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ABSTRACT Generating accurate and efficient predictions for the motion of the humans present in the
scene is key to the development of effective motion planning algorithms for robots moving in promiscuous
areas, where wrong planning decisions could generate safety hazard or simply make the presence of the
robot “‘socially” unacceptable. Our approach to predict human motion is based on a neural network of a
peculiar kind. Contrary to conventional deep neural networks, our network embeds in its structure the popular
Social Force Model, a dynamic equation describing the motion in physical terms. This choice allows us to
concentrate the learning phase in the aspects which are really unknown (i.e., the model’s parameters) and to
keep the structure of the network simple and manageable. As a result, we are able to obtain a good prediction
accuracy even by using a small and synthetically generated training set. Importantly, the prediction accuracy
remains acceptable even when the network is applied in scenarios radically different from those for which
it was trained. Finally, the choices of the network are *“‘explainable”, as they can be interpreted in physical

terms. Comparative and experimental results prove the effectiveness of the proposed approach.

INDEX TERMS Human motion prediction, neural networks, social force model, service robotics.

I. INTRODUCTION

We are creating a new generation of robots that can move
freely, take autonomous decisions and interact directly with
humans to execute tasks and deliver services. The level of
the expectations raised by this development is very high.
People imagine a near future in which robots and humans
will share public spaces, talk to each other, exchange objects
and, to some extent, create emotional links. Is this a realistic
perspective? In order to be up to the task, robots are required
to be efficient for the tasks they are assigned (why else should
we use a robot?) and are required to be safe. The vocal
reaction to the relatively small number of accidents caused
by autonomous cars in the past years shows that for robots the
bar of safety requirements has to be set very high. However,
in order to move between humans, safety is not enough: a
robot has to be smooth in its reactions, it has to respect the
personal space of the humans as much as possible, and it has
to be predictable. Humans have sophisticated means to move
in a socially acceptable way. Their social intelligence allows
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them to predict the intent of their peers decoding a complex
non spoken language made of gestures, facial expressions,
gaze, pose of the limbs.

Creating algorithms that replicate a part of this broad set of
abilities compounding social intelligence is the holy grail of
human-robot interaction and the topic of this paper. Specifi-
cally, our objective is to predict where a person intends to go
by simply looking at how s/he moved in the immediate past
and at the shape of the environment. Our overarching goal
is to use these predictions in order to create human-aware
motion planning algorithm, a research area that is becoming
increasingly popular [1], [2]. Our specific take is to use accu-
rate predictions of human motions for robot plan synthesis
in order to be inherently safe and compliant with unwritten
social rules.

A. RELATED WORK
1) PHYSICS BASED APPROACHES
Many physics based models have been proposed to predict

human motion in a social context, e.g. [3]. The most famous
is the Social Force Model (SFM) [4]. In the SFM a person
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is seen as a particle acted on by attractive forces (the goals)
and repulsive forces (the obstacles). Since it is simple to
implement and yet highly effective in the representation of
the individual motion of human beings, it has been adopted by
a number of research works. One peculiar feature is that the
attractive and repulsive forces of the SFM can be generalised
by geometric information only, while the resulting motion
effect is a linear combination of these elements. The model
however has known limitations. One of the most important
is that modelling a person as a particle does not differentiate
between motion patterns that are “natural” and others that
are possible but not frequently taken (e.g., sideways motions).
These issues can be addressed by leveraging a relatively high
sampling rate and/or by integrating the preferential nonholo-
nomic behaviour of the human motion into the model [5], [6].
An important problem to tackle in order to use the SFM
is how to estimate its many parameters and in particu-
lar the intensity and the direction of the attractive and of
the repulsive forces that animate the motion. A first pos-
sibility is to make heuristic ‘‘rule-of-the-thumb” choices,
but this option is workable only in very specific condi-
tions, e.g., interaction between a robot and a human in free
space [7], [8]. Another issue is how to estimate the target of
walking pedestrian from the past motion [9]. For example,
in [10], a virtual goal is chosen as the position that a person
would reach if s/he moved with constant velocity, while
in [11] a set of trajectory sub-goals are estimated from the
recorded data in a structured environment. Furthermore, [12]
proposed a modified formulation of the SFM to calibrate the
parameters with observable features from empirical data.

2) NEURAL NETWORKS APPROACHES

Neural Networks (NN) hold the promise to master the com-
plexity of predicting the intention of humans in a relatively
simple way. Similarly to our work, [13] modelled an area
of visual attention and social interaction for the pedestrian,
jointed to the head orientation, and used to strengthen the
training of a Long Short Term Memory network (LSTM).
A deep learning-based classifier is used in [14] to learn
behaviour patterns from visual cues is mixed with a game
theory model encoding the SFM to forecast the interac-
tion between multiple pedestrians. A common approach to
manage multiple future trajectories has been to generate
different motion modes. For this reason, newly learning
approaches implement multiple predictions to describe mixed
motion behaviours. In [15] a Generative Adversarial Network
(GAN) based approach is exploited with a novel social pool-
ing framework to predict multiple trajectories while learn-
ing social norms. A similar GAN based framework with a
social attention mechanism is proposed by [16]. Both these
approaches utilize pedestrians past trajectories and scene
context information, but do not consider the agents’ desti-
nations. Conversely, a recent work by [17] uses Variational
Autoencoder (VAE) based network to infer a distribution of
waypoints and obtain a multi-modal trajectory prediction,
while [18] reformulated maximum entropy IRL to jointly
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infer waypoints and human trajectories on a 2D grid defined
over the scene.

In principle, a deep neural network (DNN) trained with a
sufficient number of samples could learn the human motion
patterns by discovering the underlying dynamic model on its
own. However, the number of layers and of neurons required
to manage the complexity of human behaviours can be very
large and is anyway hard to predict. Equally difficult is to
understand the number of samples that are needed to train a
network of this complexity. Finally, the use of a DNN lacks
a property of remarkable importance for many applications:
the so-called “‘explainability’’. When an autonomous system
takes a decision it is important to understand why that specific
choice has been made, in order to solve bugs or attribute
legal responsibilities [19]. The total absence of a prior model
in a DNN makes explainability hard or even impossible to
achieve. Another known limitation shared by NN approaches
is their difficult training. The available annotated data sets
are not many, and the parameters overfitting is an actual risk
when data have strong similarities. As a result, as shown
by [20], neural models can easily be outperformed by a simple
constant velocity model in the case of linear trajectories.

