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ABSTRACT In this study, a Pareto efficient incentive-based real-time pricing model was designed for
balanced energy consumption scheduling (ECS) in a smart grid. In this model, the energy consumption of
each subscriber is monitored and updated in real-time by an individual smart meter, and a cost-effective ECS
is determined. The most recent research has not considered a balanced distribution of costs and profits to the
participants. In general, there is a trade-off between service providers and subscribers. A service provider
tries to maximize its profit, and a subscriber tends to minimize its cost. Therefore, the well-adjusted cost and
profit distribution of a service provider and subscribers is considered by controlling the incentive degree in
a Stackelberg game. The multiobjective genetic algorithm is applied to show the Pareto efficient solutions
of a service provider and subscribers. Furthermore, welfare is introduced as the third objective in proposing
a practical solution. It is used to select one of the multiple Pareto efficient solutions. Our model decreases
subscriber costs by 9.1% and the peak-to-average ratio (PAR) by 33.2%, on average, compared with non-
scheduling. The model also reduces the PAR by 11.3% and increases the provider’s profit by 34.9% and total
welfare by 60.0%, on average, compared with day-ahead scheduling.

INDEX TERMS Demand management, genetic algorithm, Stackelberg game, welfare.

I. INTRODUCTION
There are two major problems in current power grids: 1) inef-
ficiency from the high peak-to-average ratio (PAR) because
of uncontrolled and unpredictable energy consumption, and
2) unfairness resulting from the unbalanced distribution of
the costs and benefits to participants. The former issue
has been studied frequently. The PAR increases consider-
ably during summer and winter, and residential and com-
mercial power demands increase significantly. To address
this, ‘‘peaker’’ power plants have been prepared in certain
regions [1]. These plants are idle for most of the year and
only generate electricity under urgent conditions, e.g., when
the demand exceeds the upper limit of regular plants or a
blackout occurs because of a technical problem in a regular
plant. Consequently, such peaker plants have an intrinsi-
cally low efficiency and must charge more for electricity.
To address this problem, several studies on such solutions as
real-time pricing (RTP)-based consumption scheduling and
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contract-based consumption scheduling [2]–[5] have been
conducted. On the manufacturing side, the factory manager
tries to minimize production costs by avoiding peak-time
consumption through load shifting [6]. A load aggrega-
tion method from generation-follows-load to load-follows-
generation was proposed based on the perspective of the
provider [7]. In particular, to manage sudden load changes
and reduce the PAR, a combination of forecasting, shedding,
and smart direct load control by the Internet of things has been
proposed [8], [9]. However, recently, residential and commer-
cial subscribers have begun to consider rescheduling energy
consumption for more-effective cost and utility management
[10], [11].

In such a condition, the balanced distribution of costs and
benefits to subscribers and providers has not been consid-
ered in detail because of a lack of information and interest
conflicts among participants, even though an imbalance fre-
quently occurs [12]–[15]. Recently, the importance of fair-
ness in smart grids has been emphasized. Many studies have
considered the fairness of subscribers in the power grid,
especially for balanced cost distribution among subscribers,
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based on their energy consumption [16]–[18]. Javed et al.
considered the fairness of subscribers by proposing a fair
dynamic pricing model using unsupervised learning [19].
They clustered the subscribers into several groups and gen-
erated an appropriate hourly price for each group. However,
they did not consider the perspective of each subscriber.
Jacquot et al. analyzed dynamic pricing models for demand
management in terms of effectiveness and fairness [20].
Ren et al. developed and compared collaboration optimiza-
tion and cooperative game models in distributed energy
networks for effectiveness and fairness, respectively [21].
However, these studies only considered the fairness of con-
sumers/prosumers. In other words, they did not address the
profit distribution between a service provider and consumer
sides. Jing et al. proposed a Nash game-theoretic model for
a non-cooperative game among prosumers for a fairer profit
distribution [22]. However, their model is difficult to apply
if the number of prosumers increases owing to the complex-
ity of the model. Seok and Kim invented a modified RTP
model by measuring the sacrifice level of each subscriber and
achieved a fairer network [5]. Moreover, an approach in terms
of fair delay of energy usage instead of fair bill comparison
has been proposed [23].

