
Received October 15, 2021, accepted November 14, 2021, date of publication December 24, 2021, date of current version January 5, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3136153

Evaluating the Performance of Machine Learning
Algorithms in Gaze Gesture Recognition Systems
JIAYAO LI, SAMANTHA RAY , VIJAY RAJANNA , AND TRACY HAMMOND
Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA

Corresponding author: Samantha Ray (sjr45@tamu.edu)

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the IRB under Approval No. IRB2015-0529D, Dated August 23, 2017.

ABSTRACT Despite the utility of gaze gestures as an input method, there is a lack of guidelines available
regarding how to design gaze gestures, what algorithms to use for gaze gesture recognition, and how these
algorithms compare in terms of performance. To facilitate the development of applications that leverage gaze
gestures, we have evaluated the performance of a combination of template-based and data-driven algorithms
on two custom gesture sets that can map to user actions. Template-based algorithms had consistently high
accuracies but the slowest runtimes, making them best for small gesture sets or accuracy-critical applications.
Data-driven algorithms run much faster and scale better to larger gesture sets, but require more training data
to achieve the accuracy of the template-based methods. The main takeaways for gesture set design are 1)
gestures should have distinct forms even when performed imprecisely and 2) gestures should have clear
key-points for the eyes to fixate onto.

INDEX TERMS Eye tracking, gaze gestures, gesture design, human-computer interaction, multimodal
interaction.

I. INTRODUCTION
Eye gaze serves as a rich form of interaction modality—
thanks to the inherent connection between a person’s gaze and
their attention. This relationship comes from how the brain
processes visual stimuli by concentrating on focal points [1].
In other words, people focus their eyes on objects of interest
in order to pay attention to them. Consequently, the gaze input
can be used as a direct replacement for a mouse [2], especially
in applications that rely greatly onmouse input but use limited
keyboard input [3]. In fact, there are advantages in using gaze
input over a traditional mouse: using eye movement is faster
than using a mouse [4], and looking at an object in order
to select it is notably intuitive due to the aforementioned
relationship between focus and gaze [2], [3], [5].

To use gaze-assisted interaction, sensors and related equip-
ment can be built into, or placed in front of, computer mon-
itors to track a user’s eye movements. Applications such
as desktop control [6], typing [7], [8], target selection [9],
entering passwords [10], [11], game control [12], [13], task
prediction [10], visual analytics [14], and giving commands at

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

a distance [15] can be performed hands-free just by tracking
the user’s gaze on the screen.

With gaze-assisted interaction, the user points at the target
UI element with their gaze, and selection can be achieved
with different methods such as a blink, dwell-time, touch,
voice, or even a secondary input device like an external
switch [3], [5], [9], [12]. All these selection methods have
limitations related to usability and performance, and most
of these issues are due to the need for accurate gaze input.
Gaze gestures, on the other hand, can perform well even
with inaccurate gaze input [10], but they cannot be used as
a selection method. Instead, gaze gestures have the ability
to be mapped to perform specific actions such as closing
a window, opening a new tab, and scrolling a page. Gaze
gesture-based interaction involves recognizing specific eye
movement patterns, functioning as a direct analogue to touch
gestures. The key advantage in using gaze gestures over
the other methods of interaction lies in the fact that gaze
gestures achieve high accuracy even if the system calibration
is disturbed [10], [16]. Gaze gestures do not scrutinize for
calibration error nor require precise pointing as they utilize
relative eye positions [16]. Their main weakness, however,
is that it can be challenging to distinguish gesture commands
from unintentional eye movements.

1020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3189-8899
https://orcid.org/0000-0003-2665-1189
https://orcid.org/0000-0002-7565-5963

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

Naturally, each interaction method comes with its respec-
tive downsides. Gaze and blink-based interactions demand
a higher cognitive load than gaze gesture-based interactions
and are less stable and less accurate than cursor move-
ments [17], [18]. Gaze and dwell-based interactions use eye
fixation to keep track of where the eyes focus and how long
they stay there; as a consequence, dwell-based interactions
are more prone to errors than gaze gesture-based interac-
tions [12]. Gaze and touch-based systems have limitations
such as camera occlusion with the user’s arm, inaccuracy due
to hardware limitations and the nature of eye movements,
eye-hand coordination difficulties, and inability to perform
multi-selection [19]. Gaze and voice-based systems generally
performworse than other interactionmethods: using gaze and
voice is less effective than using a traditional keyboard [20],
and using gaze alone is faster and requires less coordination
effort [21]. Considering these limitations with various selec-
tion methods, there exists a need to further explore the poten-
tial of gaze gesture-based interaction systems. While gaze
gestures have not been used to control UI elements, gaze ges-
tures have been used as a way to authenticate users [10], [11]
and gaze typing [7], [8]. Despite various advantages, the main
issue using gaze gestures for interaction is the difficulty of
developing an effective gaze gesture-based system. It requires
a close examination of the subtle nuances such as the unique-
ness of gestures, their length, whether the gesture path is easy
to remember and perform, and then it is compounded with the
limitations of rapid eye movements. The effective methods
for overcoming the difficulties haven’t been well explored.

Hence, to support the development of gaze gesture-based
interaction, this work focuses on evaluating the accuracy and
time performance of five methods for gesture recognition
with respect to different gesture types and training sample
sizes. The five methods studied in this paper are the fol-
lowing: template matching (TM) [22], Pearson correlation
(PC) [23], decision tree (DT) [24], backpropagation-based
neural network (NN) [25], and genetic algorithm-based neu-
ral network (GA) [26]. These algorithms were trained on
gaze gesture data collected via user studies. To reflect the
broad range of potential users of a gaze gesture-based system,
we did not set physical constraints on the participants and
selected them randomly. The participants aged from 18 to
32 years old. Based on the performance evaluation of the
algorithms with respect to accuracy and speed, we aim to
determine which algorithms suit accuracy-centric tasks and
speed-centric tasks, respectively.

Overall, the results show that the algorithms can be split
into high accuracy and high-speed categories. Template
matching and Pearson correlation take significantly more
time to process than the decision tree algorithm and neu-
ral network-based methods. Increasing the training set size
exacerbates this problem, slowing both template matching
and Pearson correlation down even further. While slow, the
template matching and Pearson correlation algorithms were
unmatched in accuracy, having high accuracy even with few
training samples. The inverse was true for the decision tree

algorithm and neural network-based methods: they were con-
sistently fast but their accuracy dependedmore on the training
set size. Another major difference between the template-
based methods (template matching and Pearson correlation)
and the data-driven methods (decision tree and the neural
networks) is thatmodels of the former algorithmswill have no
variation in performancewhile the latter’s will have a range of
performance based on the specifics of each model’s architec-
ture and initialization. To that end, the neural network-based
methods’ models achieved the highest individual accuracies
during evaluation. But these high-performing models are
countered by models that did not generalize as well, caus-
ing the neural network-based methods’ average accuracies
to be lower than those of template matching and Pearson
correlation. Comparing performance between gesture sets,
simple gestures required less training data to achieve the same
performance than more complicated gestures. These findings
are supported with confusion matrices and F-measures to
quantify and evaluate the performance. We believe the results
from our study will assist in the development of gaze gesture-
based interfaces by providing insight into algorithm choice
and gesture set design.