3) PHYSICS AND NEURAL NETWORK MIXED APPROACHES
Past attempts to use machine learning techniques in combi-
nation with physical models have applied gradient descend
methods to learn the interaction forces [21], used linear
regression and NN to predict the direction of motion [22],
used evolutionary algorithm to optimise the SFM parameters
from video segments [23]. The approach taken in this paper
is rather new and is inspired to the simulation of vehicle
dynamics by [24].

4) GOALS SELECTION

The motion of a person is driven by her intent, i.e., by where
she intends to go or perform an action. Dynamic goal infer-
ence based on the semantic of the environment is still an open
issue [9]. Most existing works rely on a predefined set of
goals, estimated from observed trajectory data. For example,
goals can be deducted from the prevailing direction taken
by the pedestrians, by noting the preferred locations where
they stop, or by partitioning the environment with a Voronoi-
based method [11], [25]. On the other hand, a few papers
have sought to identify the goals from real-time motion pre-
dictions. For instance, [26] proposed a heuristic method to
automatically determine goal positions on a 2D semantic grid
map. Cell transitions are predicted through discrete Markov
chains. In [27], Voronoi partitions [11] were used in order
to obtain a good guess of the preferred sub-goal within a
shopping mall. Their algorithm estimates the candidate goal
by weighing the visibility and reachability of the sub-goals,
and by using a service robot that moves side-by-side with the
person. A recurrent Mixture Density Network (RMDN) was
proposed by [28] to learn a mixture of potential destinations,
which is fed into a Fully Convolutional Neural Network
(CNN) to predict the human trajectories. In [29] they applied
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probabilistic Directional Grid Maps (DGM) in order to fit
a mixture of von-Mises distributions of motion directions
attributed to each grid cell of a discretised environment.

B. PAPER CONTRIBUTION

In this paper, we seek to bridge the gap between model based
and learning based approaches in order to retain the advan-
tages of both. Our goal is to predict the motion of a human
for several seconds ahead using a short segment of past
observations. The philosophy that underlies our approach is
that learning is a powerful tool, but, when applied to human
motion prediction, it should be used with some grain of salt.
Indeed, the complexity of the task requires massive amounts
of training data and the risk of overfitting the models is very
concrete. With these considerations in mind, our approach
restricts the application of learning to the sub-problems that
are very difficult to tackle otherwise. In this class falls the
estimation of the parameters of the SFM. Our idea is to use
a NN structured so that its connections reflect the dynamics
of the SFM. In other words, we embed our prior knowledge
into the NN in the form of a model assuming that the latter,
by a correct choice of parameters, closely approximates the
dynamics of human motion. This way, the learning phase is
concentrated on the aspects for which we actually lack any
real knowledge: the SFM parameters and the virtual forces
acting in the SFM.

The selection of the goals of the human motion, which
is a key input for the SFM, deserves a special attention.
As apparent from the survey reported above, this problem is
way simpler than the estimation of the SFM parameters and
force, and established techniques exist that are easy to imple-
ment and that can provide useful probabilistic information on
the potential goals. In our work, we consider the following
scenarios. The trivial case is when the possible goals are given
or annotated on the map based on the analysis of the places of
interest. On the opposite side of the spectrum, we consider a
situation in which no prior information on the environment is
available. In this case, we infer the position of the possible
goals from the geometry of the activity space [30], from
the motion of the humans and from the configuration of
the static obstacles. Since for all of these scenarios, we can
have multiple potential goals, we use a multi-goal approach
based on the generation of different hypotheses and on the
evaluation of the likelihood of the trajectories associated with
each of them.

The advantages of the approach proposed in the paper
are manifold: 1. wiring a model inside the NN reduces the
number of neurons by a significant amount (we estimate one
or two orders of magnitude), 2. using maximum likelihood
evaluation of multiple hypotheses for the final goal of the
target is a natural complement of the idea: the complexity is
much lower than a monolithic NN solution, the training is
simplified and the probabilities associated with each possible
destination can be used in what-if motion planning solutions;
3. as shown in our experiments, a relatively small number
of synthetically generated samples is sufficient to generate
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accurate predictions, even for scenarios that are quite dif-
ferent from the ones considered in the training set, thus the
solution is very practical for robotic applications that involve
navigation across indoor unknown scenarios; 4. because our
NN retains the model inside, its decisions can be explained
in physical terms, which simplifies the interpretation of the
results of the NN and the explanation of its possible errors.

The paper is organised as follows. In Section II, we sum-
marise some background knowledge on the SFM, which will
prove useful in the development of the paper. In Section III,
we report the key contribution of the paper: how to embed the
SEM into the structure of a NN. In Section IV, we describe
the multi-goal approach that completes our motion prediction
framework. In Section V, we report a full set of experi-
ments proving the validity of the approach. In Section VI,
we describe the robotic platform employed for real-world
experiments and present the corresponding results. Finally,
in Section VII we state our conclusions and announce future
work directions.

Il. PRELIMINARIES

In this section, we briefly review necessary background
material on the Social Force Model. In the SFM [4], the
i-th pedestrian is modelled as a particle with mass m; and
radius r;. Its position is denoted as p; = [x;, y,-]T and is
expressed in the frame (F) = {Xy, Yr}. The human moves
towards his/her target at a certain desired walking speed
with magnitude vfl and following a second order dynamic.
At the same time, the motion is perturbed by the environment,
e.g. fixed obstacles, walls, furniture, etc., and other agents
in the environment. Omitting the subscript i for readability,
the total force f that acts on the i-th pedestrian is given
by f=f£°+f¢ ie.

o — fO 4 w
mv = f +Zj(#)fj +Zkfk, (1)
where v = p. Moreover, the attractive force f° is defined as
£ = on/v) [ 06! () = v @)

where the characteristic time T > (0 parameter determines
the rate of change of the velocity vector, while e? is the unit
vector pointing towards the goal. The force exerted by the
static obstacle k on the i-th pedestrian is given by

£ = Ae"= /By 1 kyg (r — di)my +
—kg(r—d)(v-t)t, (3)

i.e. it is the sum of a repulsive component, a compression
force and a sliding friction force. We denote by dy = ||p —
Px || the distance between the pedestrian centre of mass and
the coordinates of the obstacle closest point, so that n,, =
(P — Pr)/di and t;y = [—ng(2), nk(l)]T are the distance unit
vector and its tangential direction, respectively. The function
g(x) = max{0, x} models the fact that both the compression
and the sliding friction forces exist only if the pedestrian
touches the obstacle (i.e., dr > r). A, B, k; and k» are the
model parameters. Notice that in this paper we are neglecting
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the interaction forces ff with the j-th pedestrian in (1), which

will be the objective of future work.

