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ABSTRACT αBB is an elegant deterministic branch and bound global optimisation that guarantees global
optimum convergence withminimal parameter tuning. However, themethod suffers from a slow convergence
speed calling for computational improvements in several areas. The current paper proposes hybridising the
branch and bound process with particle swarm optimisation to improve its global convergence speed when
solving twice differentiable (C2) box-constrained multimodal functions. This hybridisation complemented
with interval analysis leads to an early discovery of the global optimum, quicker pruning of suboptimal
regions in the problem space, thus improving global convergence. Also, when used as a heuristic search
algorithm, the hybrid algorithm yields superior solution accuracy owing to the combined search capabilities
of PSO and the branch and bound framework. Computational experiments have been conducted on CEC
2017/2019 test sets and on n-dimensional classical test sets yielding improved convergence speed in the
complete search configuration and superior solution accuracy in the heuristic search configuration.

INDEX TERMS αBB, particle swarm optimisation (PSO), box-constrained NLPs, hybridisation.

I. INTRODUCTION
Deterministic global optimisation techniques are rigorous
and complete search algorithms [1] that aims to find an
ε−accurate global optimum solution in finite time unlike
its stochastic counterpart (particle swarm optimisation [2],
genetic algorithm [3], differential evolution [4], simulated
annealing [5], ant colony optimisation [6] and other com-
peting techniques [7]). These techniques generally proceed
by lower and upper bounding of the solution space using
branch and bound frameworks [8]. Among existing deter-
ministic global optimisation approaches, αBB is an elegant
branch and bound (BB) framework [9], [10] that guarantees
convergence to the true optimum for twice differentiable
problems. However, the framework generally suffers from
a slow convergence speed owing to its often loose convex
relaxation. Several research works have been done in the
literature [11]–[15] aiming to improve bound tightness and
thus boost the overall computational efficiency. In the
same tune, interval analysis is also used as a zero-order
convex relaxation that supplements α-convex relaxation and
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provide tighter lower bounds [16]. While several research
works have been centred on bound tightness, not so much
research work has been performed in other areas of the
procedure, including the performance of the upper bound
solver. In a bid to further improve convergence speed, the
current study looks at the exploration capability of the
upper bound solver that typically makes use of local search
algorithms. The study proposes an efficient use of particle
swarm optimisation (PSO) as an upper bound solver in the
BB-procedure to allow early discovery of the true optimum,
which could lead to early pruning of suboptimal regions
and speed up global convergence provided the availability of
tight bounds supplemented by interval analysis. In addition,
the hybrid algorithm can be used as a heuristic search
algorithm combining the search capability of PSO with that
of the branch and bound framework to which a deterministic
stopping criterion is added, thus yielding a solver that is
beneficial to both frameworks, stochastic and deterministic.
The main contributions of the paper are as follows:

1) A novel PSO-αBB hybrid algorithm is proposed that
improves the convergence speed of classical αBB for
C2 multimodal bound-constrained problems.
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2) A PSO via branch and bound framework heuristic
search algorithm is proposed with improved solution
accuracy.

3) Additional insights on the bound tightness performance
of α-convex relaxation and classical interval analysis
are provided and discussed.

The rest of this paper is organised as follows: Section 2 elab-
orates on the αBB search procedure presenting the con-
figuration of the state of the art inclusive of all pruning
rules. Section 3 describes the particle swarm optimisation
algorithm, including critical components related to this
study. Section 4 presents the proposed hybrid algorithm.
Section 5 describes the computational experiments used
to assess the performance of the proposed algorithm,
discusses the findings and proposes future research areas.
Section 6 provides a conclusion to the study.