II. RELATED WORK
Gaze-assisted interaction occupies a niche space in Human-
Computer Interaction (HCI); it enables both accessible and
rich interactions with a computer. People with physical
impairments and disabilities rely on gaze-assisted interac-
tion to communicate and perform basic operations on a
computer [3]. Also, in the scenarios of situationally-induced
impairments and disabilities, gaze-assisted interaction is cru-
cial [27], [28]. While dwell-based selection has been majorly
used in gaze-assisted interactions, using dwell has various
limitations related to accuracy, performance, and usabil-
ity [7], [29], [30]. Using gaze gestures for gaze-assisted
interactions addresses some of the issues associated with
dwell-based selection. When using gaze gestures, a user is
not required to focus on the target UI element for the duration
of dwell time and the chances of accidental activations are
minimal. In this section, we will discuss some of the prior
works that implemented gaze gestures for interactions and
also discuss the applications of gaze-assisted interactions.
In general, gaze-assisted interactions enable hands-free inter-
actions, opening up interesting and engaging possibilities for
computer interfaces.

A. GAZE GESTURE RECOGNITION
Delamare et al. [31] presented a Gaze Gesture Guiding
system (G3) designed for semaphoric gaze gestures. The
system allows for interacting with distant objects using a
head-mounted display and an eye tracker. To execute a
command, a user performs a gaze gesture by following the
desired label moving along its corresponding 2D path. The $1
Recognizer [22] was used for gesture recognition on simple
and complex gestures sets. The highest gesture recognition
rates of 75.03% and 76.56% were achieved with simple and

VOLUME 10, 2022 1021

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

complex gesture sets, respectively. Lee et al. [32] presented
a gaze tracking system on a large-screen TV that is placed
at a distance from the user. The system uses two wide-
angle cameras to locate the eyes of the observer and two
narrow-angle cameras to capture high-resolution eye images
for tracking. The work demonstrated a multimodal interface
for a shooting game where gaze tracking is used for posi-
tioning the mouse and hand gestures are used for issuing the
commands. Li et al. [33] implemented a gaze-based real-time
gesture control system on commercial tablets. The system
implements both gaze estimation and gesture tracking. Gaze
gesture recognition is achieved by a sliding window method
which incorporates two steps: 1) direction calculation and
2) gesture extraction. The system achieved an overall gesture
recognition accuracy of 82.5%. Shell et al. [34] presented
a generic Fuzzy Transfer Learning system for gaze gesture
recognition. The work demonstrated that using a gesture
set from able-bodied users makes it possible to recognize
gestures from participants belonging to a range of contexts
in both ability and location.

B. ACCESSIBLE INTERACTIONS
Gaze-assisted text entry has been used by users with phys-
ical impairments and disabilities as their primary method
of text entry. Gaze typing, a method of text entry by gaze,
uses an on-screen virtual keyboard and either a dwell-based
or a dwell-free selection method to enter text on a com-
puter. The majority of gaze typing systems use dwell-time
(600–1000 milliseconds) as the selection method, where
the user focuses their gaze on the target character for the
duration of the dwell-time [7]. Hansen et al. [8] conducted
a comparative study and found that dwell-time selection
on keys was slightly slower, had more errors, and had
a higher overproduction rate than click-based selection.
MacKenzie et al. [35] presented a dwell-free eye typing sys-
tem with word and letter prediction and found that letter
prediction was as good, and in some cases better than, word
prediction. Kurauchi et al. [36] presented EyeSwipe, a dwell-
free text entry system using gaze paths. EyeSwipe can achieve
a typing speed of 11.7 wpm after 30 minutes of typing.
Kumar et al. [37] presented ‘‘TAGSwipe,’’ a gaze and touch-
based system mapping gaze path into words and can achieve
a typing speed of 15.45 wpm.

Gaze input has also been combined with other input
modalities for text entry and point-and-click interactions.
Rajanna et al. [3] presented a gaze and foot-based frame-
work where a user performs selections with a foot-operated
wearable device. The authors found that gaze and foot-based
interactions can be as good as mouse-based interactions if the
interface elements dimensions are above a certain threshold.
Kate et al. [27] designed an eye-controlled system for nonvo-
cal patients with paralysis. It uses an eye switch controlled
by the partially defective eye to select letters. The authors
found that visual feedback significantly reduced the number
of selection errors. Fejtová et al. [28] created a system called
‘‘I4Control’’ which allows individuals with special needs to

make non-contact control of a personal computer through the
eye or head movement.

C. USABLE PRIVACY
Usable privacy is concerned with ensuring user privacy
through human-centered methods. An example issue is pro-
tecting users from shoulder surfing attacks in a secure
but reasonable manner. To illustrate, a shoulder surfing
attack involves the attacker observing private information
by standing behind a user entering said information into an
interface, e.g., a person entering their PIN number. Authen-
tication using eye gestures has been shown as an effec-
tive method to counter shoulder surfing attacks. Using gaze
gestures in authentication systems has key advantages that
bolster security by enabling real-time user authentication
without the need of physically entering passwords [10].
Rajanna et al. [10] presented a system using gaze gestures to
track password patterns. The system offers a secure method
for authentication as it effectively prevents shoulder surfing
attacks and video analysis attacks. It protects against spoofing
as it does not require the user to physically enter a password.
A multimodal gaze and touch-based authentication system,
‘‘GazeTouchPass,’’ was presented by Khamis et al. [11] built
specifically for mobile devices.

D. IMPROVED USER FEEDBACK
Eye-tracking has been used in engineering applications for
tasks such as controlling an interface or conducting an inspec-
tion [38]. Eye-tracking allows users to input gestures at a
distance, providing convenience when performing these tasks
in the field [39]. This advantage is highlighted in scenarios
where remote controlling is required due to the inability
to reach or safely interact with the controls. Eye-tracking
provides engineers with a flexible and efficient interaction
medium to develop sophisticated control systems. A study
conducted experiments where participants used eye-trackers
to analyze 2D drawing, 3D CAD models, and real objects
and found that remote and head-mounted eye-trackers can be
efficiently used to observe behaviors of engineers when ana-
lyzing technical systems [40]. Eye-tracking provides several
key benefits in medical settings as well. For example, previ-
ous work suggests that gaze data and tool motion data can be
used to effectively evaluate a surgeon’s surgical skills [14].
Eye-tracking can also be used as an effective training tool
by providing the trainee their mentor’s gaze data as visual
instruction [41].

E. ENTERTAINMENT
Eye-tracking can be used to develop engaging input meth-
ods for video game control. Previous work suggests that
using eye-tracking can increase the player’s immersion and
improve the gaming experience [13]. Gaze data enables inter-
actions to be based on not only the user’s point of focus
but also on estimates of the user’s head orientation [13].
The traditional dwell-time method has a speed disadvan-
tage [36]. Studies have shown that gaze gestures are more

1022 VOLUME 10, 2022

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

FIGURE 1. Six ‘‘regular’’ gestures used in Experiment 1.

suitable for issuing commands, less prone to errors, and easier
to use [12], [35], [36].

From all the related work discussed on gaze-assisted
interactions, it can be observed that they use dwell-based
activation, specific gaze gestures, or smooth pursuit move-
ment of the gaze to trigger dedicated actions. Applications
like ‘‘TAGSwipe [37],’’ gaze gesture-based authentication
[10], [11], gaze gesture guiding system [31], and so on did
primarily use gaze gestures to express a user’s intended
action; however, the gestures used and the recognitionmethod
remain application-specific. This lack of a generic gesture
recognition framework motivated us to explore gaze gesture
design strategies, recognition algorithms, and time and per-
formance measures of various recognition algorithms. Fur-
thermore, this study also intends to propose a set of basic
guidelines for gaze gesture design.

