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ABSTRACT Decarbonization requires new energy systems components to mitigate fossil fuel dependency,
for instance electric vehicles and heat pumps, forming a sector integrated energy system. Energymanagement
is a promising approach to integrate these devices more efficiently by orchestrating the respective consump-
tion and generation. This study investigates the advantage of an advanced energy management algorithm
that is applied to varying energy system scenarios. The energy management algorithm is based on economic
principles and the system topology is represented by a rooted tree. Grid elements form parents, which act
as auctioneers and devices act according to type specific demand and supply functions. This algorithm is
compared to an approach where devices are not coordinated, at a system scale of six households. In order
to account for different characteristics of the energy system, the different scenarios are defined according
to a morphological analysis and are analysed by means of Monte-Carlo simulation. These scenarios vary
the PV generation, heating technology, and building insulation. It is shown that the algorithm reduces peak
loads across all scenarios by around 15 kW. Other key performance indicators, such as own consumption and
self-sufficiency show a dependency on the scenarios, although the algorithm outperforms the reference in
each one, achieving an increase in own consumption of at least 13 p.p. and 22 p.p. in terms of self-sufficiency.

INDEX TERMS Energy management, Monte-Carlo methods, scenario analysis, systems modelling.

I. LIST OF ABBREVIATIONS
PV Photovoltaic.
CHP Combined Heat and Power.
BEV Battery Electric Vehicle.
HES Home Energy Storage.
BAK Backup.
DHW Domestic Hot Water.
SH Space Heating.
TS Time Series.
PLR Part Load Ratio.
HP Heat Pump.
COP Coefficient of Power.
LPG Load Profile Generator.
HDD Heating Degree Day.
DSS Degree of Self-Sufficiency.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shafi K. Khadem.

II. INTRODUCTION
Electricity generation based on renewables such as wind
and solar contributes to decarbonize the energy system by
replacing fossil fuels [1]–[3]. To further push decarboniza-
tion, sector integrated energy systems are developed that
enable electricity usage for mobility and heating [4], [5].
Integrating the heat and electricity sector is especially inter-
esting because it also provides flexibility due to heat stor-
ages and variable power operation of the heat generating
devices [6]. Heat pump (HP) systems provide energy for heat-
ing by using electricity and low temperature environmental
heat. They enable the utilization of local energy, provided by
PV systems [7], [8]. Micro-CHP systems are another promis-
ing technology. These systems co-generate heat and elec-
tricity efficiently by the utilisation of waste heat [9].
A CHP system can be based on fuel cells that use hydro-
gen [10]. Another field of application for hydrogen fuel cells
is individual mobility. For mobility application as well as for
fuel cells, production of hydrogen should be as less carbon
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intensive as possible in order to decarbonate the energy
system [11]–[13].

An alternative to fuel cells are battery electric vehi-
cles (BEV) that directly use electricity to provide mobility.
Fuel cell based vehicles offer bigger driving ranges [14],
whereas BEVs exhibit higher energy efficiencies [15]. Fur-
thermore, the transformation of the energy system adds loads
and generators especially in the low voltage grid, imposing
new challenges. For example, adding BEVs increase the volt-
age drop [16] and additional PV systems can cause voltage
band violations [17].

The transformation of the energy system is an ongoing pro-
cess with different possible paths that are usually described by
complex scenario modelling. Resulting paths feature vastly
different outcomes either due to endogenic factors such as
modelling approach or due to exogenic factors that com-
prise assumed policies and parameters [18]. For example, the
split of generation technologies can vary, depending on the
model [1]. Furthermore, scenario analyses usually have low
spatial resolution, for example countries or even continents,
which can not fully represent disaggregated effects that are
caused on a high spatial resolution [1], [19]. Therefore, the
effect caused by different technologies on the high spatial
resolution requires further investigation.

Energy management algorithms are developed in order
to optimally utilize existing infrastructure and system com-
ponents. These algorithms orchestrate an energy system
and optimize its operation with respect to one or more
key performance indicators, such as cost, CO2 emissions,
self-sufficiency, own consumption, grid utilization, or peak
load. Constraints express technical limitations due to storage
capacity, power limitations, or others. The algorithms are
based on a broad range of principles, ranging from linear
optimization [20], mixed integer linear optimisation [21],
auction mechanisms [22], [23], machine learning [24], game
theory [25], [26] and meta heuristics [27]. However, all these
algorithms are usually tested within limited scope, using case
studies. For example, in [28] the test case consist, among
generation and storage nodes, of four loads. Such case studies
barely cover the overall real word complexity because load
time series vary heavily due to individual behaviour and
components [29], [30]. For a household, the implemented
technologies are dimensioned according to the specific load
requirements, e.g. persons of a household. A simple case
study hardly covers the complexity of the real world and
a more comprehensive investigation can provide additional
insight into the capabilities of an algorithm. Therefore, a sys-
tematic algorithm evaluation is proposed.

To evaluate the effect of energy management within
a broad scenario space, this study proposes Monte-Carlo
simulation. In Mote-Carlo simulation, input parameters are
considered uncertain. Distributions are defined for these
parameters, which then yield output variables through a
model. These output variables form an empirical distribution
from which statistical variables are derived to describe the
entire system. This methodology can be applied to investigate

complex systems where an analytical solution is not
possible [31], [32].

In literature, Monte-Carlo simulation is employed to test
renewable generation and load scenarios [33]. However, that
study does not consider sector integrating technologies. Fur-
ther application is the uncertainty evaluation of a BEV for
a sector integrated energy system [34], [35] and throughput
analysis of wireless networks that steer energy systems [36].
A Monte-Carlo approach enables the dynamic dimensioning
of energy system components, considering uncertainty from
PV generation [37]. Additionally, multiple uncertain param-
eters can be investigated, for example load, generation, and
market price [25].