II. DETERMINISTIC GLOBAL OPTIMISATION: αBB
A. CLASSICAL ALGORITHM
Deterministic global optimisation typically proceeds by an
exhaustive partitioning of the solution space in which upper
and lower bounding of the problem inner regions anticipates
pruning of sub-optimal areas in the search for the ε−global
optimum. This divide and conquer approach is performed
within a branch and bound framework [8]. αBB is a
branch and bound framework that offers an elegant lower
bounding scheme that creates an underestimator by adding
a function term to the initial problem with minimal inclusion
of additional parameters (α) applicable to twice differentiable
functions. The algorithm was developed by [17], [18].
A convex underestimator f l to a nonlinear function f is
obtained by adding a quadratic function to the original
non-convex function in such a way that it overpowers any
non-convexity in the original function:

f l = f (x)−
N∑
i=1

αi(xi − xil)(xi − xiu) (1)

where x li and xui are the bounds on the dimensions of the
solution space and N , the dimension order of the problem.
The formulation of the convex understimator relies on the
accurate estimation of the α vector, which requires that the
Hessian matrix Hf l be semi-definite:

Hf l (x) = Hf (x)+ 21 (2)

where 1 is a diagonal matrix whose diagonal elements are
elements of the α vector and Hf , the hessian matrix of the
original problem. Theoretically, elements of the α vector
can be obtained by finding the smallest eigenvalues in each
dimension of the hessian matrix of f within the bounded
region [18]:

αi = max{0,−
1
2
mini,xl≤x≤xuλi(x)} (3)

where λi(x)’s are the eigenvalues of Hf (x) in the given
interval. One efficient way to solve equation 3 is by using

interval analysis that finds the interval Hessian matrix [Hf ] ⊇
Hf (x) such that

αi = max{0,−
1
2
mini,xL≤x≤xUλi([Hf ])} (4)

Among existing computation methods to find the α vector
based on equation 4, the technique based on the scaled
Gershgorin theorem [9], [10] is typically used such that the
minimum eigenvalue of an interval matrix [A] = ([alij, a

u
ij]) is

given by

λi = mini[aii −
∑
j6=i

max(|aij|, |aij|)] (5)

and thus

αi = max(0,−
1
2
λi) (6)

To alleviate the conservative nature of α-convex relaxation,
it is supplemented with interval analysis [16] (i.e. LBi =
max(lbi,f )). Interval analysis is a mathematical arithmetic
that aims to provide a lower and upper bound to the range
of a function given the domain of its input variables, that
is, given [x, x], find [y, y] such that f ([x, x]) ⊆ [y, y]. The
methodology proceeds by defining interval arithmetic for
elementary operators from which more complex expressions
are built:

[x1, x1]+ [x2, x2] = [x1 + x2, x1 + x2] (7)

[x1, x1]− [x2, x2] = [x1 − x2, x1 − x2] (8)

[x1, x1] ∗ [x2, x2] = [min(x1.x2, x1x2, x1x2, x1.x2),

max(x1.x2, x1x2, x1x2, x1.x2)] (9)

[x1, x1]÷ [x2, x2] = [x1, x1].
1

[x2, x2]
(10)

1
[x2, x2]

=



NaN if x2 = x2 = 0

[
1
x2
, 1
x2
] if 0 /∈ [x2, x2]

[
1
x2
,+∞[ if (x2 = 0) and (x2 > 0)

]−∞,
1
x2
] if (x2 < 0) and (x2 = 0)

]−∞,+∞[ if (x2 < 0) and (x2 > 0)

(11)

Further details on more complex functions (cos, sin, asin,
acos, log, etc.) can be found in [19]. While interval analysis
also leads to overestimation in some instances due to the
dependency problem [20], our computational experiments
suggest that it often leads to much tighter bounds than α-
convex relaxation and thus can validly complement the lower
bounding process.

Convergence speed of the branch and bound process
is accelerated by domain reduction techniques [21] and
interval analysis based pruning rules [22], [23].While domain
reduction techniques are used selectively depending on the
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problem being solved, interval analysis based pruning rules
can routinely be used to supplement the classical fathoming
mechanism (See section II-B). Algorithm 1 describes a
pseudo-code of a typical αBB procedure.

The minimum and maximum iteration limit to complete
the branch and bound framework search is a function of the
problem dimension size (n), the size of the solution space, the
tightness of the underestimator (α), and the tolerance level
required (ε) [18]:

Imin = nlog2

(∑n
i=1(x

u
i − x

l
i )
2√

4ε
α

)
− 1 (12)

Imax =
(∑n

i=1(x
u
i − x

l
i )
2√

4ε
α

)n
− 1 (13)

exhibiting linearithmic (O(nlog(n))) and exponential (O(nn))
time and space complexity in the best and worst-case scenario
respectively.