However, to the best of the authors’ knowledge, the effect
of energy consumption scheduling on two conflicting inter-
ests, service provider profit maximization and subscriber cost
minimization, has not been analyzed and compared. Previ-
ous consumption scheduling models have not considered the
balancing of the two sides because it is difficult to define
and estimate. Advanced electricity pricing and consumption
scheduling are necessary to achieve a sustainable power grid
by collaborating with a service provider and subscribers.

Therefore, an intelligent, balanced pricing and consump-
tion scheduling model for a smart grid that uses Pareto
efficiency is proposed, the Pareto efficient incentive-based
RTP model. In Pareto efficiency, either a service provider or
subscribers cannot be better off without making the opponent
worse off. The proposed model is based on a Stackelberg
game between a service provider and subscribers. The service
provider acts as a leader, determining the unit electricity price
at first. Each subscriber acts as a follower, determining an
appropriate consumption schedule accordingly. The game is
a traditional problem in power grids [3], [24], [25]. The price
is updated in real time, i.e., the RTP-based model is applied.
The model uses an incentive factor to control the cost/benefit
distribution of the service provider and subscribers. An appro-
priate value of the incentive degree is determined that con-
trols how much the sacrifice of subscribers is considered in
their bills. In other words, how much the consumption of
a subscriber is relocated is reflected in calculating the bill.
Depending on the value of the incentive degree, the electricity
unit cost charged to each subscriber in each time slot can be
different, and the portion of the profit of the service provider
from each subscriber can also vary.

The Pareto efficient front between a service provider and
subscribers is obtained using a genetic algorithm (GA) that

searches for an appropriate value of the incentive degree. The
concept of welfare in economics was utilized to suggest a
practical solution among Pareto efficient solutions, i.e., the
solution where the total benefit minus the total cost is the
largest [26]. Recently, several studies have focused on this
welfare aspect in smart-grid management. Paramathma et al.
developed artificial neural network andGAmodels to find the
optimal bidding price and penalty cost for each consumer by
determining the load schedule with curtailment [27]. How-
ever, they did not consider the bilateral relationship between
service providers and consumers. Oh and Son proposed a
peer-to-peer (P2P) energy transaction model to maximize
social welfare by aggregating all producers and consumers
while considering the fairness of profit distribution [28].
They treated fairness as a constraint rather than an indepen-
dent objective. Bedoya et al. proposed a distributed algorithm
to optimize social welfare, e.g., minimizing the operation
cost while maximizing supplier surplus. However, the objec-
tives and constraints in their model had to be represented
as linear [29]. In the present study, the welfare objective
is considered as well as the profit and fairness of profit
distribution among participants. In addition, nonlinear func-
tions are applicable to the proposed model.

In this study, it was assumed that a smart grid consists of
millions of pieces and parts: meters, controllers, computers,
power lines, and communication equipment [4]. Each partici-
pant in a network, such as a generator, service provider (trans-
mission, switchyard), and subscribers, has individual control
and a communication tool called the ‘‘energy management
controller’’ (EMC). Moreover, each participant acts indepen-
dently and is self-interested. A smart grid makes it possible to
expect the consumption of subscribers and the electricity unit
price through real-time communication among participants.
Based on such shared information, each subscriber can deter-
mine amore cost-effective energy consumption schedule, and
the service provider can determine the appropriate price to
maximize the profit [30]. In this study, the part of a smart
grid consisting of the service provider and subscribers (red
dashed box in Fig. 1) is considered.

FIGURE 1. Framework of smart grid.

The remainder of this article is organized as follows. Previ-
ous studies are reviewed in Section II, and the Pareto efficient
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incentive-based RTP model is described in Section III. The
empirical demonstration of the performance of the proposed
model is described in Section IV, and conclusions and future
work are discussed in Section V.

II. BACKROUND RESEARCH
A. ENERGY SCHEDULING CONSUMPTION MODELS
Various pricing and consumption scheduling models have
been developed to mitigate price and consumption volatil-
ity with a high PAR. In particular, as smart grids become
available globally, it is essential to bring the electricity
network into the information age using digital technology.
Many elaborate models have been suggested [26], [31]–[33].
Day-ahead optimization has been proposed as a centralized
model [32], [33]. The electricity unit price in each time
slot is determined by the supply side in the day-ahead mar-
ket clearing process [32]. Based on the price, a centralized
decision-making unit determines the optimal consumption
schedule of subscribers and the planned supply. Moreover,
subscribers strictly follow a predetermined schedule, regard-
less of changes in conditions. However, this condition is
unreasonable in reality. In addition, such a centralized model
becomes inefficient as the number of subscribers increases,
requiring additional computational time. Moreover, there is
a risk of private information leakage. Hence, a distributed
decision-making model has been suggested as an alternative
method.