This study contributes to the evaluation of expected grid
requirements in the future and, thus, enhances grid plan-
ning capabilities by applyingMonte-Carlo simulation. In par-
ticular, it systematically determines the advantage of an
energymanagement algorithm by comparing it to a reference.
A broad range of energy systems with a high special resolu-
tion is studied, based on different scenarios. The small-scale
system heterogeneity is addressed by stochastically varying
parameters.

This study is structured as follows: Section III describes
the algorithm that is based on previous work of the
authors [38]. Section IV describes how the different scenarios
are implemented, Section V shows the modelling approach to
individualize the system components in terms of time series
and parameters, Section VI describes the simulation set-up,
Section VII shows the results, and Section VIII discusses the
results and draws the conclusions.

III. AUCTION-BASED ENERGY MANAGEMENT
This section describes the algorithm, which is used for energy
management, according to [38]. Furthermore, the HP and
CHP technologies are integrated and the respective param-
eterizations are described.

A. ALGORITHM DESCRIPTION
The energymanagement algorithm is based on the continuous
Japanese auction. In this auction, an auctioneer states a price
and each interested buyer replies with the quantity it is willing
to buy at the respective price. The auctioneer increases the
price until demand matches supply.

This basic auction mechanism is altered in three ways for
energy management application. First, descending the price
during an auction is allowed to integrate generation units.
Second, price limits are introduced to ensure the termination
of the auction. Third, the starting price is set dynamically,
depending on the outcome of the previous auction.

The components of the energy system are organized in
a rooted tree. The leaves of the tree represent electricity
consuming or producing devices. The parents represent a
component of the underlying electricity grid. Each parent has
defined actions during an auction, e.g. achieving a residual
power of 0W. For each auction, a parent states an initial price
and the children reply with a quantity of power according to
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that price. Therefore, the summed quantity can be evaluated
for each parent in the tree. A parent can change the price to
alter the quantity of power received and the component are
required to update their power response. Note that all leaves
must follow the law of supply and demand, thus the general
effect of changing the price is known to a parent. The auction
terminates if the goal of an auctioneer is fulfilled or no further
improvement is possible.

For the rest if this study, the price is called steering signal
to emphasize its role, which is to the behaviour of the single
components in interest of the energy system demands and
targets.

B. ADDED TECHNOLOGIES
To investigate a broader scenario space, demand and supply
functions for a CHP system, equipped with a backup-heater
(BAK), and a HP system are implemented. These functions
model the reaction of the respective component according to
the steering signal, i.e. determining the power. In its core,
they are based on heuristics and can be adopted to individual
preferences as they only have to follow the law of supply and
demand with respect to the steering signal.

For this study, we only consider CHP systems with a hot
water storage and a BAK. The storage reduces the peak
thermal power demand of the generation unit by buffering
thermal energy. The CHP-units simultaneously generate elec-
tricity and heat. Therefore, the steering signal and the storage
temperature are the most important parameters for the CHPs
demand/supply function. If the storage temperature is low,
the heat demand is high and if the steering signal is low, the
electrical power generated is low. In addition, two plateaus
are added that shift the generation towards higher steering
signals and adapt to different storage temperature situations.
One prevents the CHP unit from running at high or max-
imum temperature and the other one ensures thermal gen-
eration at minimum storage temperature. In-between these
two regions, a transition region, based on the cosine function
that enables smooth and flexible power adaptation, is located.
The demand and supply function relies on the heat storages
minimum and maximum temperature θ storagemin and θ storagemax , the
steering signals minimum and maximum value prmin and
prmax, the CHP systems maximum electrical power PCHPmax .
Equation 1 - 2 describe the demand and supply function of
a CHP unit and Equation 3 - 4 the BAK one.

prdec(θ, pr)

= pr+
θ
storage
max + θ

storage
min − 2θ

θ
storage
max − θ

storage
min

·
(
prmax − prmin

)
(1)

PCHP(θ, pr)

=


PCHPmax if prdec(θ, pr) ≥ prmax,
0 if prdec(θ, pr) ≤ prmin,

PCHPmax · cos
(π
2
· fpr(θ, pr)

)
otherwise,

(2)

where fpr(θ, pr) =
1−prdec(θ,pr)+prmin

prmax−prmin
.

FIGURE 1. Electricity generation of the CHP-BAK system.

The BAK heating system is modelled binary, therefore it
can be either on, consuming a power of PBAKmax , or off. The
activation is modelled with the decision function prBAKdec (θ )
that is based on a threshold temperature, lying above themini-
mum storage temperature according to1θBAK . Additionally,
a dependency on the steering signal is implemented in the
demand functionPBAK(θ, pr). Note that the BAK system con-
sumes electricity, whereas the CHP-unit produces electricity.

prBAKdec (θ )

=
prmax − prmin

1θBAK
·

(
θ
storage
min − θ

)
+ prmax (3)

PBAK(θ, pr)

=

{
PBAKmax if pr ≤ prBAKdec (θ ) ∧ θ < θ

storage
min +1θBAK

0 otherwise.