Algorithm 1: A Typical α BB-Procedure

1 Let X0 = [x l, xu], {X} ← X0,BUB = +∞, set ε;
2 while {X} 6= ∅ do
3 Select a node Xj ∈ {X};
4 Calculate fj = inf (f (x)), x ∈ Xj;
5 if fj > BUB then
6 Fathom node Xj and move to next iteration;
7 end
8 Calculate [∇f ] and [Hf ], x ∈ Xj;
9 if f is monotonous or non-convex then
10 Reduce Xj and move to next iteration;
11 end
12 Solve for ubj = local_solver(f(x)),x ∈ Xj;
13 Update (x∗,BUB) = min(ubj,BUB);
14 Compute α and set f l(x) = f (x)+ CT (α, x);
15 Solve for lbj = local_solver(f l(x)),x ∈ Xj;
16 if lbj > BUB then
17 Fathom node Xj and move to next iteration;
18 end
19 Update node lower bound: LBj =max(fj, lbj);
20 if ubj − LBj > ε then
21 [Xj1,Xj2] = branch(Xj), {X} ← Xj1, {X} ← Xj2
22 end
23 Fathom node Xj;
24 end
25 return (x∗,BUB);

B. PRUNING RULES
1) BOUND TEST
‘‘If the lower bound of f in a given region V is above any
upper bound outside region V, the region V does not contain
the global optimum and can therefore be pruned’’.

2) MONOTONICITY TEST
‘‘If f is strictly monotone in one of the variables over a box
V = V1x. . . xVm,V ⊂ X, the box V does not contain the
global optimum of f over X = X1x. . . xXm except that the edge
f in X touches the edge of V. Monotonicity can be tested by the

sign of the interval gradient matrix of f in V’’:

If ∃xi, a dim of x : ∀xi ∈ Vi,∇f (xi) < 0

H⇒ f is strictly monotone decreasing

If ∃xi, a dim of x : ∀xi ∈ Vi,∇f (xi) > 0

H⇒ f is strictly monotone increasing

The box V should be reduced to an edge piece on the
monotonous dimension [23] and does not contain the global
optimum except possibly on its edge piece.

3) NON-CONVEXITY TEST
‘‘If f is concave over a given box V ⊂ X, the box V does
not contain the global optimum except that the edges f in X
touches the edges of V. Concavity can be tested by the sign
of the diagonal elements of the interval Hessian matrix of f
in V’’:

If ∃xi, a dim of x : ∀xi ∈ Vi,∇2f (xi) < 0

H⇒ f is concave over V

The box V can be pruned or reduced to its left or right edge
piece on the concave dimension [23].

FIGURE 1. Pruning rules in box-constrained global optimisation. The
following representation has been extracted from [22]. I1 relates to the
monotonicity test, and I2 refers to the concavity test. I3 relates to the
bound test.

III. PARTICLE SWARM OPTIMISATION
Particle swarm optimisation is a population-based optimisa-
tion algorithm inspired by the foraging of flocks of birds
in a collaborative methodology. PSO employs an interactive
random search for the global optimum based on swarm intel-
ligence. A set of randomly generated potential solutions is
generated, and each individual (particle) iteratively improves
its position based on its own experience (cognitive learning)
and based on the experience of other individuals in the swarm
(social learning). The motion of each particle in the search
space is thus dictated by a collaborative stochastic search
direction:

vk+1j = ωkvkj + c1r
k
1 (p

k
j − x

k
j )+ c2r

k
2 (g

k
(j) − x

k
j ) (14)