Distributed energy consumption models can consider the
multilaterally satisfied decisions of subscribers and ser-
vice providers. To manage the trade-off among participants,
a game-theoretic approach is applied. A Nash equilibrium
in a Cournot game among subscribers and a Stackelberg
game between a service provider and subscribers has been
used to suggest an optimal price and consumption schedule
[24], [25]. Mohsenian-Rad et al. proposed a distributed algo-
rithm derived from a game-theoretic relationship between
subscribers and a service provider; however, it only considers
the objective of subscribers, i.e., subscriber cost minimiza-
tion [3]. Thereafter, Chen et al. developed an innovative RTP
model supported by a Stackelberg game between subscribers
and a service provider [24]. In the model, backward induction
is used to obtain an equilibrium price and corresponding
schedule consumption. In the present study, a Stackelberg
game was modeled and applied to find the balanced price
and consumption schedule of subscribers by considering the
needs of a service provider and subscribers.

Furthermore, several drawbacks of the previous studies
were addressed. Most previous research used time-slot-based
scheduling, regardless of the actual continuous usage of spe-
cific appliances [8], [25], [34], [35]. Moreover, a penalty
cost caused by a delay in consumption reallocation was not
considered. The total consumption usage was considered
instead, but the continuity of energy usage per appliance was
neglected [30]. Hence, the model proposed in the present
study utilizes appliance-based scheduling to be more real-
istic and considers a penalty cost for the inconvenience of

relocated consumption. Furthermore, the objective function
of a service provider includes a mismatch cost owing to the
gap between the actual consumption and planned supply.

B. PARETO EFFICIENT INCENTIVE-BASED RTP MODEL
In most RTP-based models [3], [24], subscribers relocate
their consumption according to the price provided by a ser-
vice provider, which is predicted based on the total load
per time slot. However, this method is ineffective for price-
insensitive subscribers, and there is a lack of fairness in
the distribution of costs and benefits [36]. Tsaousoglou et al.
proposed a personalized RTP model for the fairness and
cost reduction of subscribers [37]. However, to the best of
the authors’ knowledge, an individually different electricity
unit pricing depending on the price sensitivity and degree of
sacrifice of each subscriber has not been investigated.

In previous studies, the electricity unit price in the
same period was assumed to be the same for all sub-
scribers. In the consumption scheduling models, each sub-
scriber relocates usage according to the given price and
utility function (price sensitivity). Hence, some subscribers
are more likely to relocate their intended consumption to
another period, such as an off-peak period. In contrast, sub-
scribers who are relatively price-insensitive tend to maintain
their preferred consumption schedules. In such a condi-
tion, a price-insensitive subscriber who does not sacrifice
to change use schedules can obtain a free advantage from
the rescheduling of price-sensitive subscribers, especially
during peak times. Borenstein et al. discussed the impor-
tance of the fair redistribution of electricity prices for such
a low-income census (i.e., price-sensitive subscribers) [2].
Aurangzeb et al. designed a fair pricing scheme, especially
for low-energy consumers, based on load consumption fore-
casting by machine learning [38]. However, both studies
achieve fairness only for a specific group of consumers.
To address this weakness, an individually different electricity
unit pricing model was designed that depends on the total
load per time slot and sacrifice degree of each subscriber [5].
As a result, the proposed incentive mechanism prompts more
subscribers to relocate their power use and better distribute
subscriber costs.

In the present study, the need of the service provider to
maximize profits is also considered. The previous schedul-
ing models did not consider the balanced cost and benefit
distribution to subscribers and service providers. Subscriber
cost minimization and utility maximization have been the
focus of most previous studies [16], [17]. Baharlouei and
Hashemi studied the trade-off between the efficiency and
fairness of subscribers in a smart grid [16]. They designed a
billing mechanism to enhance the fairness of subscriber bills
by considering subscriber flexibility in pricing. Zhang et al.
also considered fairness enhancement of smart homes in
smart buildings with distributed energy resources and stor-
age [17]. They developed mixed-integer linear programming
to determine the consumption schedule of each home and
the production plan, considering the fair distribution of cost
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among homes andminimizing total cost. However, estimating
the extent of the balance is difficult. Moreover, there is no
factor for adjusting the degree of balance.