(4)

This electricity and heat co-dependency follows [39] as:

PCHPth (θ, pr)

PCHP(θ, pr)
=

{
pc(PLR) if PLR ≥ 0.05
0.68 otherwise,

(5)

where pc(PLR) = 1.078 · PLR4
− 1.974 · PLR3

+ 1.500 ·
PLR2

− 0.282 · PLR+ 0.6838 and PLR = PCHP(θ,pr)
PCHPmax

.
The electricity to heat conversion efficiency of the BAK

system is assumed as 1.
Figure 1 shows the electricity generation of the combined

CPH and BAK system in dependency of the steering signal
and the storage temperature and Figure 2 shows the respective
heat generation.

The HP demand function consists of two regions. One
region spans the low storage temperatures and stimulates
heating with high power. The other region spans the high
storage temperatures at which the HP consumes less or no
power. Both regions emphasize power consumption at low
steering signals. However, a plateau and a valley are added to
reduce frequent power variations. Equation 6 - 9 describe the
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FIGURE 2. Heat generation of the CHP-BAK system.

demand function in detail and Figure 3 shows the respective
function.

The parameter flim(θ ) =
θ
storage
min +θ

storage
max −2θ

θ
storage
max −θ

storage
min

divides the high

and low power regions.
If flim(θ ) ≥ 0:

ddec(θ )

= prmin + flim(θ ) · prmax − prmin (6)

PHP(θ, pr)

=


PHPmax if pr ≤ ddec(θ )

PHPmax

prmax − prmin
· (pr−ddec(θ ))+PHPmax otherwise

(7)

If flim(θ ) < 0:

ddec(θ )

= prmax + flim(θ ) · prmax − prmin (8)

PHP(θ, pr)

=


0 if pr ≤ ddec(θ )

PHPmax

prmax − prmin
· (pr− ddec(θ )) otherwise

(9)

The conversion from electricity to heat is modelled assum-
ing a constant COP.

An inertia is applied to the heat pump and the CHP unit.
This inertia only allows the power to be changed by 10 % of
the nominal power per interval. Furthermore, a hysteresis is
implemented to prevent successive on and off switching. For
example, frequent on and off switching can otherwise occur
during summer times when high PV-power is available, the
heat storage is almost fully charged, and the heat demand is
low. The heat losses would reduce the storage temperature
slightly below its maximum temperature. The high PV-power
can result in a low steering signal that triggers a HP to run
for a short time until the maximum temperature is reached.

FIGURE 3. Demand function of heat pumps.

This procedure would be repeated often which is an undesired
operation mode.

IV. MONTE-CARLO SIMULATION
This section describes randomized parameters for the
Monte-Carlo simulation. The parameters are divided into
scenario dependent and scenario independent parameters.
Scenario dependent parameters affect the probability of cer-
tain devices being present, thus defining the scenario space.
Scenario independent parameters describe general energy
system variations.

A. SCENARIO SPACE
From the morphological analysis performed authors of this
study in [40], three factors are taken: PV-generation capac-
ity, heating technology, and building insulation, to define
different energy system morphologies. Theses three factors
show the most distinct localization of scenarios based on
an energy evaluation for an entire year. Each factor has
two values (define the scenarios) and three possible realiza-
tions (define the actual values in the energy system). The
PV-generation factor values are named high PV (hPV) and
low PV (lPV), the heating technology ones are HP and
CHP, and the building insulation ones are modern insula-
tion (mInsu) and old insulation (oInsu). Each factor value
defines different probabilities for the realizations. Further-
more, a single realization is assumed as dominating, increas-
ing its probability. For example, the value hPV has three
realizations: The dominating realisation high PV (20-30 PV
modules) has a probability of 50%, medium PV (20-30 PV
modules) has 25%, and no PV has 25%. These realiza-
tions yield 6.8 kWp to 10.0 kWp, 3.4 kWp to 6.8 kWp, and
0 kWp, respectively. Both other factors, heating technology
and building insulation, are also assigned with different prob-
abilities for each realization. The heating factor defines the
type of technology, which is implemented: CHP, HP, or no
electrical heating (non-el.). The insulation factor determines
Ispez. For passive, Ispez = 15 kWh/(m2 a), formodern Ispez =
50 kWh/(m2 a), and for old Ispez = 150 kWh/(m2 a).

Figure 4 shows the scenarios, factors, and according prob-
abilities of each realisation.
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FIGURE 4. Scenarios, investigated by Monte-Carlo simulations; the
permutations of high PV or low PV-generation, CHP or HP dominated, and
modern or old insulation are shown. The length of a single bar-element
shows the respective probability. Therefore, each bar sums to one.
In total, eight scenarios are investigated.

B. SCENARIO-INDEPENDENT RANDOM FACTORS
The scenario-independent random factors are: Household
structure, BEV probability, alignment of a PV system, and
home energy storage (HES) availability.

The distribution of the household structure is modelled
following statistical data for Germany. Singles without chil-
dren, couples without children, singles with children, and
couples with children household structures are considered.
Their share in the overall system is derived from census
data [41]. Furthermore, household types are divided into
subtypes. Households with children are divided into one
and two children households. According to data from [42],
67% of singles with children have one child and 26%
have two childes and for couples, 53% and 39% have one
child and two children, respectively. In addition, the employ-
ment status is taken into account. For singles with children,
an employment rate of 75.5% is assigned. For couples, the
employment rate is 79.85% [43]. 40.3% of couples with
children households have only one person being employed.
Households without children are modelled with an employ-
ment rate of 92% [44]. Due to demographics, a certain part
of the households are modelled as retired. The retirement rate
is set to 19% [45]. The assumptions for household modelling
are: Only one person of a household can be unemployed, the
maximum number of children is two, and no children live
in households with the retired employments status in order
to reduce the model complexity and emphasize the major
demographical structures.