xk+1j = xkj + v
k+1
j (15)
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where vk+1j is the search direction of a given particle for
the next iteration, which is a function of its current velocity
vkj , its best location thus far pkj (cognitive learning) and the
best location gk(j) (social learning) in the neighbourhood of
the particle (gkj ) or within the whole swarm (gk ). When gk(j)
represent the best particle location in a given neighbourhood,
the algorithm is referred to as local, and it is referred to as
global when gk(j) represent the best candidate in the whole
population [24]. The latter version is used in the study as our
computational experiments suggested better time efficiency
in line with the focus of the study. The parameters c1 and
c2 represent acceleration parameters for the cognitive and
social learning components. rk1 , r

k
2 ∈ [0, 1] are uniform

randomly generated numbers that simulate the stochastic
behaviour of the swarm. Figure 2 illustrates geometrically
how the motion of each particle within a swarm is dictated.

FIGURE 2. Geometric illustration of particle movement in PSO [25].

A. PARAMETER TUNING
Convergence speed and exploration are primarily dictated by
the cognitive and social parameters c1, c2 as well as by the
inertial weight ωk . c1 and c2 decide the speed of each particle
as well as the algorithm bias towards either exploitation (fast
convergence) or exploration. If c1 = c2 > 0, the algorithm
is balanced. The particles attract towards the average of pkj
and gk . When c1 > c2, the algorithm gives preference to
exploration than quick convergence, whereas when c1 < c2,
the algorithm favours exploitation over exploration. Smaller
values of c1 and c2 lead to smooth particle trajectories during
the search, while larger values lead to abrupt motion with
more acceleration [26]. The original publication proposes
the value of c1 = c2 = 2 and these settings are typically
used in the literature [27]. The inertial parameter wk defines
how willing a given particle is in maintaining its current
direction. It contributes to dictating bias towards exploration
and exploitation as well. The higher the inertial parameter,
the more exploratory the search. In the original publication,
the inertial parameter was set to 1 (wk = w = 1).
However, a more adaptive variation wk is accepted in recent
literature [26], [28] that favours a high inertial weight value at
the beginning of the search, which progressively drops over
iterations:

wk = wmax −
wmax − wmin
max_iter

k (16)

This methodology favours exploration at the beginning of the
search and exploitation at the end of the search to eventually

narrow the search down to the area containing the best fitness
and explore it in detail. The value of wmax = 0.9 and
wmin = 0.4 are typically used in the literature. Apart from
the aforementioned parameters, three additional parameters
must be set. The population size of the algorithm is also
determinant to its exploration capability. A population size of
20-50 particles is routinely used in the literature and deemed
satisfactory. The velocity bound of the particles are often
determined as lying in a specified range [−vmax , vmax] which
limits the velocity of the particles. These velocity bounds are
typically of the type [27], [29], [30]:

vimax =
xui − x

l
i

Ii
(17)

where Ii is the scaling factor of the maximum velocity in the
ith dimension selected by the user. Ii has been set to 2 in
the current study with a smooth swarm behaviour. Also, the
position of the particle (xk+1j ) is typically bounded not to
exceed the problem dimension bounds.

B. STOPPING CRITERIA
Besides the use of a maximum iteration count, several
heuristics have been proposed in the literature that could lead
to an early stop of the algorithm when some features of the
particles do not lead to reasonable improvement [30] which
could save computation time. Improvement-based stopping
criteria terminate the search when the improvement of the
objective function (i.e. f (gk ) or µ(f (pkj )) is not significant
for a number of iterations. Movement-based stopping criteria
monitor the movement of particles for a given number of
iterations. If the particle positions do not sensibly vary
for a number of iterations, the search is halted. A gbest-
based improvement criterion is used in this work as it
is computationally efficient and is a satisfactory heuristic
stopping criterion consistent with the focus of the study.
A detailed survey on the topic can be found in [30].
Algorithm 2 presents the typical pseudo-code of the PSO
search mechanism.