lIl. HUMAN MOTION PREDICTION

Human motion predictions are generated using an embedding
of the SFM into a structured neural network, i.e., a NN organ-
ised such that the neurons process the input signals according
to (1). Two separate branches are designed to estimate the
SFM forces in two different scenarios. In the case of the open
environment scenario, the agent moves freely towards its goal,
so it is subject only to the force term in (2). In the second
scenario, the pedestrian moves across a space cluttered with
obstacles and is affected by the repulsive force (3). We will
henceforth refer to this scenario as structured environment.
Consequently, each network branch models effects of dif-
ferent nature, i.e. attractive or repulsive forces, which are
summed up at the end to produce the resulting force.

A. OPEN ENVIRONMENT

While freely moving towards the desired goal, the pedestrian
is only affected by the force £ in (2). Hence, the first branch
of the neural network (named Net/) is used to predict the two
force components f, fy". The network inputs are the n more
recent samples of the past p coordinates of the pedestrian
(from the current time ¢) obtained with a sampling period §;.
In order to avoid spatial biases, the coordinates are shifted
with respect to the first sample of the window, so as to
generate the input vector Ap() € R>*" as in the following
equation

Ap(t) = [p(t — (n — 1)d;), p(t — (n = 2)d;), ..., p()] +
—p(t —(n— D)1, (4

where 1,, is an n-dimensional column vector with all ones.
The first part of Net! consists of two hidden layers with no
biases and with only one fully connected output neuron that
learns the instantaneous velocity vy, vy, on the Xy and Yy
axis, respectively. These two layers are followed by a tanh(-)
activation function. Another neuron with no bias follows each
layer in order to facilitate the convergence of the estimates to
their actual range. Moreover, the most recent relative motion
measurement A"p(¢) = p(t) —p(r — 1) is used to estimate the
components of the normalised unit vector e? pointing to the
goal. Finally, the vector of the desired velocity v is derived
from the velocity magnitudes V() € R” estimated by the
following

Ap'(t) = [Azp, ...,A”p] — [A‘p, ...,A”*‘p],
Vi) = (1A O, 1A P O] 5)

All the estimates pass through a Lambda layer where they are
combined and weighted according to the m and t parameters

T
in (2). The Net! output is then the estimate of £ = | £, ff] .
The force input (2) is translated in the form of a structured
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NN by the following
md el vom
—————"A"p(t) -
fo = V()W ——— —tanh (Ap(t)W, ,
Slg( (W) Wy ||A"p(l‘)|| anh (Ap(1)Wy) © wy;

(6)

where W, € R1I0xn=1 1y, e RIO, Wy € R2X20 0 e RIX2,
are the weight matrices and © is the Hadamard product. The
sig(-) sigmoid activation function is used to keep a positive
sign for the e estimate, which then are rescaled by the
weight matrix w,;. The number of learnable parameters for
Netl (represented in Fig. 1-a) is 123, where 100 of them are
entirely devoted to the desired velocity estimates.

B. STRUCTURED ENVIRONMENT
For the environment with obstacles, the second branch Net2

T
has two parallel sub-branches to predict f¢ = [x", fy"]
T
(described above) and f! = [ Y, fyw] (reported in (3))

components of the force, respectively. While in the case of
open environment the direction of the motion offers a good
clue on the goal of the pedestrian, this is not the case in
presence of obstacles. In fact, a given direction of motion
can be chosen either because it leads to the goal or because
it is a good way to avoid the obstacles [31]. For this reason,
we directly provide e? as input to the sub-branch that esti-
mates the attractive force f°. Our strategy for choosing the
goal position (and, hence, e?) is described later in Section IV.
In order to reduce the learning complexity, we neglected the
compression and the sliding friction forces, both in the SFM
simulations and in the neural network, since they only play a
role during contacts (which should be avoided by design of
the planned path). The second sub-branch of the network then
comprises a Lambda layer (followed by two single neuron
layers with no bias) that takes as inputs the distance di and
the components of the unit vector n at time 7. The inputs are
combined in an exponential form as in (3), where the only
two learnable weights reflect the A, B parameters of the SFM.
The formulation of the total force f in the structured NN form,
as shown Fig. 1-b, is then given by

f = sig V(W) wyse? (1) — tanh (AP(H)Wy) @ wyg
+ (wae O m0) O, (1)

where again w4, wp € R!, and wgs € R*2 are the new
4 learning weights.

IV. MULTI-GOAL PREDICTION

The branch Net2 described in the previous Section takes as
input the position of the goal. Our strategy is a multi-goal
inference consisting of two steps. The first step is to formulate
several hypotheses on the goal and carry out a prediction
based on Net2 for each. The second step is to perform a
likelihood analysis based on the Multiple Model Approach
(MMA) presented in [32]. We apply both the first-order
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FIGURE 1. Schemes of the Net7 (a) and the Net2 (b). The numbers on the connections between the layers

represent their output size.

generalised pseudo-Bayesian (GPB 1) estimator and the Inter-
active Multiple Model (IMM) estimator to each predicted
trajectory and select the one with the highest confidence, i.e.,
the most probable goal.

A. SELECTION OF THE GOALS

As the person moves across the environment, s/he chooses the
next goal within an area defined as Area of Immediate Interest
(Aoll). Roughly speaking, the Aoll is the region of the space
that contains all the entities that are likely to influence a
human’s motion at the current time and in the near future. The
Aoll contains the possible goals and is estimated in a different
ways depending on our prior knowledge of the environment.

Under the observation that humans move preferably head-
ways [6], it is reasonable to expect that the motion is attracted
by an entity inside a disk sector with aperture lower than 180°.
Our experiments suggested that a good choice for the aperture
is & = 160°, which incidentally is an approximation of
the human field of view, including binocular and peripheral
vision [33]. The radius of the sector is related to the distance
that can be travelled in the interval time corresponding to the
prediction horizon.