III. DESIGN BACKGROUND
A. GESTURE DESIGN
As mentioned, gaze gesture-based interaction has several
notable advantages over gaze and dwell time-based interac-
tion. One of the most valuable advantages comes from the
fact that gaze gesture-based interaction systems can achieve
high accuracy even if the calibration is a little disturbed.
In other words, these systems do not require precise input nor
repeated calibrations in order to be reliable [10]. Additionally,
a range of interactions can be created based on a library of
gaze gestures. Eyes move differently than hands or a pen,
and this fact must be taken into account when designing
gestures. Straight lines go hand-in-hand with how eyes move
between fixation points. By contrast, curves and arcs aremore
difficult to produce, especially on smaller screens. Drawing
a curve with one’s eyes requires many fixations to create a
rounded shape, increasing the necessary effort. To that same
end, gestures also cannot be too complex, e.g., zigzagging

gestures introduce challenges with respect to 1) the number
of direction changes and 2) angle accuracy.

To provide insight into how to best design gaze gesture-
based interaction systems, this work compares the recogni-
tion accuracy and time complexity of several machine learn-
ing algorithms on two different sets of eye gestures. We refer
to the first set of gestures as ‘‘regular gestures’’ because of
the various attributes associated with these gestures. Figure 1
shows the list of regular gestures. The attributes are: 1) these
gestures always start from a corner of the screen, 2) for a
given gesture, its path covers the entire horizontal or vertical
space of the screen, 3) except for diagonal gestures, other
gestures in the set do not have diagonal components in their
path, and 4) importantly, for every gesture there is always
a symmetric gesture in the set. The second set of gestures
is called ‘‘irregular gestures,’’ and are shown in Figure 2.
Irregular gestures are any gestures that are not constrained
by the rules of regular gestures. They can start anywhere on
the screen, can have diagonal components in their path, and
a gesture does not need to have a symmetric gesture. Both
sets of gestures follow the design constraint of being distinct
from every other gesture in its set, making them effective
potential gestures in a real-life system where gestures must
be memorable and unique.

The reason for creating two sets of gestures is to study how
the constraints enforced on gesture design impact training
data requirements and recognition accuracy. Our hypothesis
is that stricter constraints on ‘‘regular gestures’’ would result
in significantly unique gestures, therefore requiring mini-
mal training data but resulting in high accuracy. Similarly,
the relaxed constraints on ‘‘irregular gestures’’ would lead
to a few overlapping features among the gestures, there-
fore it would require more training data to achieve high
accuracy. Furthermore, relaxed constraints on ‘‘irregular ges-
tures’’ would yield more gestures than the stricter constraints
on ‘‘regular gestures.’’

VOLUME 10, 2022 1023

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

FIGURE 2. Six ‘‘irregular’’ gestures used in Experiment 2.

The selected algorithms consist of template matching,
Pearson correlation, decision tree, and neural networks (back-
propagation and genetic algorithm). The selected algorithms
have been chosen because they are representatives of themost
commonly used methods for gesture recognition. Template
matching has demonstrated high accuracy in recognizing
hand-drawn sketches. This method is able to achieve high
accuracy with minimal training data and the performance
is minimally impacted in the presence of high noise. Based
on the similarities between hand-drawn sketches and eye
gestures, thismethod has been chosen to be leveraged for gaze
gesture recognition. With Pearson correlation, we are extend-
ing the prior work by not just using the gestures directly, but
also updating each gesture through a series of pre-processing
steps that help to improve the accuracy. The decision tree
algorithm encompasses the simplicity and powerfulness of a
classic machine learning algorithm. Our contribution comes
from identifying unique features associated with these gaze
gestures. The neural network algorithms have been chosen to
evaluate the tradeoff between the training data requirement
and the model accuracy for gesture classification. Template
matching and Pearson correlation represent algorithms that,
by their nature, have consistently high classification per-
formance at the cost of nearly linear time complexity with
respect to the size of the samples. Decision trees and neural
networks represent data-driven methods whose performance
with respect to both accuracy and speed depends on feature
engineering and architecture configuration.

B. EXPERIMENT SETUP AND DATA COLLECTION
To collect data during the experiment, an eye tracker by Eye
Tribe1 was placed at the bottom of the computer screen,
as shown in Figure 3. The tracker has an accuracy of 0.5◦ to
1◦ of visual angle, and a frame rate of 60 FPS. At the

1http://www.theeyetribe.com

FIGURE 3. User study setup: a user is sitting in front of a computer with
an eye tracker placed below the screen. The user has drawn the G4
gesture. The circle on the screen shows the current gaze location.

beginning of the study, the eye tracker was calibrated for each
participant to ensure consistency in the data collection. The
participants were asked to perform each of the gestures in the
experiment’s gesture set, repeating the same gesture until at
least two quality samples were observed by the researcher
administering the user study before moving on to the next
gesture. To initiate a gaze gesture, the participant pressed the
spacebar key on the keyboard, and gaze data was collected
and plotted on the computer screen until the key was released
by the participant.

Eye gesture samples were collected from twenty-seven
participants for each experiment. The participants consisted
of undergraduate and graduate students ranging from 18 to
32 years in age. Experiment 1 had 8 female and 19 male par-
ticipants with an average age of 22.11, and Experiment 2 had
10 female and 17 male participants with an average age of
23.26. During each experiment, each participant provided

1024 VOLUME 10, 2022

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

FIGURE 4. Demonstration of pre-processing on the set of regular gestures used in Experiment 1. Points transition from
blue (start) to red (end) over time.

between two and four samples per gesture. At the end of
the user studies, each experiment split its data into a five-
participant training set and a twenty-two-participant testing
set to ensure that models were evaluated on data from partic-
ipants they had never previously seen. The five participants
in the training set were handpicked due to the quality of
their samples, making them viable templates for the template-
based methods. Table 1 shows a summary of the data collec-
tion breakdown by experiment.

IV. ALGORITHMS
A. DATA PRE-PROCESSING
Although the gestures do capture the overall shapes, due to
the inherent jittery nature of eye movements, they tend to be
noisy, missing points, and sometimes incomplete, as shown
in Figure 4a. Hence, each gesture undergoes a pre-processing

TABLE 1. Data collection breakdown by experiment.

phase before it is input into a recognition algorithm. We fol-
low standard pre-processing steps in gesture recognition [22]
to normalize the input gestures and ensure that the similarity
calculation is consistent. The data points are resampled to be
equidistant to account for variations in sampling rate, screen
size, and screen resolution. This technique involves solving

VOLUME 10, 2022 1025

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

FIGURE 5. Demonstration of the scan path being scaled down
to N = 64 points.

for new points along the original path and has the added
effect of de-noising the gesture. The resampling process is
depicted in Figure 5. Then, the resampled points are scaled
to a unit square using the height and width of the bounding
box to account for the shape of the screen. Lastly, the pro-
cessed gesture is translated to be centered around the origin to
normalize the gesture location and align it with the template.
An example of the results of these processing steps is given
in Figure 4b.

B. TEMPLATE-BASED ALGORITHMS
The two template-based algorithms we chose are 1) template
matching and 2) Pearson correlation. In the following subsec-
tions, we will discuss each algorithm.

1) TEMPLATE MATCHING ALGORITHM
Template matching compares the input gesture against exist-
ing templates, predicting which class the input belongs to
by finding the best match [22]. For eye gestures, the tem-
plate matching algorithm computes the similarity based on
the Euclidean distance between the input and template ges-
tures [10]; the template with the minimum distance is the
best match. This algorithm has been used in previous eye
gesture recognition systems due to its high accuracy [10]. The
formula for this calculation is presented in Eq. 1, calculating
the total distance D between each pair of the N points in the
input gesture, A, and the template gesture, B; this algorithm
is illustrated in Figure 6.

