, and A. P. Chandrakasan,
‘‘An energy-efficient reconfigurable DTLS cryptographic engine for
end-to-end security in IoT applications,’’ in IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 42–44, doi:
10.1109/ISSCC.2018.8310174.

[41] U. Banerjee, A. Wright, C. Juvekar, M. Waller, Arvind, and
A. P. Chandrakasan, ‘‘An energy-efficient reconfigurable DTLS
cryptographic engine for securing Internet-of-Things applications,’’
IEEE J. Solid-State Circuits, vol. 54, no. 8, pp. 2339–2352, Aug. 2019,
doi: 10.1109/JSSC.2019.2915203.

[42] R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali,
D. Jao, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira,
J. Renes, V. Soukharev, and D. Urbanik, ‘‘Supersingular isogeny key
encapsulation,’’ NIST’s Post-Quantum Cryptogr. Standardization Process,
Round 2, 2019. [Online]. Available: https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions/SIKE.zip.

[43] Frodo. FrodoKEM Learning With Errors Key Encapsulation Algorithm
Specifications and Supporting Documentation. Accessed: Mar. 25, 2020.
[Online]. Available: https://frodokem.org/files/FrodoKEM-specification-
20171130.pdf

[44] ThreeBears. Post-Quantum Cryptography Proposal: ThreeBears.
Accessed: Nov. 27, 2017. [Online]. Available: https://www.shiftleft.org/
papers/threebears/nist-submission.pdf

[45] SPHINCS. PHINCS + Submission to the NIST Post-Quantum Project.
Accessed: Oct. 1, 2020. [Online]. Available: https://frodokem.org/files/
FrodoKEM-specification-20171130.pdf

[46] Announcing the Advanced Encryption Standard (AES), Federal Informa-
tion Processing Standards Publication 197, NIST, Nov. 2001.

[47] Announcing Approval of FIPS Publication 180-2, Federal Register Notice
02-21599, NIST, Gaithersburg, MD, USA, Oct. 2008.

2562 VOLUME 10, 2022

http://dx.doi.org/10.1007/s10623-014-9938-4
http://dx.doi.org/10.1007/978-3-642-33481-8_8
http://dx.doi.org/10.1109/TASSP.1980.1163372
http://dx.doi.org/10.1109/ISCAS45731.2020.9180550
http://dx.doi.org/10.1109/ISSCC.2018.8310174
http://dx.doi.org/10.1109/JSSC.2019.2915203

J.-Y. Park et al.: Survey of Polynomial Multiplication With RSA-ECC Coprocessors and Implementations

[48] D. J. Bernstein, ‘‘Fast multiplication and its applications,’’ in Algorithmic
Number Theory, vol. 44. Berkeley, CA, USA: MSRI Publications, 2008.

[49] NIST. A Submission to the NIST Post-Quantum Standardization Effort,
NIST Round 3 Candidate. [Online]. Available: https://ntru.org/

[50] FALCON. Fast-Fourier Lattice-Based Compact Signatires Over NTRU,
NIST Round 3 Candidate. Accessed: Oct. 1, 2020. [Online]. Available:
https://falcon-sign.info/

[51] Classic McEliece, NIST Round 3 Candidate. Accessed: Oct. 1, 2020.
[Online]. Available: https://classic.mceliece.org/

[52] P. Fouque, F. Gérard, M. Rossi, and Y. Yu, ‘‘Zalcon: An alternative FPA-
free NTRU sampler for Falcon,’’ in Proc. 3rd NIST PQC Workshop,
Jun. 2021, pp. 1–23.

[53] RAINBOW. One of the Three NIST Post-Quantum Signature Finalists.
Accessed: Oct. 1, 2020. [Online]. Available: https://www.pqcrainbow.org/

[54] J. Yiu, ‘‘Blending DSP and ML features into a low-power general-
purpose processor—How far can we go?’’ ARM, Cambridge, U.K.,
White Paper, 2020. [Online]. Available: https://armkeil.blob.core.
windows.net/developer/Files/pdf/white-paper/blending-dsp-and-ml-
features-into-a-low-power-general-purpose-processor.pdf

[55] G. Lento, ‘‘Optimizing performance with Intel advanced vector exten-
sions,’’ AVX, Fountain Inn, SC, USA, White Paper, Sep. 2014. [Online].
Available: https://www.intel.com/content/dam/www/public/us/en/
documentSoftwarehite-papers/performance-xeon-e5-v3-advanced-
vector-extensions-paper.pdf

[56] NIST. CAVP Samsung Smart Secure Platform. Accessed: Oct. 26,
2020. [Online]. Available: https://csrc.nist.gov/projects/cryptographic-
algorithm-validation-program/details?product=13329

[57] ETSI. Smart Secure Platform (SSP); Part 1: General Characteristics
(Release 15). Accessed: Mar. 1, 2019. [Online]. Available: https://
www.etsi.org/deliver/etsi_ts/103600_103699/10366601/15.00.00_60/ts_
10366601v150000p.pdf

[58] H. Seo, ‘‘Compact implementations of curve Ed448 on low-end IoT plat-
forms,’’ ETRI J., vol. 41, no. 6, pp. 863–872, Dec. 2019.