Considering that the possible goals cannot be within an
obstacle, we can estimate the Aoll by intersecting the disk
sector with an occupancy grid derived from the map (see
the shaded area in Fig. 2). In formal terms the grid map,
composed of N cells, is denoted as C = {ci,...,cn},
whose elements are labelled with O if occupied by an
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FIGURE 2. Pedestrian’s Aoll and the cells grouped according to (8). The
cells are labelled with 0 if occupied by an obstacle, 1 otherwise. The
coloured crosses represent the selected goals. The Aoll is estimated first
removing the obstacles from the disk sector (shaded area), then it is split
into different sub-sectors and for each of them we select a candidate
either on a point of interest (purple cross) or via geometric
considerations.

obstacle, 1 otherwise. The Aoll at time ¢ is denoted by
¢(t) C C and is defined as:

c(t) ={VceC:[Disk(r) Nc] #WD Ac =1}, ®)

where Disk(?) is the disk sector described above centred in
the position of the human.

The Aoll is segmented in K — 1 equally spaced radial
cones with aperture ¢, each of them representing a different
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area of interest. With an odd number of cones, we have one
cone associated with the human’s decision to walk forward,
while the others represent potential turns. Similarly to (8),
we define the k-th (for k = 1,...,K — 1) cone cells as
ci(t) C c(r). For each ¢ (¢) we select a goal gi(¢) according
to the following logic. If a known point of interest falls within
ci(t) we set gi(t) equal to the point of interest, otherwise
gk () is given the cell centroid maximising the Manhattan
distance to the pedestrian occupied cell (cp(¢)) and minimis-
ing the angular displacement from the k-th cone bisecting
direction (Y (1)), i.e.

gr(r) = arg <J£f§> lle = cp@ll min Lecp(t) — Iﬂk(t)> :

In cases where the map of the environment is not available
or is incomplete, the occupancy grid could not reveal the
position of some obstacles (i.e., we could have some cells
labelled as 1, whereas they should be labelled as 0). As a con-
sequence, we could select some candidate goals in unrealistic
or impossible positions. This is not a critical problem because
the estimation technique described below will quickly deplete
the likelihood of fictitious goals. Still, the use of additional
information enables us to purge unrealistic candidates and,
hence, leads to a better performance. For instance, the robot’s
sensors could reveal the presence of some of the obstacles
despite their limited visibility of the scene allowing us to
correctly label as 0 at least some of the occupied cells.

To model the a-priori probability of selecting one of
the goals we adopt the von-Mises distribution, that is a
Gaussian pdf with mean ¢(¢) (the pedestrian actual head-
ing), variance o2 and normalised in [—=m, ], denoted with
Nvm(p(t), 1/0%) = exp(k cos(9x — ¢(1)))/ (271, (k)), where
k is the concentration parameter, and /,(x) is the modified
Bessel function. In practice, the confidence of the k-th goal
belonging to the cone with aperture ¥ is given by

Pr [g(0)]p'] :/19 Nom(v; ¢(@), 1/5°)dv.
k

All the goals described above represent the human’s intention
to continue walking, preferably forward. To model the inten-
tions to stop, or eventually make a ““U turn”, we add one goal
gk (¢) placed in the current pedestrian position p’. To set the
confidence of gg(#), we consider an heuristic value equal to
half the ming—1,.. x—1 Pr[gr(®)Ip’].

While the agent moves in the environment, the goal posi-
tions are updated in order to be compliant with the current
pedestrian location. Specifically, knowing the set of goals at
t — 1, we first compute the Aoll geometry at ¢ obtaining
a new set of goals, then we solve the proper association
between gr(r — 1) and gi(¢) via the Munkres assignment
algorithm [34].

B. LIKELIHOOD COMPUTATION
For each possible goal we compute a Net2 prediction and
execute a Kalman Filter (KF) iteration. The prediction step
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for the k-th goal is given by

-t 1 -
s = FGLL D,

=it = AxIAT 4+ BOBT, 9)
where 5} = [p}. Wk]T is the state at time 7, F(-) re]l__)r_?sents
the second-order dynamic model (1), and A = 8 a(gs,’"f) is

k

the linearised system dynamic matrix. Moreover, X is the

covariance matrix of the estimation error associated with

<!
the k—th goal state, B = afgsfk D is the force linearised

input vector, having additive uncertainties with covariance
matrix Q (that we assume to be proportional to a perturbation
in the acceleration space). In the update step, we use the
observations p’ *1 to evaluate the innovation vector s;fl, its

covariance S,i‘H , and update the state covariance, i.e.

41 41 —t+1
S = e HT R,

t+1 _ v — T ot+1y—1
Kt =2 s

t+1 t+1 t+1 t+1
o= —KTHS, (10)

where R is the covariance matrix of the measurement uncer-
tainty and H = [I, 0]7 is the output matrix. The computation
of the likelihood can be carried out through two different
approaches: GBP1 and IMM [32]. The former is easy to set up
but has a good performance only when the choice of the goal
is relatively consistent in time (i.e, the human does not change
her/his mind on where to go). The latter caters for possible
changes in the goal through an homogeneous Markov Chain
(MC). The higher level of generality of IMM requires some
additional effort in the calibration of the transition probabili-
ties in the MC.

When using GPB1, the probability of g;(t + 1), dubbed
,u;fl, can be estimated using the following Bayesian rule:

Mtk+1 _ AZHM;(/PY I:pt+1]’ (11)

where A{™' = Pr[p™!|gk(t + 1)] is the likelihood of the
observed position p'*! for the goal gi(r 4+ 1), which can
be modelled as a bivariate Gaussian pdf with mean ef{“
and covariance S,i“. Unlike the standard GPB1 approach,
where the state estimates for each model (i.e. goal) are fused
together, we let each KF run independently, therefore the
updated states are not needed.

In the more general case in which we use the IMM
approach, we combine the goal probabilities ,u;fl in (11) with
the transition probabilities py; of dynamically changing the
goal, i.e. pyj = Pr [gk(t + 1)|gj(t)]. The goal switching is
assumed to be a homogeneous Markov process, so that the
transition probabilities are known and time-invariant. Hence,
in the IMM, (11) is substituted with the mixing probabilities

K

At+1

k t
= E Pkjlk;- (12)
K t+1 x~K JIj

D k=1 Ay Zj:ll’kjﬂ]t' j=1

t+1
My =
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The Markov chain transition probabilities are defined as a
stochastic matrix. The persistence of each mode is equal to
a probability «, while the transition towards each other mode
is an even distribution of 1 — «, i.e.