D =
N∑
i=1

√
(A.xi − B.xi)2 + (A.yi − B.yi)2

N
(1)

2) PEARSON CORRELATION ALGORITHM
The Pearson correlation algorithm measures the linear cor-
relation between the input and template gestures, defined by
the covariance between the input gesture, A, and the template
gesture, B, divided by their respective standard deviations, σA
and σB. Covariance is defined as the average product of the
variances of each pair of points from their respective means,
µA andµB. This algorithm has also been used in previous eye
gesture recognition systems [23]. The full calculation of the

FIGURE 6. Demonstration of the candidate path being matched to the
template path.

correlation coefficient C is given in Eq. 2. This calculation is
performed with respect to both the x and the y axes individ-
ually; the final coefficient used as the similarity metric is the
sum of these two coefficients. The template with the highest
correlation coefficient is the best match.

C =
Cov(A,B)
σA · σB

=

∑N
i=1(Ai − µA)(Bi − µB)√∑N

i=1(Ai − µA)2
√∑N

i=1(Bi − µB)2
(2)

C. DATA-DRIVEN ALGORITHMS
Unlike template-based methods, data-driven methods, such
as decision trees and neural networks, cannot take the N
points directly as features. The coordinates and the times-
tamps of the points must be demultiplexed so that the neural
network can interpret them. The model would need to know
the binary state of every pixel in the canvas, i.e., the complete
visual information, or be told the coordinates and timestamps
of each of the N points. This practice can result in a large
number of features which can increase the risk of creating a
model that overfits. Instead, the data-driven algorithms can
use sketch recognition-based features that characterize the
gestures [24], reducing the number of features down to a
much smaller number and improving the generalizability of
the trained model. The data-driven models use the following
eight features: 1) the x coordinate of the starting point, 2) the
y coordinate of the starting point, 3) the x coordinate of
the midpoint, 4) the y coordinate of the midpoint, 5) the x
coordinate of the ending point, 6) the y coordinate of the
ending point, 7) the total gesture length along the gesture
path, and 8) the point-to-point distance between the start and
end points. These features are selected to help identify unique
gestures. For example, by calculating the ratio of the gesture
length and the distance between the endpoints, the gesture can
be predicted as a straight line if the value is close to 1.

1) DECISION TREE ALGORITHM
Decision trees classify inputs by traversing the tree based on
feature values, e.g., thresholds for numeric features and cate-
gorical sorting for quantitative features. The decisions within
the tree are determined by fitting to the training set, so fewer
features and more training data improve generalizability by

1026 VOLUME 10, 2022

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

helping prevent overfitting. The default sklearn [42] Decision
Tree Classifier implementation is used: the quality of a split is
determined by its Gini impurity, the best split is used at each
node (in contrast to a random split), and there is no limit on
the depth of the tree.

2) BACKPROPAGATION NEURAL NETWORK
Neural networks consist of layers of neurons connected by
weights. Features are fed into the input layer, activating
neurons based on a function of the inputs and the weights
connecting to the next layer of neurons. This process prop-
agates through the layers until the output layer is reached,
determining the output of the network for the given input.
Backpropagation-based neural networks update their weights
based on the error between the output and the expected result,
strengthening or weakening weights from the output layer
backward. The sklearn [42] MLPClassifier implementation
is used with a single layer of twenty nodes, the hyperbolic
tangent activation function, and trained until the model con-
verges. The weight initialization is random and the random
number generator is seeded, following standard practice.
A single layer is used to match the complexity of the data;
the model is designed to be as lean as possible to support
generalizability as is standard practice in machine learning.

3) GENETIC ALGORITHM NEURAL NETWORK
Instead of using backpropagation, neural networks can also
update their weights by using a genetic algorithm. Genetic
algorithms generate a population of potential solutions often
referred to as chromosomes. Using a fitness function to
determine the utility of the chromosome, the best performing
chromosomes are selected to generate offspring. After off-
spring are created, some will mutate to help keep the popu-
lation diverse. The algorithm converges when the generated
offspring are not significantly different from the previous
generation, i.e., the point where the population ceases to
change.

When using a genetic algorithm to decide neural network
weights, the population consists of weight matrices that are
spliced together to create new architectures. This is not a com-
mon training technique, thus this algorithm was implemented
from scratch in Python. Like the backpropagation neural net-
work, the architecture used is a single layer of twenty nodes
with a hyperbolic tangent activation function. To keep the
population diverse, the weights for each input layer node to
the hidden layer nodes will have between one and half of the
weights mutated; the crossover point for offspring generation
is randomly determined for each pair of chromosomes. The
fitness function used is the macro-F1 score divided by the
mean squared error. For training, the population size is 80,
the top 20 chromosomes are used to generate offspring, and
the maximum number of epochs is 200.

V. RESULTS
A. TRAINING AND EVALUATION
The algorithms were evaluated in two stages. First, all models
were trained with one sample per gesture per participant in

the training set (5 participants × 1 sample × 6 gestures =
30 samples) and evaluated against the entirety of the testing
set (data from 22 participants). Next, we used two samples
per participant in the training (5 participants × 2 samples ×
6 gestures = 60 samples) and again evaluated the models
against the entirety of the testing set. This training setup
ensures that each model sees an equal number of samples
per class during training. As previously stated, the gestures
in the training set were handpicked to serve as a benchmark
for correct classification because gaze gestures differ sig-
nificantly among participants. Additionally, this setup most
closely simulates a real-world deployment with respect to
the size of the training data compared to the test data. The
two sizes of training sets show how the performance of each
algorithm changes with more training data. To account for the
effects of random initialization on the algorithm performance,
each of the algorithms was ran one hundred times with dif-
ferent random states. Naturally, the template-based methods
have identical performance in each trial, but the data-driven
methods can have fluctuations in performance that will factor
into their relative performance.

All models are evaluated using the macro-F1 score to
give equal weight to all classes. The F1-score, the harmonic
mean of precision and recall (Eq. 4), gives more information
about the classifier’s performance than simple accuracy (true
positives (TP) plus true negatives (TN) over the number of
samples). Precision measures how well the classifier avoids
false alarms or false positives (FP). Recall measures how
well the classifier avoids missing samples of a class, i.e.,
has minimal false negatives (FN). Both of their formulas are
given in Eq. 3. For conciseness of notation, from hereon the
backpropagation-based neural network is referred to just as
the neural network, and the genetic algorithm-based neural
network is referred to as the genetic algorithm. These descrip-
tions were chosen because the backpropagation-based neural
network represents a basic neural network, and the genetic
algorithm-based neural network is primarily defined by the
genetic algorithm used to determine the network weights.

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN
(3)

F1 = 2×
Precision× Recall
Precision+ Recall

=
2TP

2TP+ FN + FP
(4)

B. EXPERIMENT 1
1) OVERALL RESULTS
First, each algorithm was trained on one sample per partic-
ipant. With six gestures and five training samples per ges-
ture (one sample from each participant from the testing set),
each algorithm was trained with 30 samples (5 participants×
1 sample×6 gestures). For the models trained on 30 samples,
the template-based algorithms had the best classification per-
formance with a macro-F1 of 0.99. The neural network-based

VOLUME 10, 2022 1027

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

TABLE 2. Average F1 score by algorithm for Experiment 1.

TABLE 3. Results of two-tailed t-test comparing performance results
across the two training set sizes in Experiment 1.

methods, i.e., the genetic algorithm and the neural network,
performed the best of the data-driven methods with an aver-
age macro-F1 of 0.98. While still performing well with an
average macro-F1 of 0.96, the decision tree was compara-
tively the worst. All of the data-driven methods had relatively
narrow ranges of performance. The genetic algorithm saw
the maximum performance, surpassing the template-based
algorithms; the decision tree saw the minimum performance.
Figure 7a and Table 2 depict these results.