IV. HYBRIDISATION
In the view of the current hybridisation, PSO is used as
an intelligent scatter search that favours an early discovery
of the global optimum owing to its exploration capabilities,
which could lead to early pruning of substandard regions
in the BB-procedure, fewer nodes exploration and thus
quicker convergence. It is well established in the literature
that a best-first search strategy (A∗ algorithm) in branch
and bound procedures leads to fewer node exploration and
fast convergence [8], [31]. The rationale of this idea is
that a branch and bound procedure should first focus on
regions estimated to contain the global optimum because,
given tighter bounds, sub-optimal regions will subsequently
be pruned and not explored. This philosophy is often the
rationale that influences the common use of the best-first
node selection strategy in BB-frameworks compared to
other node selection approaches [8]. However, it does not
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Algorithm 2: Typical PSO Procedure

1 Let X0 = [x l, xu],V = [−vmax , vmax];
2 Set swarm size N, max_iter K and k = 0;
3 Randomly generate initial population: xj ∈ X0;
4 Randomly generate initial velocities: vj ∈ V ;
5 Set pkj for every particle to xkj ;
6 Compute the swarm initial best point (gk ,BUB);
7 while k < K and heuristic stop not reached do
8 for j=1:N do
9 vk+1j = ωkvkj + r

k
1 c1(p

k
j − x

k
j )+ r

k
2 c2(g

k
− xkj );

10 vk+1j = bound(vk+1,−vmax , vmax);
11 xk+1j = xkj + v

k+1
j ;

12 xk+1j = bound(xk+1, x l, xu);
13 f k+1j = f (xk+1j );
14 pkj = arg min({f k+1j , f kj });
15 gk = arg min({f (pkj ),BUB});
16 end
17 k = k + 1;
18 end
19 return (x∗ = gk ,BUB);

suffice to estimate the region that most likely contains
the global optimum; the use of a local search in such a
region could still lead to additional branching if such a
solver is trapped in a local optimum (i.e. poor upper bound)
while the lower bounding utility is rather tight. A more
explorative search for the true optimum would increase the
likelihood of exploring fewer nodes and eventually speed
up convergence of the BB-procedure. Moreover, the use of
PSO as an upper bound solver in the BB-procedure increases
the likelihood that upon early termination of the branch and
bound process due to a maximum iteration limit, a much-
improved solution than the classical methodology can be
obtained. From a PSO point of view, this hybridisation could
guide the PSO solution search towards the true optimum
owing to the αBB region partitioning scheme and node
selection strategy, as well as provide a deterministic stopping
criterion that informs the algorithm that the true optimum has
been obtained, a feature that PSO alone cannot guarantee.
Thus, the hybrid algorithm can also be used as a heuristic
search algorithm that uses the combined search capabilities
of PSO and αBB to obtain an improved solution. Several
PSO-BB hybridisation approaches have been proposed in the
literature yielding improved optimisation performances. [32]
proposes PSO-BB hybridisation for solving integer separable
concave programming problems using PSO as an upper
bound solver for discrete problems and linear relaxation,
yielding improved convergence speed of the BB-process
for several problems. [33] proposes a generic PSO-BB
hybridisation for mixed discrete nonlinear programming
using an SQP-based nonlinear branch and bound framework
as alternating hybrids to obtain a better solution accuracy
performance than both PSO and the nonlinear SQP-branch
and bound framework controlled by a maximum iteration
count. In the methodology, the BB-procedure would initialise