Py = ol +[(1 —a)/(K = DI = 1), (13)

where 1 is a matrix with all ones and proper dimensions.

As the agent moves in the environment, we eventually
repeat the Net2 predictions based on the new measured human
position, and the updated goals. This occurrence is triggered
by one of the following events: i) the average among all
the innovations (i.e., the norm of &} in (10)) is greater
than an upper limit &y; ii) the Euclidean distance between
the observation p’ and one goal gi(¢) is lower than 8y
(i.e. the pedestrian is close to the k-th goal). When any of
these conditions befalls and we reinitialise gi () to g;(¢), its
first confidence Mf{'* is obtained using u} as a prior, i.e.

ne*t < Al + (1= Prgr@lp'], (14)

where A € [0, 1] is a weighting parameter. The rationale
is that the probabilities reached before the reinitialisation
can hold as a starting guess, thus we mix them with the

a-priori Prgf(1)Ip'].

V. TRAINING AND EXPERIMENTAL VALIDATION

In this section we show a number of experimental results
reported on well known datasets and on other data sets of
our making. We first describe the training phase, which was
totally conducted using synthetic data, and then we will dis-
cuss the performance of our predictor in different operating
conditions.

A. TRAINING DETAILS

Both Netl and Net2 were implemented in Keras and trained
with the Adam optimiser with a learning rate of 0.005, batch
size 128, and number of epochs 300 using a 2.7 GHz Intel
Core 17 processor. We created two synthetic sets of trajec-
tories generated by the SFM in an open space (for Netl)
and in a structured environments (for Net2). For the struc-
tured case, the environment we assumed consisted of two
intersecting corridors (as in Fig. 5-a). In the first set,
we ran 800 simulations of 20 seconds with a sampling time
of §; = 0.1 s. The initial positions were randomly chosen
within a range between 8 and 10 m from the final goal, and,
for each simulation, a random set of parameters for the SFM
model in (2) were taken from the intervals [50, 90] kg for
m, [0.5,0.9] s for T and [0.5, 3] m/s? for v¢. For the second
set, we ran 1200 simulations where the agent moves through
the corridors intersection, starting from one of the four possi-
ble waypoint areas (see Fig. 5-a) and reaching another one.
We set the parameters in (3) to A = 1000, B = 0.08,
according to [5]. The window of the motion observations was
empirically set to n = 10 steps, which provides a good trade
off between learning speed and network prediction accuracy
without over-fitting. This is consistent with the fact that the

150

(a) (b)

FIGURE 3. Validation example. (a) SFM simulated trajectories and (b)
Net2 forces predictions (solid) compared with the SFM forces (dashed).
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FIGURE 4. Comparison of actual (solid) and predicted (dashed)
trajectories using learned Net2 forces with n = 10 steps with a prediction
horizon of (a) 7 and (b) 9 seconds in a structured environment.

networks mostly depend on the most recent data, and that a
longer motion observation does not significantly improve the
prediction accuracy [20].

The 70% of each synthetic dataset was used as the training
sets, while the remaining samples were used for validation.
Notice that, in order to avoid possible correlations between
training and validation, the samples randomisation was done
after dividing the two sets. In Table 1 we report the hyperpa-
rameters and the implementation characteristics of our pro-
posed networks Net I and Net 2 and other comparative models
used in the experiments in Sections V-C and V-D.

B. VALIDATION ON SIMULATED DATA

After the training, we performed a first validation step on a
different batch of simulation data. The difference between
this batch and the one used for training lies in the geometric
configuration of the simulated environment (which was no
longer a simple intersection of two corridors).

1) SFM FORCES GENERATION

For this evaluation, we first generated the entire trajectory.
For each step, the network was used to infer the force sample.
In Fig. 3 we report the results of the force predictions of
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the Net2 network (similar results are obtained for Netl).
Fig. 3-a depicts the trajectories generated by the SFM, while
Fig. 3-b the comparison between the real and the network
predicted force components f, = f” + f;" and fy = 7 + /i
described in (2) and (3). Despite a slight underestimation of
the forces in the occurrence of the horizontal collisions with
the walls (see the peaks in Fig. 3-b), the prediction remains
consistent even if the configuration of the obstacles was very
different from the one used in training (see Fig. 3-a). We can
legitimately conclude that the performance of Net2 has not
been negatively affected by the environmental bias introduced
during the training phase. The structure of our NN and the
abstract modelling of the environment guides the learning
process toward a correct understanding of the “physics” of
the human motion rather than of specific behaviours, and
makes the learning results usable across a wide gamut of pos-
sible environments. This fact is further substantiated by the
inspection of the learned weights. In our example, the weights
of the second branch wywg, = 3.4 - 103 and wg = 0.0834 are
pretty close to the A and B parameters, respectively, used in
the synthetic dataset. Likewise, if we combine the weights
of the first branch, as in (7), we obtain an estimated mass
of 55.6 kg, which is correctly positive and of the same
order of magnitude of the chosen m. Since the NN internal
weights correspond to physical quantities, unexpected values
(e.g., negative masses, exaggerated velocities) are used to
reveal either the absence of a real convergence or that the
system has been over-fitted. This “interpretability” of the
results is the most important trait of the future generation of
explainable Al systems [35].

2) LONG TERM PREDICTION

Given that the forces are correctly estimated, we fed those
quantities into the SFM (1) to generate long term motion
predictions. To this end, we first collected one second of
measurements from a trajectory corresponding to a window
of n = 10 samples. These measurements were then used
to estimate of the SFM force, and, hence, the position at
the next step. The whole procedure was iteratively repeated
shifting each time ahead by one sample the window. This
way, after 10 prediction steps, the computation was made
“in open loop”’, relying solely on the SEM predictions. The
comparison between the predicted trajectory and the actual
one is shown in Fig. 4 for two different scenarios. In both sce-
nario, the actual trajectories (solid lines) are well replicated
by the predicted human motions (dashed lines) even for a long
horizon (7 or 9 seconds, respectively).

3) THE CASE OF UNCERTAIN GOALS
In the example described above, our objective was to validate
the NN based prediction of the human motion. For this reason,
we assumed that the goal of the human target was known.
Now, we move to the general case of unknown goal in order
to validate the entire approach.