Next, the number of training samples per gesture was
increased to two. Hence, each algorithm was trained with a
total of 60 samples (5 participants× 2 samples× 6 gestures).
With more training data, the template-based methods contin-
ued to have the best classification performance of 0.99. How-
ever, the data-driven methods performed minusculely worse.
This small decrease implies that having more data from the
five training participants caused the model to slightly overfit
how those participants performed the gestures. Figure 7b and
Table 2 depict these results.

While the average performance was nearly the same for
each data-driven algorithm across the two training set sizes,
the performance of each trial of the decision tree and neu-
ral network algorithms was significantly impacted by the
increase in data. As shown in Table 3, the change in perfor-
mance was statistically significant (p < 0.05). The genetic
algorithm, on the other hand, did not experience a statistically
significant change. These findings hold with the nature of
each of the algorithms as the genetic algorithm uses a fitness
function instead of the error to determine its weights. It is
reasonable that the decision tree and neural network selected
display significantly different branches and weights, respec-
tively, with the amount of training data doubled. To enable
a paired t-test, the random number generator was seeded
at the beginning of the model training process to ensure
that the same exact architectures are compared across the
two training set sizes. As a consequence of this, the genetic
algorithm started with the same initial population, therefore
it is reasonable that the final architecture of each trial was
similar across the two training set sizes.

FIGURE 7. F1 score range by algorithm for Experiment 1.

TABLE 4. Mean runtimes of algorithms for Experiment 1 in milliseconds.

As expected, the template-based algorithms were sub-
stantially slower than the data-driven algorithms. Template
matching was the slowest with a mean runtime of 105 ms;
Pearson correlation was slightly faster at 97 ms. All of the
data-driven models functionally ran instantaneously, taking
only nanoseconds and sometimes outpacing the clock. The
genetic algorithmwas the fastest followed by the decision tree
and the neural network.When the number of training samples
increased to 60, the template-based methods slowed down as
is inherent in the algorithms’ designs, taking about twice as
long. All of the data-driven methods took the same amount of
time. Table 4 depicts these results.

2) CONFUSION MATRICES
Template matching mislabeled a small number of the Right-
Down gestures as Left-Down. The full confusion matrix is

1028 VOLUME 10, 2022

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

TABLE 5. Confusion matrix for the template matching algorithm.

given in Table 5. Like the template matching algorithm, the
Pearson correlation algorithm mislabeled a small number of
the Right-Down gestures as Left-Down. The full confusion
matrix is given in Table 6.

The decision tree had a high performance on most
of the gestures. With 30 training samples, the worst-
performing gesture was Right-Down, mistaking it mostly
as the Diagonal-Lower gesture. With 60 training samples,
the Right-Up gesture becomes the worst-performing gesture,
beingmistakenmostly as theDiagonal-Upper gesture. In gen-
eral, the decision tree made a small number of mistakes,
but no gesture was recognized perfectly. The full confusion
matrix is given in Table 7.

Both neural network-based methods consistently recog-
nized the Right-Up and Left-Up gestures perfectly. The neu-
ral network’s worst-performing gesture was Diagonal-Lower,
mistaking it for Right-Down. On the other hand, the genetic
algorithm would confuse Left-Down as Left-Up. The full
confusion matrix for the neural network is given in Table 8
and the full confusion matrix for the genetic algorithm is
given in Table 9.

C. EXPERIMENT 2
1) OVERALL RESULTS
Similar to Experiment 1, we first measured the recognition
accuracy by training each algorithmwith 30 samples andwith
60 samples. For the models using 30 training samples, the
template-based methods still had better performance than the
data-drivenmethods: the template-basedmethods hadmacro-
F1 scores of 0.98 while data-driven methods ranged from
0.85 to 0.96. The decision tree’s performance was notably
poor with a wide range with an average of 0.85, making it
unreliable. The neural network had the smallest range of the
data-driven methods, staying consistently above 0.92. The
genetic algorithm still had a decent macro-F1 at 0.95, but its

TABLE 6. Confusion matrix for the Pearson correlation algorithm.

TABLE 7. Confusion matrix for the decision tree algorithm.

performance occasionally dipped below 0.9. Figure 8a and
Table 10 depict these results.

When the number of training samples increased to 60,
all of the models saw an improvement in performance. The
template-based methods saw a slight increase in accuracy,
correctly labeling a small number of previously misclassified
samples with the additional templates. All of the data-driven
methods became more consistent with their performance
with their range shrinking considerably. The neural network
had the best improvement, almost reaching the template-
based methods on average. The genetic algorithm was close
behind the neural network in terms of performance with a
slightly wider range and slightly lower average macro-F1
score. While still the worst performing overall, the decision
tree saw significant improvement with its average perfor-
mance increasing to 0.91. As seen in Experiment 1, the
neural network-based methods had a maximum performance

VOLUME 10, 2022 1029

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

TABLE 8. Confusion matrix for the backpropagation neural network.

TABLE 9. Confusion matrix for the genetic algorithm neural network.

TABLE 10. Average F1 score by algorithm for Experiment 2.

above the template-based methods, but the template-based
methods still had the better average performance. Figure 8b
and Table 10 depict these results.

As shown in Table 11, increasing the amount of training
data had a statistically significant performance change for
each algorithm with p < 0.05. These p-values in combina-
tion with the average performance increase indicate that the
Experiment 2 gesture sets required more data in order to

FIGURE 8. F1 score range by algorithm for Experiment 2.

TABLE 11. Results of two-tailed t-test comparing performance results
across the two training set sizes in Experiment 2.

reach eachmodel’s full potential with respect to classification
performance.

The timing performance is consistent with that seen in
Experiment 1: the template-based methods are slow relative
to the data-driven methods. Template matching was the slow-
est with a mean runtime of 105 ms; Pearson correlation was
faster at 97ms. All of the data-drivenmodels ran in less than a
millisecond; the genetic algorithmwas the fastest followed by
the decision tree and then the neural network.With 60 training
samples, the template-based algorithms were about 2 times
slower. The data-driven methods took the same amount of
time. Table 12 depicts these results.

2) CONFUSION MATRICES
Template matching misclassified only a small number of
samples. The most confused gesture was G4, which was
misclassified as both G1 and G5. Notably, increasing to
60 training samples did not improve the performance on G4.

1030 VOLUME 10, 2022

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

TABLE 12. Mean runtimes of algorithms for Experiment 2 in milliseconds.

TABLE 13. Confusion matrix for the template matching algorithm.

Otherwise, a sample of G2 was mistaken for G6 and a sample
of G5wasmistaken for G1. The full confusionmatrix is given
in Table 13.

In contrast to Experiment 1, Pearson correlation did not
have the exact same performance as template matching. Pear-
son correlation also confused G4 as both G1 and G5, but it
confused more G4 samples as G5 than template matching.
The only other mistake was one sample of G5 being confused
for G1. Increasing to 60 training samples results in the same
confusion matrix as template matching with G4 being the
most confused gesture with an individual F1 score of 0.91.
The full confusion matrix is given in Table 14.
The decision tree had a relatively terrible performance with

functionally every class being mistaken for every other class.
The worst offenders for 30 training samples are G1 and G5
with individual F1 scores of 0.82 and 0.77, respectively. G4
and G6 also had a notably low performance with individual
F1 scores around 0.85. G1 was confused for both G4 and
G5 most frequently while G5 was confused for G4 and G6.
Increasing to 60 samples significantly improves performance,
but there are still plenty of errors and individual F1 scores as
low as 0.88. Like the template-based methods, G4 was the
worst-performing gesture. The full confusion matrix is given
in Table 15.