Many methodologies have been applied to deal with mul-
tiple objectives among participants in the smart grid, such
as the evolutionary algorithm [39], the bat algorithm [40],
genetic algorithms [41], particle swarm optimization [42],
and the whale optimization algorithm [43]. Soriano et al.
designed an autonomous model integrating the multiobjec-
tive bat algorithm, Pareto front, and fuzzy decision-making
models [40]. They considered two objectives: decreasing
expenses in electrical energy purchasing and increasing the
electrical energy sale profits of each participant. However,
they assumed that the P2P trading problem was strictly con-
vex. In addition, the scale of the objective functions was
normalized. Aghajani and Ghadimi proposed a multiobjec-
tive particle swarm optimization model to address demand
management in microgrids, harmonizing the minimization of
operating costs and pollution emissions [42]. They showed
the distribution of the Pareto criterion of the two objectives.
Their approach is similar to that of the present study. Li et al.
developed an adaptive reference point based on a large-scale
multiobjective whale optimization algorithm that divides and
conquers a cluster of decision variables [43]. They considered
the objectives of various participants but did not include
fairness and welfare. To the best of the authors’ knowledge,
studies that consider the profit, fairness of profit distribution,
and welfare of a network in demand management using a GA
have not been conducted. In addition, the GA can effectively
handle nonlinear functions.

Hence, in this study, the balance between subscriber costs
and service provider profit is achieved by applying Pareto
efficiency with the GA. By controlling the value of the incen-
tive factor, called the ‘‘incentive degree,’’ one can not only
carefully reduce subscriber costs but also balance the cost and
profit distribution between subscribers and a service provider.
More details regarding this model are provided in Section III.

III. METHODOLOGY
A residential power system comprising a service provider
and subscribers is considered (Fig. 1). A service provider
purchases electricity from the wholesale market and sells it to
subscribers. The energy consumption schedule of each sub-
scriber is determined by its own controller (EMC) according
to the informed price by the service provider and the decision
mechanism. After the final schedule of each subscriber is
determined, the service provider sends the corresponding
electricity. In this study, transferable energy consumption was
considered.

The RTP model proposed by Chen et al. [24] was modi-
fied. The price function was changed to be continuous, and
the method for charging the electricity unit cost was revised.
This was based on the incentive degree and sacrifice degree
of each subscriber. Depending on the consumption rearrange-
ment degree of each subscriber, i.e., the sacrifice degree, the
electricity unit cost is different, even in the same time slot.

There are ns subscribers (n = 1, 2, . . . , ns). Each sub-
scriber has na appliances (a = 1, 2, . . . , na). The energy
consumption schedule of the subscriber during T time slots
is considered (t = 1, 2, . . . , nt ).

NOTATION
n subscriber n(n = 1, 2, . . . , ns)
a schedulable appliance a(a = 1, 2, . . . , na)
t time slot t(t = 1, 2, . . . , nt )
N set of subscribers (n ∈ N )
A set of schedulable appliances (a ∈ A)
An set of schedulable appliances of subscriber n
T set of time slots (t ∈ T )
L number of repetitions
ln,a operation duration of appliance a ∈ An
cn,a power usage (kW) of appliance a ∈ An
φn,a penalty cost of appliance a ∈ An per slot due to

the delay
on,a initial requested starting time of appliance a ∈ An
sn,a starting time of appliance a ∈ An

(a subscriber’s decision variable)
dn,a maximum allowable delay of appliance a ∈ An
ω electricity unit price coefficient (service provider’s

decision variable, ω ≥ 1)
γ incentive degree (decision variable of the Pareto

efficient RTP model, 0 ≤ γ ≤ 1)
qt planned supply for time slot t
zt actual consumption for time slot t
α wholesale price coefficient
θt wholesale price per unit electricity in time slot

θt = α · qt (1)

εt additional price due to the gap between planned
supply and actual consumption in time slot t .