Let us consider again the intersecting corridors scenario.
Following the method described in Section IV, we identify
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FIGURE 5. (a) The agent moves from the uppermost area to the green exit
on the right. The coloured crosses represent all the possible goals of the
scenario. (b) Probabilities of the three goals estimated by the GPB1
method.
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FIGURE 6. Experimental trajectories in a hallway. (a) First set of collected
trajectories: bold lines are the ones used for the multi-goal classifier
evaluation and a picture of the experimental set-up. (b) Second set of
collected trajectories.
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four goals, which correspond indeed to the areas chosen for
the network training. The pedestrian starts from one of the
areas (from the uppermost one in the experiment in Fig. 5-a),
and reaches one of the other three. Therefore, we generate
three different hypotheses for the trajectory predictions with
the Net2 network (one per area, respectively) choosing as goal
the area centroids. As shown in Fig 5-b, after about 2 s, the
GBPI1 classifier is able to find the correct goal, while in the
following seconds the confidence towards the simulated tra-
jectory increases. The evaluation of Net2 with the multi-goal
strategy is then further proved on real human trajectories
collected in a structured environment. In particular, we record
the data in two different portions of a hallway with multiple
exits in our department at the University of Trento. Data were
collected using a LiDAR, which was placed about 90 cm
from the ground at the centre of the two scenes, in order to
entirely see every side of the corridors (see Fig. 6-a). The
sensed data were used to both extract the walls information
(that is, the static points between subsequent frames) and the
pedestrian observations. Our acquisition algorithm was used
to extract points belonging to the person’s waist, and clustered
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TABLE 1. Comparison of implementation details of our proposed neural networks and related models used in the experiments reported in Sections V-C
and V-D. Specifically, we compare our models Net1 and Net2 (SFM-NNs), three different Fully Connected neural networks (FCs), the Feed Forward neural
network (FF) and the LSTM network (LSTM) from [20]. The speed of execution was measured by running 10000 times over a prediction window of 4.8 s:
(a) the Keras implementation of each neural network (reported in seconds), (b) the C++ implementation of the same networks (reported in

microseconds).

| SFM-NN (Netl)

SFM-NN (Net2)

FC 1/2/3 FF LSTM

Number of parameters 123
Inference speed (Keras version) 0.1484 s
Inference speed (C++ version) 60.7050 us

Prediction

0.1823's
70.6534 s

127 22,080/12,380 /9,560 2694 201,240
0.0012'5/0.0015 s/ 0.0680 s - -
65.4340 ps /41.0731 ps / 1478.07 - -

Learning rate 0.005
Epochs 300
Batch size 128

Optimizer Adam

Training

Adam

0.005 0.005 0.0004 0.0004
300 300 35 35
128 128 64 64

Adam Adam Adam

y (m)

(b)

FIGURE 7. (a) Trajectory predictions compared with the ground truth
(black line). (b) Probabilities of the trajectory predictions while the
pedestrian moves towards the blue goal, as estimated by the GPB1
method.

them into a single planar position. In the first recorded set,
depicted in Fig. 6-a, the person could go to three different
goals, i.e. one directly to the left, one to the right and one
right at the end of the hallway (see the captured inlet image).
In Fig. 7-a we report the classification result for the trajectory
of the blue goal with the GPB1 estimator. In this experiment,
we manually give to the model the prior knowledge of all the
goal locations, i.e. the beginning of the corridors. As reported
in Fig. 7-b, the first goal on the left of the person is discarded
after about 4 s, while the confidence of the two remaining
goals remains almost the same, until the correct goal is found
after about 6 s, before the pedestrian oversteps the next exit.
Notice that the oscillating trajectory of the orange sample is
due to the SFM dynamic with respect to static obstacles.

C. Net2 PERFORMANCE EVALUATION

To experimentally validate the performance of the multi-
goal strategy with the IMM estimator, we used the second
set of actually recorded trajectories in Fig. 6-b, where the
person could go towards different exits, located at different
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walking directions. Wall shapes were restored by looking at
the static measures of the LIDAR, while here we use no prior
information on the points of interest positions. As customary
in the literature from this kind of problems [9], [20], [36],
we compute the errors using the Mean Euclidean Distance
(MDE) and the Final Displacement Error (FDEk) to deter-
mine the approach performance ie.

H—nf-‘rl

MDEg = X

iefl,..., K}}’l

FDEK — l-Hlf +1

min
ie{l,...K}
where ny is the number of sample of the predicted
trajectory. In particular, due to the presence of multiple
forecasted future trajectories, we select the best predicted
trajectory among the K samples. In the literature, the obser-
vation window is usually set to 8 time-steps (that is, 3.2 s
according to the data acquisition frame rate of the datasets),
while the predictions span the successive 4.8 s. In our model
(SFM-NN), we observe only for 1 s (n=10 steps) of the
real-world trajectories and predict for 4.8 s for a fair compar-
ison. Our strategy was compared with other two orthogonal
approaches. We implemented the Constant Velocity model
(CV) as proposed by [20], where the multimodality is intro-
duced by predicting K = 20 samples with a random noise on
the walking direction, i.e. AV/(0, craz), with o, = 25°. More-
over, we trained different Fully Connected neural networks
with the same hyper parameters of Net2 with the synthetic
dataset. For each network we tested several structures in order
to find the best fitting. The FC1 is made of two hidden
layers with 100 and 80 neurons, both followed by ReLU
activation functions. It takes as input all the past motions
and has two output layers with 48 neurons each to return all
the prediction steps. The FC2 receives as inputs also explicit
scene information (the same way as Net2 does), has two
hidden layers with 50 and 30 neurons, and predicts for the
entire window. The FC3 is similar to the FC2, however as
well as our proposed approach, it predicts only the position at
t + 1 and recursively uses the past predictions as input for the
new inference. In Table 2 we report the prediction errors for
all the evaluated models. The proposed SFM-NN masters the
additional complexity of the scene by using Net2, while the
influence of the environment is implicitly learned by the FC1
and explicitly encoded in the FC2 and FC3. Nonetheless,

441
—p, ny H

b o)
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FIGURE 8. Predicted trajectories with CV (a), FC1 (b) and SFM-NN-s (c). The ground truth is depicted in black for the five sampled
trajectories, while colour codes are adopted for the corresponding predicted trajectories from the different approaches.

TABLE 2. Comparison of prediction errors with our model (SFM-NN),
Constant Velocity (CV) model and Fully Connected (FCs) networks,

on collected trajectories. The suffix “-s” depicts the models with only the
most confident estimate. The metrics are reported in meters.