Although not as bad as the decision tree’s performance,
the neural network-based methods also had trouble rec-
ognizing G1, confusing it with G5, and G4, confusing it
with G1. Increasing to 60 training samples greatly improved

TABLE 14. Confusion matrix for the Pearson correlation algorithm.

TABLE 15. Confusion matrix for the decision tree algorithm.

performance for every gesture except G4.While still its worst
gesture, the neural network had the highest performance on
G4 across all the classifiers with an F1 score of 0.92 for
30 samples and 0.93 for 60 samples. The full confusion
matrix for the neural network is given in Table 16 and the
full confusion matrix for the genetic algorithm is given in
Table 17.

VI. DISCUSSION
A. EXPERIMENT 1
The template-based algorithms had near-perfect
classification performance. Investigating the gestures
they misclassified showed that the samples had a strong
Left-Down diagonal (depicted in Fig. 9) which no gesture
in the set has. However, it is more likely for the Left-Down
gesture to tend toward that path, thus the misclassification is
to be expected.

VOLUME 10, 2022 1031

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

TABLE 16. Confusion matrix for the backpropagation neural network.

TABLE 17. Confusion matrix for the genetic algorithm neural network.

Interestingly, the neural network generally confused ges-
tures that follow similar paths. Diagonal-Upper and Right-Up
were significantly confused in the experiment with 30 train-
ing samples. To a lesser degree, Right-Down was confused
for Diagonal-Lower. If the participants gave imprecise input
for the Right-Down and Right-Up gestures, e.g., if their eyes
did not go straight down or up, respectively, or if the hori-
zontal segment was at an angle, this would cause overlap in
the forms of the eye gestures. With the number of training
samples increased to 60, this pattern goes away as the model
has more data to learn how to distinguish the similar features
of these gestures.

B. EXPERIMENT 2
With 30 samples, data-driven methods had difficulty dis-
tinguishing G1 and G4 from G5. While these gestures are
distinct in design and are not symmetrical, analyzing their

FIGURE 9. Right-Down gestures misclassified as Left-Down. Points
transition from blue to red over time.

FIGURE 10. Incorrectly performed G4 gestures misclassified as G5. Points
transition from blue to red over time.

appearance when performed in imprecise or deformed fash-
ion shows why this confusion pattern occurred. As shown
in Figures 10-12, the G4 gesture can look like a checkmark,
i.e., it contains an acute angle and has a significant distance
between the endpoints. G1, imprecise G4, and G5 generally
start in the left-center region of the screen and end in the top-
right corner. G1 has an obtuse angle, G4 has an acute angle,

1032 VOLUME 10, 2022

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

FIGURE 11. G4 gesture misclassified as G5 due to long fixation. Points
transition from blue to red over time.

FIGURE 12. Incorrectly performed G4 gestures misclassified as G1. Points
transition from blue to red over time.

and G5 has a right angle. Therefore, any samples of G5 that
don’t contain a sharp right angle will have an obtuse or acute
angle by definition. As such, in practice, G5 can be amirror of
G1 and G4. With 60 samples, G4 was the worst-performing
gesture. As it was the only gesture that the template-based
methods struggled with, it implies that G4 was the hardest
gesture to perform. Participants seemed to over-anticipate
the Left-Down diagonal portion, not looking to the top-left
corner. It is also the largest gesture, traveling over most of the
screen, so participants could have been cheating the corner,
so to speak, by starting the gesture too low in order to perform
it faster.

C. GENERAL
Overall, our experiments show that when using the regular set
of gestures, recognition accuracy is high irrespective of the
algorithm used, even at a limited number of samples. Adding
more training samples may not improve the performance

significantly. On the other hand, with the irregular set of
gestures, the accuracy improves with more training data.
This is evident specifically for data-driven algorithms. In our
experiments, the F1 scores for DT, NN, and GA improved
with increased training data. Also, statistical tests indicate
that the difference in F1 scores with 30 and 60 training
samples is significant (p < 0.05).
The decision tree’s performance is the most impacted by

randomness and its training data. In almost every experiment
it had the least consistent performance. Training the decision
tree has the fewest constraints, so it is easy for the model
to select suboptimal architectures without a lot of training
data. With the context that other models outperform it with
less training data, the decision tree is the least recommended
classifier.

As expected, template-based methods are accurate but
slow. In all but one experiment, they had the highest accuracy.
They also require the least training data so they suit systems
that need to avoid a cold start problem. All things considered,
the neural networks performed the best. With only 30 train-
ing samples, i.e., 5 samples per gesture, their accuracy had
room for improvement; increasing to 10 samples per gesture
alleviated this problem. Experiment 1’s better performance
combined with the number of people unable to perform G4
adequately in Experiment 2 motivates that gestures need to
be easy to perform, i.e., the gesture design should always be
regular.

Lastly, comparing our gaze gesture recognition framework
to prior works like [31]–[34], we observe that while the other
recognition systems are being closely linked to an applica-
tion or use case, our system generalizes gaze gesture-based
interaction. It provides a platform for developers to design
and evaluate the performance of various gaze gestures before
incorporating them into an application. Also, developers can
rank the gestures based on a single metric that combines two
key factors—ease of execution and recognition accuracy.

VII. LIMITATIONS AND FUTURE WORK
We will discuss some of the primary limitations of a gaze
gesture-based interaction system. First, while gaze gesture-
based systems do not require precise gaze tracking or for the
gestures to be a perfect match to the templates, the system still
needs the gestures to retain the overall shape of the template
gesture in order to work reliably. In other words, the gestures
still need to be relatively accurate. Second, performing gaze
gestures blindly can cause users to perform the gestures inac-
curately, making recognition unreliable. To avoid this prob-
lem, the system should implement some form of feedback
so that the user is aware of the path of the gesture during
execution. This can be achieved by drawing a temporary
overlay on the screen. Additionally, this helps the user to
adjust the orientation of their head so that the gesture can be
drawn as accurately as possible. Third, the screen size also
influences how accurately the gestures can be recognized.
As gaze moves quickly, smaller screens makes it more diffi-
cult to execute gestures that involve multiple small segments.

VOLUME 10, 2022 1033

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

The screen size should be approximately 11 inches in order
to maintain good accuracy [10]. Lastly, each algorithm dis-
cussed in this work has limitations that are unsuitable for
certain types of systems: template-based algorithms are not
suitable for time-critical systems while data-driven methods
are not suitable for applications that require high accuracy.

Future work in this space involves developing applications
that use both regular and irregular gesture sets and performing
user studies to evaluate each application’s performance, user
experience, and reliability. These user studies need to collect
qualitative feedback on the usability of the systems in order
to establish the design implications of the gesture sets. Addi-
tionally, feedback mechanisms to aid the users in drawing
gestures as accurately as possible need to be designed and
evaluated. An example feedback mechanism is the aforemen-
tioned temporary transparent overlay. Lastly, an experimental
variable not explored in this work is algorithm performance
across varying screen sizes and environments. Generally
speaking, the larger the screen size the better the performance,
but it is of interest to determine how small the screen can be
while still achieving acceptable performance. Similarly, it is
also of interest to determine the impact of lighting conditions,
head angle, and distance from the screen on gesture recogni-
tion performance.