an incumbent solution which PSO will use as gbest, further
explore and pass on back to the BB-procedure by the
time it finds a better solution and the cycle repeats. The
approach yielded improved computational efficiency and
solution accuracy than both PSO and the branch and bound
framework, although it could not guarantee global optimality
for non-convex problems [34] and thus could be outper-
formed by other competing methods. [35] proposes BB-PSO
hybridisation for box constrained NLPs using a Lipschitzian
problem-specific lower bounding scheme where a branch
and bound framework would lead PSO to global optimality.
Although the framework provided similar settings as the
current work, the framework did not focus on computational
efficiency and did not elaborate a generic approach to
convex relaxation that would not require knowledge of the
problem space nor offered tight bounds. The study focused
on leading PSO to global optimality, however, with no
emphasis on the computational efficiency of the mix and
using a much looser convex relaxation approach than the
scheme used in this study. [36], [37] propose hybridisation
of conformational simulated annealing (CSA) with αBB as
alternating hybrids to solve a highly multimodal protein
structure prediction problem, a box-constrained optimisation
problem, resulting in a substantial reduction in time. In a
similar philosophy, as [33], the result of αBB iteration upper
bound solver would seed CSA in its evolutionary strategy
to aggregate much better candidate solutions upon which a
next αBB iteration will take place, and the cycle repeats.
However, the computational cost of conformational simulated
annealing [38] is not appropriate for the type of hybridisation
used in this study on top of the fact that a different
methodology is used in the current work. Further comparative
studies can be done on alternating and integrated hybrids. The
current study extends from thework of [35] and proceedswith
the hybridisation of αBB, a problem-agnostic generic branch
and bound framework for twice differentiable problems with
guaranteed ε−global optimal verification where PSO is used
as a substitute for the upper bound solver of classical αBB
inclusive of additional optimisation in a bid to improve the
computation time performance of the αBB as a unit as well as
guarantee global convergence of PSO. Also, the current study
relies on interval analysis as an improvement over α-convex
relaxation in order to support pruning of sub-optimal regions
and yields an early stop of αBB. Finally, to alleviate the local
convergence shortcoming of PSO that may fail to converge
to an optimum even in its vicinity [39], the final gbest
at the end of each PSO search is used as an initial value
to a local solver (i.e. SQP) taking advantage of gradient
information. Figure 3 describes the flowchart of the hybrid
algorithm.

V. COMPUTATIONAL EXPERIMENTS
To compare the performance of both αBB configurations,
C2 class functions from the CEC 2017/2019 test sets and
n-dimensional classical functions from an extensive literature
survey were used [40]–[42] (See Table 1). The computational
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FIGURE 3. Flowchart of the hybrid algorithm.

experiments aimed to assess the convergence speed of αBB
against the hybrid algorithm (αBB-PSO) when used as a
complete search algorithm (i.e. no maximum iteration count)
whereby test functions were set to dimension 2 and 3, respec-
tively. Also, the solution accuracy of the hybrid algorithm
when used as a heuristic search (i.e. maximum iteration
count) was compared against PSO for the same number of
function evaluations using test functions at dimension 10.
Table 2 presents a summary of the configuration of the
computational study. αBB was configured with a best-first
search strategy using node lower bounds, a global optimum
tolerance level of ε = 10−3. All pruning rules mentioned
in section II-B were used. Branching was performed on
the dimension with the longest size at every node. In the
complete search configuration, PSOwas set with 30 particles,
a maximum iteration limit of 50 for dimension 2 and 100 for
dimension 3. A maximum stall iteration count of 20 with
a function improvement tolerance of 10−3 was set for the
heuristic stop. In the heuristic search configuration, PSO was
set with amaximum iteration count of 10000with no heuristic
stop compared against the hybrid algorithm with a maximum
iteration count of 50 and a PSO maximum iteration count of
200 to yield the same total number of function evaluations
(i.e. 10000 per particle). An adaptive inertial weight for the

PSO procedure was used in all configurations according to
equation 16. The cognitive and social parameters were set
to c1 = c2 = 2 in line with the original publication
and typical implementations [27]. The experiments were
performed on a general-purpose computer: i3-core processor
64-bit@2.0GHz 8GBRAM. Interval analysis was performed
using a third-party MATLAB package INTLAB (version 11)
designed by [43]. The MATLAB (version 9.6.0) SQP-based
NLP solver was used in this study for all local searches. In the
complete search configuration, performance profiles [44]
measured in terms of median CPU time were used to
compare the convergence speed of the hybrid algorithm
against classical αBB to assess their computational efficiency
first in reaching the global optimum and second in completing
the search across all test functions (See Figure 4 and 5).
These results were supplemented by median CPU time
performances of each function presented in Table 3 and 4.
In addition, the average iteration cost of the BB-procedure in
each configuration was recorded to assess the computational
cost distribution of each sub-component with the branch
and bound frameworks. In the heuristic configuration, the
solution accuracy of PSO was compared with that of the
hybrid algorithm for the same number of function evaluations
using the performance profile in terms of a solution accuracy
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TABLE 1. C2 multimodal functions from CEC2017/2019 and from an
extensive survey on global optimisation benchmark functions [40]–[42].

metric [45] and using median final fitness values of each
solver across all functions (Table 5).