εt =
g(qt , zt , ω)∑T
t=t0 g(qt , zt , ω)

·Mt0 (2)

g (qt , zt , ω) =


1

(qt − zt + 1)ω
qt > zt

(zt − qt + 1)ω qt < zt
0 qt = zt

(3)

∗
∑T

t=t0 εt = Mt0 =
∑T

t=t0 ε0; ε0 is the
comparable constant price gap in some (alternate)
fixed rate pricing scheme.1

pn,a,t power consumption of appliance a ∈ An in
time slot t .

ppn total delay cost of subscriber n

ppn =
∑
a∈An

(
sn,a − on,a

)
·φn,a (4)

ap average delay cost of subscribers.
β mismatch cost coefficient.
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δn sacrifice degree of subscriber n

δn = (ppn − ap)/ap (5)

εn,t individualized εt of subscriber n in time slot t .

εn,t = (1− γ · δn) · εt (6)

πn,t retail price of subscriber n in time slot t

πn,t = θt + εn,t (7)

TC total costs of subscribers when incentive
mechanism is applied.

TC0 total costs of subscribers without
incentive mechanism (γ = 0).

TP profit of service provider when incentive
mechanism is applied.

TP0 profit of service provider without
incentive mechanism (γ = 0).

Fit_s objective function (fitness function) of GA in
terms of subscriber side

Fit_s = (TC − TC0) (8)

Fit_p objective function (fitness function) of GA in
terms of service provider side2

Fit_p = −(TP− TP0) (9)

TW total welfare (benefit of participant minus total cost
of participant) when incentive mechanism
is applied3

TW =

∑
alln,a

∑sn,a+ln,a

t=sn,a
πn,t ·pn,a,t

−

∑T

t=1
β (zt−qt)2

}∑
alln,a

∑sn,a+ln,a

t=sn,a

{(
sn,a

− on,a
)
·φn,a + πn,t ·pn,a,t

}
= −

{∑
alln,a

∑sn,a+ln,a

t=sn,a

(
sn,a − on,a

)
·φn,a

+

∑T

t=1
β (zt − qt)2

}
(10)

TW 0 total welfare without incentive
mechanism (γ = 0).

Fit_w objective function (fitness function) of GA,
in terms of the total welfare aspect

Fit_w = −(TW − TW 0) (11)

Here, Eqs. (1), (2), (3), and (7) from the previous RTP-
based model proposed by Chen et al. [24] are referred to. The

retail price, πi,t , by a service provider is the sum of the whole-
sale price, θt , and the price gap, εt , as in Eq. (7). The whole-
sale price influences the EMC scheduling so that the peak
load is reduced while the price gap decreases. The wholesale
price, θt , is defined in Eq. (1). The price gap, εt , is designed to
influence the difference between the actual demand, zt , and
the planned supply, qt . Here, εt is designed to be proportional
to g (qt , zt , ω), and it decreases with qt minus zt , i.e., the
larger the value of qt minus zt , the lower the price gap, εt ,
so that the EMC is more likely to schedule the appliance to
operate during this period, and vice versa [24]. If an appliance
requests to start at time slot t0, εt is calculated using Eq. (2).
Here, g (qt , zt , ω) is set as in Eq. (3) and εt as in Eq. (2). The
price function was partially revised to make it continuous,
and the method of computing the electricity unit cost per
individual using Eqs. (5)–(7) was modified. The electricity
unit cost varies among customers depending on the degree of
shift in the consumption of each subscriber, which is called
the ‘‘degree of sacrifice.’’ This value can be calculated by
comparing the delay cost of each subscriber with the average
delay cost of the subscribers using Eq. (5). Based on the
degree of sacrifice, the individualized εt is calculated as in
Eq. (6). Finally, the retail price of each subscriber is calcu-
lated and affected by the degree of sacrifice and the incentive
degree, as in Eq. (7).

A. SERVICE PROVIDER ASPECT
A service provider attempts to maximize its profits — see
Eq. (12). After a subscriber submits a consumption schedule,
the service provider solves Eq. (12) and updates ω∗. The
service provider then notifies subscribers of the updated price
information. The first term, εn,t · pn,a,t , is the net profit
from subscribers, and the second term, β (zt − qt)2, is the
mismatch cost from the gap between the planned supply and
actual consumption. Moreover, ω∗ is obtained by backward
induction [44]. The set of feasible discrete ω values is used,
� = {ω1, ω2, . . . , ωW }, where W = |�|.

max
ω∈�

∑T

t=1

∑
n∈N

∑
a∈An

εn,t · pn,a,t − β (zt − qt)2 (12)

B. SUBSCRIBER ASPECT
After a service provider informs subscribers of the current
price information, each subscriber finds sn,a∗ to minimize
subscriber cost and notifies the service provider of this cost.