VIII. CONCLUSION
Template-based methods are accurate and reliable, but the
cost for this performance is a linear time performance with
respect to the number of recognized templates. Data-driven
methods, on the other hand, are consistently fast but rely
on having sufficient training data to reach the template-
based methods’ classification performance. If building an
eye gesture recognition system with a cold start, template-
based methods will perform excellently with respect to accu-
racy and satisfactorily with respect to speed. If building a
system with a large set of eye gestures, collecting data for
a data-driven approach will yield better results. Based on
the misclassifications from each experiment, gesture design
has a key role in determining the performance of an eye
gesture recognition system. Gestures that follow similar paths
or have relatively-speaking complex angles caused the most
confusion during classification. The more mental effort the
gesture takes to perform, themore likely the user is to perform
it imprecisely. Imprecise gestures generally are ambiguous to
the classifier, hurting accuracy. As such, it is recommended
that gestures have distinct forms evenwhen performed impre-
cisely. Within that constraint, it is recommended to make
gestures as simple as possible. If complex angles and/or
endpoints are needed, designing unique gestures with key-
points for the user to fixate onto will help them perform the
gesture correctly.

REFERENCES
[1] R. J. Jacob and K. S. Karn, ‘‘Commentary on section 4—Eye tracking in

human-computer interaction and usability research: Ready to deliver the
promises,’’ in The Mind’s Eye, J. Hyönä, R. Radach, and H. Deubel, Eds.
Amsterdam, The Netherlands: North-Holland, 2003, pp. 573–605.

[2] D. Fono and R. Vertegaal, ‘‘EyeWindows: Evaluation of eye-controlled
zooming windows for focus selection,’’ in Proc. SIGCHI Conf. Hum.
Factors Comput. Syst. (CHI), New York, NY, USA, 2005, pp. 151–160.

[3] V. Rajanna and T. Hammond, ‘‘GAWSCHI: Gaze-augmented, wearable-
supplemented computer-human interaction,’’ in Proc. 9th Biennial ACM
Symp. Eye Tracking Res. Appl. (ETRA), New York, NY, USA, 2016,
pp. 233–236, doi: 10.1145/2857491.2857499.

[4] L. E. Sibert and R. J. K. Jacob, ‘‘Evaluation of eye gaze interaction,’’ in
Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI), New York, NY,
USA, 2000, pp. 281–288.

[5] R. J. Jacob, ‘‘What you look at is what you get: Eye movement-based
interaction techniques,’’ in Proc. SIGCHI Conf. Hum. Factors Comput.
Syst. (CHI), New York, NY, USA, 1990, pp. 11–18.

[6] E. Castellina, F. Corno, and P. Pellegrino, ‘‘Integrated speech and gaze
control for realistic desktop environments,’’ in Proc. Symp. Eye Tracking
Res. Appl. (ETRA), New York, NY, USA, 2008, pp. 79–82.

[7] P. Majaranta and K.-J. Räihä, ‘‘Twenty years of eye typing: Systems and
design issues,’’ in Proc. Symp. Eye Tracking Res. Appl. (ETRA), NewYork,
NY, USA, 2002, pp. 15–22, doi: 10.1145/507072.507076.

[8] J. P. Hansen, A. S. Johansen, D. W. Hansen, K. Itoh, and S. Mashino,
‘‘Command without a click: Dwell time typing by mouse and gaze selec-
tions,’’ in Proc. Int. Conf. Hum.-Comput. Interact. (INTERACT), Zürich,
Switzerland, 2003, pp. 121–128.

[9] S. Stellmach and R. Dachselt, ‘‘Look & touch: Gaze-supported target
acquisition,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI),
New York, NY, USA, 2012, pp. 2981–2990.

[10] V. Rajanna, A. H. Malla, R. A. Bhagat, and T. Hammond, ‘‘DyGazePass:
A gaze gesture-based dynamic authentication system to counter shoul-
der surfing and video analysis attacks,’’ in Proc. IEEE 4th Int. Conf.
Identity, Secur., Behav. Anal. (ISBA), Washington, DC, USA, Jan. 2018,
pp. 1–8.

[11] M. Khamis, F. Alt, M. Hassib, E. von Zezschwitz, R. Hasholzner, and
A. Bulling, ‘‘GazeTouchPass: Multimodal authentication using gaze and
touch on mobile devices,’’ in Proc. CHI Conf. Extended Abstr. Hum.
Factors Comput. Syst., New York, NY, USA, 2016, pp. 2156–2164.

[12] A. Hyrskykari, H. Istance, and S. Vickers, ‘‘Gaze gestures or dwell-based
interaction?’’ in Proc. Symp. Eye Tracking Res. Appl. (ETRA), New York,
NY, USA, 2012, pp. 229–232.

[13] J. D. Smith and T. C. N. Graham, ‘‘Use of eye movements for video game
control,’’ in Proc. ACM SIGCHI Int. Conf. Adv. Comput. Entertainment
Technol. (ACE), New York, NY, USA, 2006, p. 20.

[14] N. Ahmidi, M. Ishii, G. Fichtinger, G. L. Gallia, and G. D. Hager,
‘‘An objective and automated method for assessing surgical skill in endo-
scopic sinus surgery using eye-tracking and tool-motion data,’’ Int. Forum
Allergy Rhinol., vol. 2, no. 6, pp. 507–515, Nov. 2012.

[15] C. Hennessey and J. Fiset, ‘‘Long range eye tracking: Bringing eye tracking
into the living room,’’ in Proc. Symp. Eye Tracking Res. Appl. (ETRA),
New York, NY, USA, 2012, pp. 249–252.

[16] H. Drewes and A. Schmidt, ‘‘Interacting with the computer using gaze
gestures,’’ in Proc. IFIP Conf. Hum.-Comput. Interact. New York, NY,
USA: Springer, 2007, pp. 475–488.

[17] P. Biswas and P. Langdon, ‘‘A new interaction technique involving eye
gaze tracker and scanning system,’’ in Proc. Conf. Eye Tracking South Afr.,
New York, NY, USA, 2013, pp. 67–70.

[18] M. Adjouadi, A. Sesin, M. Ayala, and M. Cabrerizo, ‘‘Remote eye gaze
tracking system as a computer interface for persons with severe motor
disability,’’ in Proc. Int. Conf. Comput. Handicapped Persons. New York,
NY, USA: Springer, 2004, pp. 761–769.

[19] K. Pfeuffer, J. Alexander, M. K. Chong, and H. Gellersen, ‘‘Gaze-touch:
Combining gaze with multi-touch for interaction on the same surface,’’ in
Proc. 27th Annu. ACM Symp. User Interface Softw. Technol., New York,
NY, USA, 2014, pp. 509–518.

[20] T. R. Beelders and P. J. Blignaut, The Usability of Speech and Eye Gaze
as a Multimodal Interface for a Word Processor. London, U.K.: INTECH
Open Access Publisher, 2011.

[21] S. E. Brennan, X. Chen, C. A. Dickinson, M. B. Neider, and
G. J. Zelinsky, ‘‘Coordinating cognition: The costs and benefits of
shared gaze during collaborative search,’’ Cognition, vol. 106, no. 3,
pp. 1465–1477, Mar. 2008.

[22] J. O. Wobbrock, A. D. Wilson, and Y. Li, ‘‘Gestures without libraries,
toolkits or training: A $1 recognizer for user interface prototypes,’’ in Proc.
20th Annu. ACM Symp. User Interface Softw. Technol. (UIST), New York,
NY, USA, 2007, pp. 159–168.

1034 VOLUME 10, 2022

http://dx.doi.org/10.1145/2857491.2857499
http://dx.doi.org/10.1145/507072.507076

J. Li et al.: Evaluating Performance of Machine Learning Algorithms in Gaze Gesture Recognition Systems

[23] M. Vidal, A. Bulling, and H. Gellersen, ‘‘Pursuits: Spontaneous interaction
with displays based on smooth pursuit eye movement and moving targets,’’
in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput. (UbiComp),
New York, NY, USA, 2013, pp. 439–448.