K  MDEx FDEk | MDE FDE

CvV 20 0.47 1.28 CV-s 1.65 2.73

FC1 1 0.96 1.84 SFM-NN-s 0.74 1.49
FC2 1 0.96 1.97

FC3 1 0.65 1.43 SFM-NNcl | 0.16 0.16
SFM-NN | 10 0.38 0.68

our approach outperforms all the other approaches w.r.t. both
MDE and FDE and even if we drew just K = 10 samples.
Therefore, even if the information of the environment are con-
sidered, the classical NN approaches are strongly scenario-
dependent and poorly generalise when trained with synthetic
datasets. Unlike other multimodal approaches, the advantage
of our model is to have the a-priori confidence estimated over
the different modes as depicted in Section IV. As shown in
Table 1, the FCs obtained the fastest execution times on the
Keras implementation, in particular the FC1 and FC2 since
both are designed to infer the whole prediction window with
a single execution. The peculiar structure of our networks
makes them slightly slower in their Keras implementation,
however, this is not a significant disadvantage as it is used for
offline prediction. In the C++ implementation (introduced in
Section VI-A), the inference times are suitable for real-time
robotic applications.

To increase the fairness, we also endowed the CV model
with an IMM estimator to obtain a-priori confidence as well.
For comparison, we select for both the algorithms the most
probable trajectory, i.e. the one with the highest confidence,
and named them CV-s and SFM-NN-s, respectively. This
way, in the prediction phase both models were reduced to
single-modal approaches. The comparative results reported
in Table 2 further confirm the effectiveness of our solu-
tion. For a visual representation of the behaviour of the
different approaches in Table 2, we offer in Fig. 8 a qual-
itative representation of the different predicted trajectories.
The CV model (Fig. 8-a) reached a good average
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performance. However, walls information and trajectory
curvature changing are not obviously predictable based on
the motion history. The FC1 (Fig. 8-b) properly predicts
linear trajectories, while it was not able to catch the turning
behaviour nor the environmental effects. Instead, even if only
the most probable trajectory is predicted (i.e., SFM-NN-
s), our model (Fig. 8-c) correctly predicted all the walking
directions and well approximated the pedestrian behaviours.

Finally, in the last column of Table 2 we reported the
performance of the IMM estimator in closed loop, that is with
the continuous update of the goal probabilities with respect to
the observations, i.e. we let the Ner2 behave as a filter when
new observations come. These experimental results are of
paramount relevance for an application of the solution to real-
time pedestrian motion estimation of service robots. Notice
that in this case, the performance are definitely increased and
the two metrics, MDE and FDE, are obviously the same, i.e.,
we come up with just one prediction.

D. Net1 PERFORMANCE EVALUATION

To further substantiate the analysis, we experimentally vali-
date the performance of the NetI network and make a compar-
ison with other methods in the literature, we used two widely
known human motion datasets: the ETH [37] dataset (with
the scene Hotel and ETH) and UCY [38] dataset (with scene
UCY, Zaral and Zara2). These datasets comprise real world
human trajectories in open scenarios, where the influence
of static obstacles is mostly negligible, thus the embedded
SFM model plays a major role. The performance were eval-
uated using the MDEk and the FDEk defined in (15), where
K = 1 since we are considering for Net/ just one model.
Unlike the leave-one-out approach used in [9], [36], we used
the synthetically learned Net! to validate the prediction accu-
racy over real-world data, and we use the same observation
and prediction window as in Section V-C, In Table 3 we show
the prediction errors comparison with the Constant Veloc-
ity (CV), the Constant Accelerated (CA) models and the
Feed Forward (FF) neural network, all implemented by [20].
Moreover, we report the comparison with the LSTM network
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TABLE 3. Prediction errors (average errors in AGV rows) with our model
(SMF-NN) and other state-of-the-art models on the real-world datasets.
The metrics are reported in meters.

Dataset Metric CV CA FF
MDE 027 095 159 0.15 0.69 0.34

LSTM SFM  SFM-NN

Hotel tpp’ 051 241 312 033 1.63 0.75
gy MDE 058 135 067 060 0.8 0.61
FDE 115 329 132 131 212 1.48

pcy MDE 046 079 069 052 089 0.42
FDE  1.02 203 138 125 212 1.02

Juraj MDE 034 059 039 043 06l 0.31
FDE 076 150 081 093 143 0.78

sy MDE 031050 038 051 084 0.27
44s ppE 069 130 077 1.09 196 0.67
AvG MDE 039 084 074 044 079 0.39

FDE 083 211 148 0.98 1.85 0.94

(LSTM) by [36], and with the standard isolated SFM model
(SFM) with its parameters optimised with the leave-one-out
approach on the real dataset.

At a first look, our model still shows good prediction
performance in each dataset, with an average MDE of about
40 cm with the exception of the ETH scenario. The per-
formance decrease in the case of the final displacements
measured by FDE: this result is mainly due to the strong
non-linearity of the real-world trajectories, which are not
easily followed by NetI in open loop. However, the results
are instead remarkable for the following reasons: 1. com-
pared with the optimally trained SFM, the results are rad-
ically better due to the presence of the NN that is able to
add flexibility to the predictions coming from the context;
2. notwithstanding the worsened training conditions of the
proposed approach, the reduced observation interval and
the absence of obstacles (which are the main novelty of the
proposed approach, as aforementioned), our results provides
similar performance than the other methods in the literature;
3. the proposed method, despite having similar performance
as state-of-the-art approaches (e.g., the CV) in open spaces,
has the potential to further model other effects, such as human
to human interactions, which will be the subject of future
investigations.

VI. ROBOTIC IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In this section we show a set of experiments conducted using
a real robot. We first describe the platform’s components
and the software framework, and then we will discuss the
performance of the proposed solution.

A. ROBOTIC PLATFORM

In order to create a suitable robotic platform for the exper-
iments, we equipped a two-wheeled unicycle robot with a
sensing system composed of a 2D Light Detection And
Ranging (LiDAR) and an RGB-D camera (see Fig. 9-a). The
RGB-D sensor is used for human detection and tracking,
while the LiDAR data are used to improve the tracking
performance, to localise the robot in the environment and
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to measure the distances to the surrounding obstacles. The
LiDAR (an RPLidar A3') has a view angle of 360°, a max-
imum measuring distance up to 40 meters, and is typically
operated at 20 revolutions per second. The RGB-D camera
adopted is an Intel® RealSense™ D435,% working in an
ideal range spanning from 0.5 to 3 m. In addition, rotational
encoders on each rear wheel and a visual inertial camera
facing upwards (an Intel® RealSense™ T265°) provides
odometry data.