min
sn,a

(
sn,a − on,a

)
·φn,a +

∑sn,a+ln,a

t=sn,a
πn,t ·pn,a,t

s.t.on,a ≤ sn,a ≤ on,a + dn,a, sn,a + ln,a ≤ T (13)

C. PARETO EFFICIENT INCENTIVE-BASED RTP
Algorithm 1 describes the performance of the proposed
model. From the iterative decision process between a service
provider and each subscriber, the equilibrium points of ω∗

(by a service provider) and sn,a∗ (by each subscriber) are
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obtained. They then update πn,t and zt using two-way com-
munication. Here, γ ∗ is independently obtained using a GA.4

After an initial setting (Step 0), a service provider updates
the price information (Step 1, SP). Thereafter, for each time
slot, Subscriber i finds and updates si,k∗ by considering the
current price information and consumption schedule, πi,t
and zt , respectively, updates zt , and then notifies a service
provider of all of this (Step 1, SB). A service provider then
updates ω∗ and the price information again and notifies Sub-
scriber i of this (Step 1, SP). Based on the updated infor-
mation, Subscriber i finalizes si,k∗, updates zt , and sends the
information back to the service provider (Step 2, SB). Finally,
a service provider updates ω∗ and the price information
(Step 1, SP). This procedure is repeated within each individ-
ual of each generation in the GA. Three fitness measures are
used: Fit_s, Fit_p, and Fit_w, i.e., three objectives. The Pareto
front is shown in Fig. 3.

In this model, γ ∗ is continuously updated/recorded until
the exit condition of the GA is satisfied. After the Pareto
efficient γ ∗ is found by the GA, i.e., the Pareto front is
plotted, as in Figs. 2–3,5 some value of γ ∗ is applied to the
L repetitions to obtain the average performance of several
measures, e.g., TC , TP, TW , and PAR (Figs. 4–7). Detailed
results are discussed in the following section.

IV. EXPERIMENTAL RESULTS
Appliances have an on-peak period from 5:00 p.m. to
8:00 p.m., i.e., they consume more electricity then. Settings
reported previously [24] are referred to, and the value of α is
updated based on an earlier study [45]. The 80 subscribers are
homogeneous; thus, depending on the appliance type, cn,a,
ln,a, ϕn,a, and dn,a are given as described in Table 1. Here,
ln,a follows an exponential distribution with a mean of ln,a.

TABLE 1. Parameter setting I.

TABLE 2. Parameter setting II.

Each time slot is 10 min, T is 144 (24 h), and L is 300.
Other price- and cost-related parameters are listed in Table 2.

4Here, γ ∗ is the best solution obtained by the GA.
5A three-dimensional Pareto efficient front is described in Fig. 3, and

Fig. 2(a) represents the same Pareto front but as a two-dimensional one:
a service provider profit and subscriber costs. Fig. 2(b) represents the score
diversity for each objective.

Algorithm 1 Pareto Efficient Incentive-Based RTP Model
Genetic algorithm for multiple objectives (gamultiobj) to
find γ ∗

________________________________________________
Initial Setting: Subscribers set the initial consumption sched-
ule; service provider collects the information.

________________________________________________
Until the exit condition6 is satisfied.
________________________________________________
Service provider’s
side (SP) Subscribers’ side (SB)
Step 1 (SP): Update
ω∗ by Eq. (12) and
price information,
and send the updated
price information
to subscribers.

For t = 1 : nt
For i = 1 : ns

For j = 1 : na
If any appliance,
of which si,k = t ,
exists;
Step 1 (SB): Find si,k∗

by Eq. (13); Send
the corresponding
information to service
provider.
Step 2 (SB): Based on
the updated price
information, find si,k∗

and update zt ,
accordingly.
Send the information to
service provider.
End

End
End

End

End

∗Sequence of procedure: Step 1 (SP) - Step 1 (SB) - Step 1
(SP) - Step 2 (SB) - Step 1 (SP) - Step 1 (SB) . . .

To validate the performance, three scheduling models are
compared: 1) nonscheduling (M1), 2) day-ahead scheduling
(M2), and 3) the proposedmodel (M3). The simulation exper-
iments were coded using MATLAB.