Table 1 shows the distribution of households.
Battery electric vehicles (BEV) are considered to con-

tribute to carbon dioxide reduction targets in the future,
especially if electricity is generated with low carbon inten-
sity [46]. However, there are other visions for future mobility
provision, such as shifting away from car dependence towards
public transport, cycling, or walking [47]. To account for this

TABLE 1. Demographics for the Monte-Carlo simulation. Four general
types are modelled: Singles without children, couple without children,
singles with children, and couple with children. The general types are
further disaggregated to sub-types and the share of the sub-type on the
overall populations is given. These shares are considered as probabilities
in the Monte-Carlo simulation.

uncertainty, the probability of adding a BEV is set to 66%.
If a BEV is used, the technical parameters are gained from
currently available models of different size.

A further random parameter is PV-alignment. This param-
eter comprises the azimuth and inclination of the system.
The azimuth has three distinct values, west, east, and south.
Primarily, southern azimuth PV systems are built due to
higher energy yield over the year [48], thus the souther
azimuth is allocated with a probability of 80% and the others
with 10%. The inclination is modelled by a normal distribu-
tion (µ = 30, σ = 5).

Another random parameter models if a PV-system is com-
bined with a HES system. In Germany, 50% of recently build
systems combine a PV with an HES system. Additionally,
dropping prices of HES will increase the economic feasibil-
ity [49]. Therefore, the probability of combining a PV-system
with a HES is increased and set to 75%.

V. TIME SERIES AND COMPONENT MODELLING
This section describes the time series modelling and compo-
nent dimensioning.

A. TIME SERIES MODELLING
For this study, electrical load, domestic hot water demand
(DHW), BEV schedule for each vehicle, space heating, and
PV generation time series are required.

1) ELECTRICAL LOAD AND DOMESTIC HOT WATER
The electrical load and DHW time series are calculated using
the Load Profile Generator (LPG) [50]. This software tool
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calculates the respective time series based on desires of
household inhabitants. These desires are subsequently trig-
gered to start an activity, where each activity is associated
with a load profile. Using predefined household types, the
LPG requires the household structure to be given, which
describes the profession status and age of each member.

2) BEV SCHEDULE
The BEV schedules are modelled to be in line with the activ-
ities that shape the electrical load time series. This way, situ-
ations, such as arriving home and starting a washing machine
afterwards, are considered. For BEV schedule modelling, the
sequence of triggered activities from the LPG is extracted
for each household member. Each activity is categorized as
either a mobility demanding or a non-mobility demanding
activity. Further, mobility demanding activities are catego-
rized into three main purposes: Shopping, work, and spare
time. For these three main purposes, distributions are fitted to
model the trip length, according to Mobilität in Deutschland
(MID) data [51], which is a nationwide transport behaviour
survey of German households. It was found that the purpose
work is most accurately approximated by a Burr distribution
(c = 1.36, d = 1.71, location = 0.01, scale = 19.7),
whereas shopping and holiday are approximated by a gener-
alized inverse Gaussian distribution (p = −1.53, b = 0.29,
location = −0.58, scale = 37.3 and p = −0.94, b =
0.18, location = −0.67, scale = 60.2, respectively). For this
study, all distributions and the respective sampling are imple-
mented using the SciPy package [52], therefore for parameter
description follows the SciPy documentation.

For the shopping and spare time purposes, a new distance
is drawn for each time the respective activity is triggered.
The distance from the household to the working place usually
stays constant. Therefore, the work purpose distance of each
household member is drawn once for all trips in the schedule.
Departure and return times are determined from the activation
time of a mobility demanding activity and its consecutive
one, respectively. The departure time is set equal to the
triggering time of the mobility demanding activity and the
triggering time of the subsequent one defines the return time.
In Figure 5, the process for creating a single schedule is
shown.

Furthermore, interdependencies of BEV usage between
household members are considered. For each household, the
number of available cars is determined by drawing a sam-
ple that describes the number of cars available, considering
MID data [51]. The availability of a car for each person is
determined, considering that only adults are allowed to use
a car. If this is not the case, the individual schedules are
merged. If two trips overlap during merging, one of the trips
is discarded randomly, assuming that the discarded trip is not
madewith an electric car, but with anothermeans of transport.

3) SPACE HEATING
The space heating (SH) demand is based on the floor area,
insulation, and outdoor temperature. The floor area is drawn

FIGURE 5. Flowchart of modelling a single BEV-schedule.

from distributions fitted to data from [41]. These distribu-
tions are fitted for: Singles, singles with children, couples,
and couples with children. The areas for singles and sin-
gles with children are sampled from an exponentially mod-
ified Gaussian distribution (K = −2.25, location = 59.2,
scale = 13.7 and K = −1.64, location = 42.5, scale = 15.8,
respectively), couples from a reciprocal inverse Gaussian
(µ = −0.059, location = −37.4, scale = 7.32), and couples
with children from a Jhonson SB (a = −0.089, b = 1.44,
location = 7.92, scale = 199). The insulation is determined
by the realized scenario. Data fromOldenburg, Germany, [53]
is used for the outdoor temperature. The annual heat demand
is calculated as:

ESH
a = Ispez · Ahouse hold · 1 a (10)

The annual heat demand is distributed over the entire
year using the Degree-Day-Method [54]. If the daily mean
temperature θref,d is lower than the reference temperature
θthreshold(Ispez), the respective day requires heating. Building
inertia is accounted for by considering the temperatures of
previous days. θthreshold(Ispez) is calculated by linear interpo-
lation, modelling the dependency on the household insulation
Ispez [54]. The reference temperature for each day d is calcu-
lated as:

θref,d=
θd + ·0.5 · θd−1 + 0.25 · θd−2 + 0.125 · θd−3

1+ 0.5+ 0.25+ 0.125
(11)

The degree day nHDD is calculated according to:

nHDD,d =

{
θref,d if θrefd < θthreshold(Ispez)
0 otherwise

(12)

The space heating demand of each day is calculated as:

ESH
d = ESH

a ·
nHDD,d∑
d nHDD,d

(13)

The procedure is repeated on the intra-day time scale to
get the space heating demand for each minute, where the
temperature inertia terms in Equation 11 are omitted.
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4) PV TIME SERIES
The PV generation is modelled according to the sameweather
data as used for the space heating time series. For modelling,
the software tool pvlib [55] is used. Each PV time series is
based on the same module type and inverter. The inverter can
convert up to 10 kWp. Further parameters, i.e. the number
modules, the system azimuth, and the system inclination, are
extracted from the realized scenario.

B. COMPONENT DIMENSIONING
The components of an energy systems are dimensioned with
respect to household specific requirements. For this study,
detached houses, which accommodate a single household are
the system boundary for dimensioning the heating system
and HES. For each system, only discrete values are allowed,
which reduces calculation complexity and reflects limited
availability of system sizes in the real world market.

1) HES
The HES capacity dimensioning is based on [56]. Their
methodology describes a technical approach of sizing a
grid connected PV-battery system based on the degree of
self-sufficiency (DSS). In this study the PV-size is deter-
mined by the scenario, thus, the only variable parameter
is the HES capacity. The HES capacities are CHES =
{0 kWh, 0.5 kWh, . . . , 12 kWh} and the DSS for each capac-
ity is calculated according to:

DSSi(CHES)=
E load

− Egrid+(CHES)
E load ∀CHES

∈ CHES (14)

where E load is the energy demand and Egrid+(CHES) the
energy from the grid, considering a certain capacity of the
HES. The capacity at which the DSS is closes to target
value DSStarget is selected. For this study, DSStarget is set to
75% because higher values would result in rapid decrease of
profitability [57]. Mathematically, this procedure is described
as:

CHES
selected = argmin

CHES
|DSS(CHES)− DSStarget| (15)

The power of a HES is calculated considering the medium
power to capacity ratio is gained from [58]:

PHES(CHES
selected) = CHES

selected · 0.63
kW
kWh

(16)

Furthermore, if a household consists of a BEV or a HP,
the HES has usually higher capacities [59]. Therefore, if a
household consists of a BEV, CHES is increased by 3 kWh
and if it consists of a HP, CHES is increased by 1 kWh,
according to [59]. The efficiency is drawn from a log-gamma
distribution (c= 0.93, location= 0.96, scale= 0.014), where
the parameters are fitted according to battery efficiencies
from [58].

2) HEATING SYSTEM
The heating system is characterized by the thermal power
of the generator Pth and the volume of the domestic heat
storage V sys. These values are determined by the summation
line method [60]. That method requires the cumulative heat-
ing demand time series. For a given day d and minute m, the
cumulative heating demand curve is calculated as

Eheat-c
d (m) =

m∑
i=1

ESH
i,d +

m∑
i=1

EDHW
i,d , (17)

where each minutes i hot water demand and space heating
demand is denoted by EDHW

i,d and ESH
i,d , respectively. The sum

is taken over the first m minutes of the day d .
The thermal power is dimensioned according to an

optimization that searches for the minimum thermal
power that is required to supply the cumulative heating
demand. That procedure is individually performed for each
day d as:

min Pth
d

(18a)

subject to Pthd

m∑
i=1

1ti − Eheat-c
d (m) ≥ 0 ∀m (18b)

where Pth
d
∈ {500W, 1000W, . . .}.

The energy storage capacity is required to cover the max-
imum distance between heat generation and demand curve
of each day. However, the maximum distance often occurs
in the later portions of the day that features low domestic
hot water demand. In that case, the storage only absorbs
excess generation. Therefore, smaller storage capacities can
also be used if a control mechanism for the heating device
is implemented. A sequence of operating states that describe
either the state on or off, s = (s1, . . . , sM ) with sm ∈ {0, 1}
is defined to control the heating device for the M intervals.
Therefore, the distance between the demand and generation
curve is calculated as:

Esys
d = max

m

(
Pthd 1t

m∑
i=1

si − Eheat-c
d (m)

)
, (19)

and the storage capacity for a day d is calculated according
to:

min Esys
d (20a)

subjected to Pth1t
m∑
i=1

si − Eheat-c
d (m) ≥ 0 ∃s∀m. (20b)

We round Esys
d to the next 0.1 kWh.

The required storage energy defines the volume of the
storage according to:

V sys
d =

Esys
d

ρH2O · cpH2O ·
(
θ
sys
min − θ

DHW
) , (21)

Finally, the design thermal power and storage volume
are selected according to their maximum values over
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FIGURE 6. Dependencies on implemented technologies of a single house on the scenario, random factors, data, and models. Green boxes refer to
models or data processing steps. Blue boxes show scenario specific steps. Orange boxes indicate random steps, in which a parameter is drawn on the
same distribution for each scenario. The purple boxes describe the final node compilation.

all days:

Pth = max
d

(Pthd ) (22)

V sys
= max

d
(V sys

d ) (23)

In [13], a review on micro-CHP systems is presented.
Established technologies, like Diesel powered CHP, range
from 9 - 30 kW. However, hydrogen-based CHP systems
are rather small. They are commercialized up to 5 kW. This
respective maximum system size also results in the lowest
operational cost [61]. For this study, if a hydrogen-based CHP
system requires more than 5 kW of thermal power, an elec-
trical BAK heating device is added to cope the additional
thermal power.