[59] A. Schönhage, ‘‘Asymptotically fast algorithms for the numerical muiti-
plication and division of polynomials with complex coefficients,’’ in Proc.
EUROCAM, in Lecture Notes in Computer Science, vol. 144, Apr. 1982,
pp. 3–15.

[60] A. Abdulrahman, J. Chen, Y. Che, V. Hwang, M. J. Kannwischer,
and B. Yang, ‘‘Multi-moduli NTTs for Saber on Cortex-M3 and
Cortex-M4,’’ Cryptol. ePrint Arch. Rep. 2021/995. [Online]. Available:
https://ia.cr/2021/995

JONG-YEON PARK received the master’s degree
inmathematics fromKookminUniversity, in 2012.
He was a Researcher with the Electronics and
Telecommunications Research Institute (ETRI),
Daejeon, South Korea, from 2012 to 2014.
He was also a Research Engineer with Korea
Telecom (KT) Convergence Laboratory, Seoul,
South Korea, from 2015 to 2017. He is currently
a Staff Engineer with Samsung Electronics, Sys-
tem LSI. His research interests include most of

cryptographer’s topics, especially mathematical structures related in secure
algorithms and SCA.

YONG-HYUK MOON (Member, IEEE) received
the M.S. and Ph.D. degrees in information
and communication engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2006 and
2013, respectively. He has been a Senior
Researcher with the Artificial Intelligence Lab-
oratory, Electronics and Telecommunications
Research Institute (ETRI), Daejeon, since 2006.
He also started working as an Associate Professor

with the Computer Software Department, University of Science and Tech-
nology (UST), Daejeon, in September 2021. His research interests include
automated machine learning, deep learning, optimization, device security,
and edge computing.

WONIL LEE received the B.S., M.S., and
Ph.D. degrees in mathematics from Korea Uni-
versity, in 1998, 2000, and 2004, respectively.
From 2004 to 2005, he was a Researcher studying
provable security of cryptographic hash function
with Kyushu University, Fukuoka, Japan. Since
2005, he has been working as a Principal Engineer
with Smart Card and Security Industry, Samsung
Electronic Ltd. His research interests include secu-
rity IC silicon security, near field communication

technology, and system security for mobile and the IoT.

SUNG-HYUN KIM received the B.S. degree in
electronic engineering and the M.S. degree in
parallel processing computer from Kyungpook
National University, in 1987 and 1989, respec-
tively. From 1989 to 1996, he engaged in research
and development with Automated Fingerprint
Identification System for Korea National Police
Agency. Since 1996, he has been working with
Smart Card and Security Industry, Samsung Elec-
tronic Ltd. He currently works as an Architect and

a Principal Engineer of advanced system security and future security and
cryptography technology. His research interests include security IC silicon
security, chip operating systems (COS), and system security for mobile, the
IoT, and cloud.

KOUICHI SAKURAI (Member, IEEE) received
the B.S. degree in mathematics from the Faculty of
Science, Kyushu University, in 1986, and the M.S.
degree in applied science and the Ph.D. degree
in engineering from the Faculty of Engineering,
KyushuUniversity, in 1988 and 1993, respectively.
From 1988 to 1994, he was engaged in research
and development on cryptography and information
security with the Computer and Information Sys-
tems Laboratory, Mitsubishi Electric Corporation.

Since 1994, he has been working with the Department of Computer Science,
Kyushu University, as an Associate Professor, where he became a Full
Professor, in 2002. From 2005 to 2006, he was successful in generating such
co-operation between Japan, China, and South Korea, for security technolo-
gies, as a Leader of the Cooperative International Research Project supported
by the National Institute of Information and Communications Technology
(NICT). Moreover, in March 2006, he established research co-operations
under a Memorandum of Understanding in the field of information security
with Prof. Bimal Kumar Roy, the first time Japan has partnered with The
Cryptology Research Society of India (CRSI). He is currently working with
the Institute of Systems, Information Technologies and Nanotechnologies,
as the Chief of the Information Security Laboratory, for promoting research
co-operations among the industry, university, and government under the
theme enhancing IT-security in social systems. He also directs the Laboratory
for Information Technology andMultimedia Security and is workingwith the
Cybersecurity Center, Kyushu University. He is also with the Department
of Advanced Security, Advanced Telecommunications Research Institute
International and involved in a NEDO-SIP-Project on supply chain secu-
rity. He has published about 400 academic articles in cryptography and
cybersecurity.

VOLUME 10, 2022 2563