Fig. 2(a) represents the Pareto front as two dimensional,
i.e., between service provider profit and subscriber costs. Any
star point in the Pareto front can be an efficient solution.
This represents the set of consumption states wherein it is
impossible to make subscribers or service providers better off
without making the opponent worse off. Choosing one of the
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FIGURE 2. Pareto efficient surface by GA (fun1: Fit_s, fun2: Fit_p, fun3:
Fit_w).

states is associated with distributing the costs and benefits to
both parties. As the star moves from the left upper corner to
the bottom right corner, the incentive degree becomes smaller
(0 ≤ γ ≤ 1).
For guidance, when γ = 0, subscriber costs are decreased

by an average of 8.0% compared with nonscheduling. The
PAR and service provider profit are decreased by an average
of 35.7% and 20.3%, respectively, compared with those of
nonscheduling. However, when γ = 1, subscriber costs are
decreased by an average of 26.9%, in contrast to nonschedul-
ing, and the PAR and service provider profit are decreased by,
on average, 33.9% and 72.8%, respectively, compared with
those of nonscheduling. This is intuitively understandable.
As the incentive degree increases, subscribers take more
advantage of it by active consumption relocation, i.e., sub-
scribers can reduce the cost while the service provider profit
decreases.

Hence, the third fitness value, Fit_w. as in Eq. (11), was
used to provide a practical solution. The point with the
highest TW (the smallest Fit_w) is shown in Fig. 2(a) and
Fig. 3. Fig. 2(b) represents the individual scores of the three
fitness measures Fit_s, Fit_p, and Fit_w. The ranges of
Fit_s, Fit_p, and Fit_w are approximately between −0.86
and −0.61, between 0.33 and 0.49, and between 6.26 and
13.49, respectively. Table 3 presents a summary of the GA
results.

TABLE 3. Summary of GA result.

To recognize the position of the marked point in Fig. 2(a)
more clearly, a three-dimensional Pareto efficient front is

FIGURE 3. Pareto efficient three-dimensional surface by GA.

FIGURE 4. PAR of three scheduling models.

shown in Fig. 3, and the corresponding point is marked with
data. When the incentive degree at the point is applied, sub-
scriber costs decrease on average by 9.1%, the PAR decreases
by 33.2%, and the service provider profit decreases by 22.4%,
on average, compared with nonscheduling (Figs. 4–6). Even
though the TW of the proposed model is lower than that
of nonscheduling (TW of M1: −8.7, TW of M3: −16.4),
M3 achieves a significant reduction in the mismatch cost
(Fig. 7). This result is reasonable because the satisfaction of
subscribers regarding utility is not considered when calculat-
ing TW . In the same context, M1 has a serious inefficiency
problem because of its high PAR. However, in the case of
M2, subscriber costs are lower than those of the other models.
However, the service provider profit is also the lowest, and
there is a high mismatch cost problem because of the low
efficiency.
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FIGURE 5. Subscriber costs of three scheduling models.

FIGURE 6. Service provider profit of three scheduling models.

FIGURE 7. Total welfare of three scheduling models.

The results indicate that there is no universal solution to
satisfy all objectives: low subscriber costs and a high service
provider profit, as well as a low PAR. Furthermore, because
there is a trade-off among the objectives of participants,
the solution negotiated by an appropriate model must be
addressed in reality. Hence, in the present study, considering
the aspect of the total welfare in the model is proposed,
as described above.

V. CONCLUSION
In this study, the unbalanced distribution of costs and benefits
to the participants in a smart grid was addressed. A Pareto
efficient incentive-based RTP model was developed that can
control the degree of cost and benefit distribution to sub-
scribers and a service provider. To balance the conflicting
interests of both sides, the concept of welfare was introduced
as a third objective and used to find the most appropriate
Pareto efficient solution. As a result, our model lowers sub-
scriber costs by 9.1% and the PAR by 33.2%, on average,
compared with non-scheduling. The model also decreases the
PAR by 11.3% and increases the provider’s profit by 34.9%
and total welfare by 60.0%, on average, compared with day-
ahead scheduling.

However, the Pareto efficient front depends highly on the
characteristics of the subscribers. Hence, in the future, the
model should be extended. Heterogeneous subscribers should
be considered. In particular, the effects of different incomes
and electricity use patterns of each subscriber on the general
performance of a Pareto efficient incentive-based RTP model
should be analyzed. Various negotiated solutions need to be
investigated by applying other objectives, such as various
fairness measures.
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