VI. SIMULATION SET-UP
This section describes the links between scenarios, time
series, and component dimensioning to configure a house-
hold. Moreover, the topology of the simulations, which
describes a small district, the parameterization of the energy
management algorithm, and the principle of the reference,
which is used for comparison, are described.

A. MODEL LINKING
For this study, each device is represented by its own node. The
energymanagement algorithm is based onmultiple nodes that
are orchestrated by auctioneers. The reference control scheme
considers the devices independently of each other. Therefore,
a node centric modelling enables simple calculation as all
relevant data is condensed in the nodes attributes.

Weather data and the results of the LPG are the base for
each household configuration.

The household electrical load is modelled by the LPG and
used as the basis for the load node. The electrical load node
is a part for each household.

The BEV model, described in Section V-A2, is used
to define the BEV schedules. The BEV-scenario deter-
mines how many of these are included in the simulation
in order to account for transport mode shift. According to
Section IV-B, an EV is added with a probability of 66%,
otherwise it is assumed that public transport or other transport
modes are used. Technical parameters, i.e. the maximum
charging power PBEV and capacity CBEV , are determined
randomly from a list of currently available BEVs.

The PV-system is modelled independently of the other
nodes. From the scenario, the number of modules is
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determined, which directly affects the maximum power of
the PV-system. Azimuth and inclination are drawn randomly
and serve as input parameters for pvlib, which returns the
PV power time series.

PV systems can be combined with a HES to further
match the electricity production and demand. The capac-
ity CHES and the maximum charging/discharging power
PHES(CHES

selected) of the respective HES are determines with the
model described Section V-B1. The availability of an HES is
determined randomly, preventing an HES to be added to each
PV-system.

With the sum-line model from Section V-B2, the required
thermal power Pth and storage volume VH2O of the heating
system are modelled. The type of heating system imple-
mented is determined with respect to the scenario. Figure 6
shows the required data and models for each step. These
calculations are performed for each household individually
and six configured household shape the energy systems under
consideration.

B. TOPOLOGY AND ALGORITHM PARAMETER
The simulations are carried out for a small district size energy
system. Each district consists of six households; each house-
hold is dimensioned according to Section VI-A. Therefore,
each household consists of one to six devices. For the Monte-
Carlo simulation, 400 different districts are modelled apply-
ing the algorithm and the reference control scheme to each of
them.

As described in Section III-A, the algorithm coordinates
the devices by means of auctioneers. For this study, the
household connection auctioneers are configured to limit
the summed power of the household between −14 kW and
14 kW. If the power lies within these limits, the auctioneer
aggregates and forwards the indicated power of its children.
If the power lies outside of these limits, the steering signal is
adapted. The district auctioneer is set as a buffer auctioneer
according to [38]. It is configured to achieve a residual power
of 0 kW. However, if the load is low (< 5 kW) at high steering
signals (80% of prmax), the auction is terminated. This allows
to charge EVs at low power if no other significant loads are
present and preservesHES capacity for times of high demand.

The reference control represents a status-quo approach.
Each house is considered individually, thus the power of the
district is the summed power of the connected houses. The
devices are controlled as follows: Each heating device imple-
ments a hysteresis control, which uses the minimum storage
temperature to activate the device and the maximum storage
temperature to switch it off. The BEVs charge immediately
with maximum possible power as they arrive at a respective
house, and the HESs balance the power at the respective grid
point. Balancing means, if excess power is generated by the
devices of an household and the connected HES is not fully
charged, the HES charges with the residual power, limited
with its maximum power. In case of a power deficit, the HES
operates vice versa.

Algorithm 1Monte-Carlo Simulation
1: Select scenario under investigation
2: for j in [1, . . . , 400] do
3: for i in [1, . . . , 6] do
4: Draw scenario specific parameters according to

Section IV - A
5: Draw scenario independent parameters according to

Section IV - B
6: Generate household Hi according to FIGURE 6
7: end for
8: Combine households H1 to H6 to district Dj according

to FIGURE 7
9: Run the algorithm and reference for district Dj

10: Calculate the KPIs EKj from the results of the algorithm
and reference

11: end for
12: Evaluate the distributions for each KPI K for the algo-

rithm and reference

FIGURE 7. Topology of the energy system for the Monte-Carlo
simulations.

FIGURE 8. Convergence of the maximal power for the eight scenarios
applying the algorithm.

The SOCs and storage temperatures at the beginning of the
simulations are treated as uniformly distributed random vari-
ables that lie between the respective minimum and maximum
value to avoid starting conditions which artificially trigger all
devices to consume power, thus causing high peak loads.

C. MONTE-CARLO SIMULATION
Algorithm 1 describes the Monte-Carlo simulation procedure
in pseudocode. It combines the elements from Section III
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FIGURE 9. Violin plot of: Own consumption, self-sufficiency, min. power, and max. power distributions of the algorithm and reference for the different
scenarios. The algorithms results are shown in blue at the top half for each curve and the references ones in orange at the bottom half for each scenario.
The first, second and third quartile is tagged a dashed line.

to Section VI. These section cover dimensioning as well as
operation, therefore the complexity can hardly be expressed
in a single equation. The inherent complexity furthermore
motivated the application of Monte-Carlo simulation.