[24] D. Rubine, ‘‘Specifying gestures by example,’’ SIGGRAPH Comput.
Graph., vol. 25, no. 4, pp. 329–337, Jul. 1991.

[25] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
4th ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2010.

[26] K. Sastry, D. Goldberg, and G. Kendall, ‘‘Genetic algorithms,’’ in Search
Methodologies, E. K. Burke and G. Kendall, Eds. Boston, MA, USA:
Springer, 2005, ch. 4, pp. 97–125.

[27] J. ten Kate, E. Frietman, F. Stoel, and W. Willems, ‘‘Eye-controlled com-
munication aids,’’ Med. Prog. Through Technol., vol. 8, no. 1, pp. 1–21,
1980.

[28] M. Fejtová, J. Fejt, P. Novák, and O. Stepankova, ‘‘System I4Control:
Contactless control PC,’’ in Proc. Int. Conf. Intell. Eng. Syst., New York,
NY, USA, 2006, pp. 297–302.

[29] R. J. K. Jacob, ‘‘The use of eye movements in human-computer interaction
techniques:What you look at is what you get,’’ACMTrans. Inf. Syst., vol. 9,
pp. 152–169, Apr. 1991.

[30] P. Isokoski, ‘‘Text input methods for eye trackers using off-screen targets,’’
in Proc. Symp. Eye Tracking Res. Appl. (ETRA), 2000, pp. 15–21.

[31] W. Delamare, T. Han, and P. Irani, ‘‘Designing a gaze gesture guiding
system,’’ in Proc. 19th Int. Conf. Hum.-Comput. Interact. With Mobile
Devices Services, Sep. 2017, pp. 1–13.

[32] H. Lee, S. Y. Lim, I. Lee, J. Cha, D.-C. Cho, and S. Cho, ‘‘Multi-modal
user interaction method based on gaze tracking and gesture recognition,’’
Signal Process., Image Commun., vol. 28, no. 2, pp. 114–126, Feb. 2013.

[33] Y. Li, Z. Cao, and J. Wang, ‘‘Gazture: Design and implementation of a
gaze based gesture control system on tablets,’’ in Proc. ACM Interact.,
Mobile, Wearable Ubiquitous Technol., vol. 1, no. 3, pp. 1–17, Sep. 2017,
doi: 10.1145/3130939.

[34] J. Shell, S. Vickers, S. Coupland, and H. Istance, ‘‘Towards dynamic
accessibility through soft gaze gesture recognition,’’ in Proc. 12th U.K.
Workshop Comput. Intell. (UKCI), Sep. 2012, pp. 1–8.

[35] I. S. MacKenzie and X. Zhang, ‘‘Eye typing using word and letter pre-
diction and a fixation algorithm,’’ in Proc. Symp. Eye Tracking Res. Appl.
(ETRA), New York, NY, USA, 2008, pp. 55–58.

[36] A. Kurauchi, W. Feng, A. Joshi, C. Morimoto, and M. Betke, ‘‘EyeSwipe:
Dwell-free text entry using gaze paths,’’ in Proc. CHI Conf. Hum. Factors
Comput. Syst. (CHI), New York, NY, USA, 2016, pp. 1952–1956, doi:
10.1145/2858036.2858335.

[37] C. Kumar, R. Hedeshy, S. MacKenzie, and S. Staab, ‘‘TAGSwipe: Touch
assisted gaze swipe for text entry,’’ in Proc. CHI Conf. Hum. Factors
Comput. Syst., New York, NY, USA, Jan. 2020, p. 1–12.

[38] A. T. Duchowski, ‘‘A breadth-first survey of eye-tracking applications,’’
Behav. Res. Methods, Instrum., Comput., vol. 34, no. 4, pp. 455–470,
Nov. 2002.

[39] L. Stark, G. Vossius, and L. R. Young, ‘‘Predictive control of eye track-
ing movements,’’ IRE Trans. Hum. Factors Electron., vol. 3, pp. 52–57,
Oct. 1962.

[40] S. Matthiesen, M. Meboldt, A. Ruckpaul, and M. Mussgnug, ‘‘Eye track-
ing, a method for engineering design research on engineers’ behavior while
analyzing technical systems,’’ in Proc. 19th Int. Conf. Eng. Design (ICED),
Design Harmonies, Hum. Behav. Design (DS), Seoul, South Korea, vol. 7.
Glasgow, Scotland: The Design Society, Aug. 2013, p. 10.

[41] A. S. A. Chetwood, K.-W. Kwok, L.-W. Sun, G. P. Mylonas, J. Clark,
A. Darzi, and G.-Z. Yang, ‘‘Collaborative eye tracking: A potential train-
ing tool in laparoscopic surgery,’’ Surgical Endoscopy, vol. 26, no. 7,
pp. 2003–2009, Jul. 2012.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

JIAYAO LI received the B.S. degree double major
in computer science and mechanical engineering
from Texas A&M University, in 2018. She also
minored in mathematics and cybersecurity. She
was a member of the Sketch Recognition Labo-
ratory and was advised by Dr. Tracy Hammond.
She currently works as a Software Engineer at
Goldman Sachs in Manhattan, New York. Prior
to working with Goldman Sachs, she worked as
a Professional Engineering Intern at Walt Disney

World, Orlando, FL, USA. Her research interests include human–computer
interaction and machine learning and will pursue her advanced degree in the
future.

SAMANTHA RAY received the B.S. degree in
computer engineering with minors in cyberse-
curity and Spanish from Texas A&M Univer-
sity, in 2018, where she is currently pursuing the
Ph.D. degree with the Sketch Recognition Lab-
oratory under Director Tracy Hammond. She is
also an Intelligent User Interface Researcher with
the Sketch Recognition Laboratory under Director
Tracy Hammond at Texas A&M University. She
also works on sketch recognition systems that aid

students in STEM fields develop their visual communication and spatial
skills with instructor-like feedback. Other projects she has worked on include
the human activity recognition (HAR) system for promoting healthy habits
by recognizing the performance of activities of daily living (ADLs). Her
research interests include human-AI collaboration and developing systems
that understand human behavior.

VIJAY RAJANNA received the Ph.D. degree in
computer science from Texas A&M University
and was advised by Dr. Tracy Hammond. He was
a member of the Sketch Recognition Labora-
tory, where he was involved in the development
of sketch, gesture, and activity recognition sys-
tems. He is a Human–Computer Interaction and
Machine Learning Researcher. He currently works
at Sensel as a Senior Research Engineer. His dis-
sertation work focused on the development of

gaze-assisted, multi-modal, and accessible interaction methods for address-
ing impairments and disabilities. Also, using various machine learning mod-
els, he performed predictive analytics built on eye movements data applied
to the domains of security, education, and economics.

TRACY HAMMOND received the B.S. degree in
applied mathematics, the B.A. degree in mathe-
matics, the M.S. degree in computer science, and
the M.A. degree in anthropology from Columbia
University, and she received the FTO (Finance
Technology Option) degree and the Ph.D. degree
in computer science from MIT. She is currently
the Director of the Sketch Recognition Laboratory
and a Professor with the Department of Computer
Science and Engineering, Texas A&M University.

She is an International Leader in sketch recognition and human-computer
interaction research. Her sketch recognition research has been funded by
NSF, DARPA, Google, Microsoft, and many others, totaling over 9 million
dollars in peer-reviewed funding.

VOLUME 10, 2022 1035

http://dx.doi.org/10.1145/3130939
http://dx.doi.org/10.1145/2858036.2858335