The solution proposed in this paper was prototyped in
C++ and is comprised of two modules (see Fig. 9-b): detec-
tion and tracking and motion prediction. The algorithm was
executed on a Jetson TX?2 and on a Intel® NUC, both embed-
ded on the robot.

The detection and tracking module is used to: 1. provide
real-time information on the presence of fixed obstacles and
walls, 2. detect and track the human target. The human
tracking algorithm is derived from our previous work [39],
in which we first identify and track the person in the image
space of the camera, and then we merge the camera data and
the LiDAR readings in order to identify the 2D position of the
human target even in presence of occlusions and/or of other
moving entities. The origin of the fixed reference frame (F')
can be freely defined in the available map or w.r.t. the robot’s
initial position. The subsequent positions of the robot p, =
[xr, yr, ¢,]T are then retrieved with a standard localisation
algorithm [40]. The assumed sensing configuration allows us
to bring all the measurements taken by the robot in its relative
reference frame (R) back to the fixed frame (F') by subtracting
the relative robot motion from the measures. The pedestrian’s
2D positions are retrieved by the robot with the sensor fusion
approach of [39]. As regards the detection of obstacles walls
and fixed obstacles, we use the sequence of measurements
from the LiDAR and apply the following steps to reconstruct
the information of interest: 1. we group the points obtained
from the LiDAR into clusters, 2. we filter out spurious points
through Ramer-Douglas—Peucker algorithm [41], 3. we inter-
polate the remaining points and generate a 2D evaluation of
walls and obstacles boundaries. We observe that this infor-
mation is key to the computation of the repulsive forces in
the SFM-based prediction.

The motion prediction module implements the whole set
of algorithmic solutions proposed in this paper to predict the
motion of the human target: generation of the goal hypothe-
ses, NN based implementation of the SFM and likelihood
computation. After the network predictions, the future human
positions are obtained with the double integration of the SFM
model (1), with a discretization time §;, that is imposed by the
sensor with the lowest sampling frequency and is comparable
with the sampling time used in simulation. The training of
the NN was performed offline and the weights produced by
the training were transferred into the C-++ implementation.

1 https://www.slamtec.com/en/Lidar/A3
2https /Iwww.intelrealsense.com/depth-camera-d435/
3 https://www.intelrealsense.com/tracking-camera-t265/
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FIGURE 9. (a) Robot sensing system setup, consisting of LIDAR sensor (1) and RealSense D435
(2) for the detection and tracking, and RealSense T265 (3) for the visual odometry. (b) Scheme

of the robot framework.
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FIGURE 10. Different snapshots of the experimental results when a moving person (with blue solid trajectory) is tracked by a robot (red
dashed trajectory). Both, a human showing a forward motion (a-c) and a turning and stopping motion (d-f) are reported. The black dots
are the LiDAR data collected by the robot, while the coloured circles represent the predicted human goals at the snapshot time, each with

a confidence [L;‘ depicted with the colour mapping on the side.

The network inputs (human and wall positions) are the same
described in Section III-B, which are a commonplace in
mobile robotics applications. Hence, the embedding of the
SFM formulation in the neural network design allows us to
seamlessly perform predictions both in real and simulated
environments.

B. EXPERIMENTS WITH MOBILE ROBOT

The experimental evaluation of Ner2 with the multi-goal
strategy is carried out through actual experiments in our
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department at the University of Trento. In particular, we let
our robot moves and encounters people in a portion of a
hallway with multiple exits. In this setting, the robot navigates
in the corridors while it detects, tracks, and predicts the
motion of a nearby human. The robot has no prior knowledge
on the environment, nor the points of interest of the human.
Below we present qualitative results of the prediction mod-
ule. All the robot collected measurements, i.e. the robot path,
the human trajectory and the obstacle data, are reported in
the global reference frame. As shown in Fig. 10, while the
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robot detects a person which is moving along the corridor
in the same robot direction, the initial goal guesses are quite
equiprobable (recall that the probability is measured by [,Lf(
in (12)), but already catch the trend of a forward motion
(Fig. 10-a with reference to the right colour code describing
probabilities), while, after some additional samples of the
human positions are collected, the confidence of the goal
ahead is increased (Fig. 10-b) and propagated on new goals
after the update described in Section IV in (14) (Fig. 10-c).
In the bottom row of Fig. 10, instead, we show how a bended
human path is predicted, so that the initial guess on the goal
ahead (Fig. 10-d) is correctly transferred to the goal on the
side (Fig. 10-e) in light of the observed trajectory and the
corresponding prediction of a lateral motion. Finally, the best
confidence switches to the stop-goal as soon as the person
decides to remain on the spot (Fig. 10-f). These experimental
results are, to the best of the Authors’ knowledge, the first
actual evidence of a reliable human motion prediction carried
out in real-time by a moving service robot in a natural envi-
ronment that deals with random human beings in an unknown
scenario. We want to remark here that this is actually possible
if the knowledge gained by the NN is abstracted by the wired
model adopted.

VII. CONCLUSION

In this paper, we have shown a novel technique for predict-
ing human motion embedding the environmental contextual
information. Our idea is based on the combination of a neural
network with a famous physics inspired dynamic model, the
SFM. In the combination, each of the two approaches empha-
sises its own strengths and compensates for the weakness of
the other. Specifically, the SFM brings a structure to the NN,
reducing its complexity and the number of samples needed
for the training. Furthermore, the NN predictions become
explainable and physically interpretable. On the other hand,
the NN expresses its full power in terms of flexibility, and
of its ability to learn the complex parameter set of the SFM,
which would be very difficult to estimate in real-time by con-
ventional means for the strong non linearities of the model.
Our simulations and experiments reveal the full potential of
the marriage between the two worlds of physics inspired
models and neural networks.

Many important points remain open and will attract our
efforts in the near future. First, we plan to develop NN
embedding different models which are potentially more real-
istic than the SFM, first and foremost the HSFM [5] and
the PHSFM [42]. Second, we plan to extend the input of
the model to include interaction with other humans and
to account for unspoken signs (e.g., pose, eye gaze, facial
expression). Third, we plan to develop motion planning
algorithms designed to make the best use of learning in
predicting the human motion.
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