VII. RESULTS
This section describes the convergence of the Monte-Carlo
simulation and the results in terms of own-consumption, self-
sufficiency, peak power, minimal power, energy exported and
imported, the total energy produced by the CHP systems, and
the energy discharged by the HESs.

1) CONVERGENCE
TheMonte-Carlo method is a common tool to quantify uncer-
tainty, however its application requires the assessment of its
convergence [31]. Therefore, Figure 8 shows the mean of
the peak power, calculated from an increasing number of
simulations for each scenario. If the number of simulations
is low, a single run heavily affects the mean. Therefore, big
variations can be observed if the number of simulations is
lower than 50. The simulation runs per scenarios are set to
400. At this number, no significant variations of the mean
are observed. Furthermore, it keeps the computational effort
manageable.
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2) BASIC KPIs
In Figure 9 and 11, the results from the algorithm and the
reference are compared with respect to the eight different sce-
narios. These figures are violin plots, displaying the statistical
characteristics: 1st quartile, median, and 3rd quartile as well
as the overall distribution by a kernel density estimation. Fur-
thermore, Table 2 describes the differences of the algorithms
and references medians for each scenario.

Figure 9 displays the four key performance indicators:
Own consumption, self-sufficiency, minimal, and maxi-
mal (peak) power.

The algorithm increases the median own consumption,
compared to the reference. As two percentages are compared,
percentage points (p.p.) describe the difference between
two values. The minimal increase is achieved for the
hPV-CHP-mInsu scenario, where the algorithms median own
consumption is 13.0 p.p. higher than the references one. For
the lPV-CHP-oInsu scenario, the difference showed the high-
est value, i.e. 23.4 p.p. That scenario has the highest share of
flexible generation, due to the combination of CHP with poor
insulation and low PV generation. Therefore, the flexibility
of the CHP can be utilized by the algorithm. The scenarios
with the lowest increase in own consumption are a combina-
tion of modern building insulation and high PV generation.
It demonstrates that the high generation limits the potential
of the advanced energy management algorithm because the
flexibility requirement is reduced.

Self-sufficiency is also increased across the scenarios. The
median is 21.5 p.p. to 30.4 p.p. greater for the algorithm,
compared to the reference. The biggest increase is achieved
in the lPV-CHP-mInsu scenario. As for own consumption,
the biggest advantage of the algorithm occurred in scenarios
that consist of low inflexible generation shares. The mod-
ern building insulation fosters the algorithms advantage over
the reference. A reduced heating demand results in lower
CHP utilization. The algorithm tailors the reduced generation
to the demand, thus archiving a bigger advantage over the
uncoordinated reference approach. Note the degree of self
sufficiency is still higher for scenarios that combine CHPwith
poor building insulation due to the higher heating demand as
can be seen in the top right panel of Figure 9. In general, the
algorithm achieves high values of self-sufficiency across all
the scenarios, as indicated by the high probability mass that
lies within 90% to 100%.

For minimal power, the differences between both control
approaches are small. The proposed algorithm achieved a
higher median (closer to zero) across the scenarios, but only
in the range of 0.6 kW to 3.7 kW. This can be explained by
the effect of the inflexible PV generation. Peak generation
occurs in summer around noon. At this time, heat demand
is usually low and EVs are not available, as they are used
for getting to work. However, there is an improvement
gained by the algorithm because is can decrease the fed in
power from CHP systems in times of high PV generation.
That effect is shown by the slightly reduced feed-in power.
For CHP dominated scenarios, the difference range

FIGURE 10. Box plot of the summed power for the grid connection, EV,
CHP, HES, and HP during reference peak load times. Household and PV
values are identical at each investigated time interval and, therefore not
shown. The results are gained from all scenarios.

from 1.3 kW to 3.7 kW, whereas HP dominated ones range
from 0.6 kW to 2.4 kW.

The algorithm reduces the median peak loads by 15 kW to
17 kW. Although the median for all the scenarios are similar,
the biggest reduction was achieved by CHP dominated sce-
narios, indicating that the algorithm utilizes the CHP systems
to mitigate peak loads.

To further investigate the peak load differences, the powers
for each component at peak load times is shown in Figure 10.
Figure 10a displays the algorithms results and Figure 10b
the references ones. The comparison shows that different
components contribute to reduce the algorithms peak loads.
The biggest difference lies in EVs power distribution. This
agrees with literature, which identifies EVs as a major power
demand factor [62]. The median and extreme values are
around 20 kW bigger for the reference. Furthermore, the heat
pump electricity consumption is lower for the algorithm,
as indicated by the smaller box. Besides the load side, higher
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FIGURE 11. Energy results for different scenarios. The amount of energy (heating plus electrical) is calculated for the entire duration of a single
simulation (1 year). As for Figure 9, the first, second and third quartile is tagged a dashed line. Note the energy from the CHP system does not
consider the energy produced by the backup and the HES energy only considers the discharged energy.

generation also mitigates peak load. This is shown by bigger
boxes for CHP generation and the box for the HES is further
located in the discharge region.

3) ENERGY EVALUATION
Figure 11 displays the distributions of exported and imported
electrical energy, the energy produced by the CHP systems as
well as the discharged energy of the HESs. It shows that the
improvements in self-sufficiency and own consumption are
achieved by reducing export and import. A significant pro-
portion of the imported energy probability mass lies between
0MWh to 10MWh. Therefore, energy export is overall
higher than import, as more probability mass lies at higher
values for energy export. Furthermore, the energy from CHP
in the bottom panel of Figure 11 indicates the advantage of

improved building insulation. The scenarios which combine
CHP with old building insulation, hPV-CHP-oInsu and lPV-
CHP-oInsu, result in higher energy produced by the CHP
systems. This reflects the high space heating demand in these
scenarios. The HP dominated scenarios showmultimodal dis-
tributions and for each of them one maximum lies at 0MWh.
These maxima are caused be scenario realisations that do not
implement CHP systems, which is much more likely for the
HP dominated scenarios than for the CHP ones. Additionally,
it shows the independent generation profiles of the CHP and
PV system, as the PV scenario has a minor effect on the CHP
energy production.

The simulations for the algorithm and the reference are
based on identical heat demand; in theory, leading to equal
overall energy production for the CHP. However, the backup
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TABLE 2. Differences between the median of the algorithm and reference for the KPIs. They are calculated as: KPIalgorithm − KPIreference. Note that a
positive difference for min. power means that the respective value is closer to 0kW as the minimum power is lower than 0kW in each scenario. The
difference between two percentage values is given in percentage points (p.p.).

systems are not considered. The difference between the distri-
butions for the algorithm and the reference is caused by vary-
ing utilization of the backup systems. The algorithm makes
scarcer use of the backup system and, therefore, increases the
total energy produced by the CHP system.

The algorithm reduces the discharged energy for sce-
narios that are characterized by a higher share of CHP
systems, especially if combined with high share of bigger
PV systems. Additional, for HP scenarios, the available PV
power determines the HES utilization. If high HP shares
are combined with the high PV scenario, the algorithm dis-
charges slightly more energy from the HESs, whereas for
low PV scenarios the reference utilize the HESs to a higher
degree.

VIII. DISCUSSION AND CONCLUSION
The proposed Monte-Carlo simulation has the advantage that
the results are distributions. This makes the results more
robust compared to a single case study, as a wider range of
system configurations is explored. The results can be used for
grid planning and allow an integrated view of sector-coupled
energy systems. In the conventional planning and simulation
process, predefined time series serve as a basis [63]. In this
study, however, synthetic time series, based on demographic
data, and scenarios are used. Furthermore, the proposed sim-
ulation methodology is based on the behaviour of individual
persons, which is why it is not necessary to resort to simul-
taneity factors. These simultaneity factors are frequently used
means of grid dimensioning [64].

From the different scenarios, it is shown that intelligent
energy management provides varying benefit. The algorithm
achieves the greatest advantage over the reference for scenar-
ios with low inflexible generation. For low PV scenarios, the
algorithm achieves an own consumption that is 17.3 p.p. to
23.4 p.p. higher than the result from the reference, whereas
the high PV scenarios result in a difference of 13.0 p.p. to

18.1 p.p. This difference demonstrates the improved utiliza-
tion of scarce local electricity by the algorithm.

A big advantage of the algorithm is peak load reduction.
This is primary achieved by controlled charging of the BEVs.
Other contributing factors are higher fed in power by the
CHPs and HESs as well as lower power operation of the HPs.

Furthermore, the selection of KPIs plays a crucial role
in evaluating the scenarios. This is shown as scenarios with
poor building insulations result in higher own consumption.
However, the CHPs generate more energy, which results in
higher fuel demand for the respective districts.

The results are a basis for decision-making in order to
evaluate the advantages of intelligent energy management.
Specifically, this paper compares an algorithm based on coor-
dination with a reference that does not require coordination.
If the reduced peak load avoids grid expansion, cost are
saved which can compensate the additional communication
hardware expense. Uncertainty, for example due to varying
EV integration, is taken into account by the proposedmethod,
performing a risk assessment. In addition, the scenario-based
evaluation can compare different technology concepts with
each other. Here, it can be weighed up what the effects of
higher PV output, heat pumps instead of CHP systems, or the
share of EVs in the system is.

The scenario space and probabilities of the technologies
are based on assumption that are derived form [40]. Vary-
ing the probabilities alter the results as they determine the
occurrence of a technology in this Monte-Carlo approach.
They play an important role if the edges of the distributions
are the focus of investigation. The results can be interpreted
as a general trend of the influence of a technology if all but
one scenario factor remains constant. Furthermore, additional
technologies, for instance district heating systems, can be
integrated to cover a bigger scenario space.

The weather time series in this work only repre-
sents one region. Variations could arise due to different
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weather patterns. For example, PV systems are more effective
in the southern German regions than in the North. This spatial
effect is not covered in this study as the location is not part of
the scenario space.

Furthermore, the technology choices consider single inde-
pendent households. Systems that are connected to a district
heating system with a single big generation unit for all house-
holds or apartment buildings are not modelled. However, the
algorithm shows distinct advantages over the reference in
terms of reduced peak load. Reducing these loads is espe-
cially interesting for weak electricity grids. These grids are
often found in rural regions where detached single family
houses are build, motivating the parameter selection for this
study.

Another factor of uncertainty is demographics. This study
is based on German average data for the household distribu-
tion. The residential structures can exhibit a bigger degree of
homogeneity, e.g. due to high shares of people with similar
personal living condition.

At last, sociological characteristics, for example a pref-
erence for renewable electricity, are not considered. These
could be integrated into the demand and supply function in
order to model them and increase the flexibility of the overall
system.

The methodology of this study can be applied to differ-
ent use cases as the algorithms under consideration can be
freely exchanged. For this study, the methodology serves to
compare an energy management algorithm to a reference
that represents an uncoordinated system. The same physical
component models are used for the algorithm and the refer-
ence. Only the control functions for these components vary.
In some cases, algorithms model components with a varying
level of detail, for instance linear vs. non-linear. This has to
be considered if the methodology is applied to other energy
management approaches.
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