Finally, bound tightness performances of both interval
analysis and α-convex relaxation were recorded to assess the
contribution of each lower bounding scheme in quickening
convergence (See Table 6). Median scores were admitted
unequal only if they were statistically significant as per
the Mann-Whitney U statistical test. A significance level of
0.05 was used for the hypothesis tests (H0 : µ1 = µ2). All
performance metrics were obtained from an average of fifty
optimisation runs.

A. DISCUSSION AND RECOMMENDATIONS
1) ON THE CONVERGENCE SPEED TO GLOBAL OPTIMUM
REACH
The performance profile in Figure 4 compares the conver-
gence speed of each solver in reaching the global optimum.
The results in the figure show that the hybrid algorithm
has a much better efficiency in finding the global optimum
compared to the classical algorithm with a win probability
(τ = 1) of 85% and convergence improvement up to
36 fold. The results on Table 3 substantiate this claim as
most test functions reach the global optimum earlier in the
hybrid algorithm taking fewer branching iterations. These
results are consistent with the rationale of the study of
early global minimum reach through PSO usage and concurs

TABLE 2. Summary of experiment configuration.

with the theoretical rationales that support the superiority of
meta-heuristic searches over local search techniques in terms
of search capabilities.

2) ON THE OVERALL CONVERGENCE SPEED
Figure 5 presents the performance profile that compares the
overall convergence speed of both αBB configurations. The
results in the figure show that the hybrid algorithm has an
overall better efficiency compared to the classical algorithm
with a win probability of 60% and an overall convergence
speed improvement of up to 38 fold. In a practical sense, the
hybrid algorithm can quicken global convergence on a case to
case basis up to several orders of magnitude compared to the
conventional algorithm. This improvement in convergence
speed is correlated with a reduction in the number of
branching iterations consistent with the rationale of the study
(See Table 4). The results in Table 4 shows that the hybrid
algorithm reduces the number of branching iterations for 46%
of test problems with statistical significance and thus is a
more robust solver.

On the other hand, the hybrid algorithm did not reduce
the overall execution time for several other profiles, yielding
some increase in computational time. Additional calibration
work should be performed to optimise the computational cost
PSO as an upper bound solver to yield zero to very negligible
overhead thus when no reduction in the number of branching
iteration occurs. This calibration could further improve the
performance profile of the hybrid algorithm. Finally, a gap
can be observed between the performance profile of the
hybrid algorithm to global optimum reach compared to
its true overall performance profile. More investigations
should be conducted on tighter lower bounding schemes that
could further unleash the potential of the hybrid algorithm
(Figure 4).

3) ON THE COMPUTATIONAL COST DISTRIBUTION OF
BB-COMPONENTS
The results in Figure 6 presents the average computational
distribution of each BB-component across both configu-
rations recorded for test problems at dimension 2 and

VOLUME 10, 2022 811



Y. Matanga et al.: Hybrid PSO-αBB Global Optimisation for C2 Box-Constrained Multimodal NLPs

FIGURE 4. Performance profile of αBB-PSO vs αBB up to global optimum reach.

TABLE 3. Relative time to reach the global optimum.

dimension 3. It can first be observed that α-convex relax-
ation takes more than 60% of the computation time of a
BB-iteration across all configurations. α-convex relaxation
involves the computation of the interval hessian matrix [Hf ]

as well as the estimation of the α vector. Compared to
interval analysis (IA), α-convex relaxation is more costly.
Moreover, regarding upper bound solvers, it can be observed
that PSO (i.e. PSO+ SQP fine-tune) is more computationally
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FIGURE 5. Performance profile of αBB-PSO vs αBB for the overall execution time.

TABLE 4. Overall relative time to Global optimum verification.

expensive than the classical SQP-based local search of
the αBB configuration yielding additional computational

overhead responsible for its improved search capabili-
ties; however, also susceptible to deteriorate computational
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FIGURE 6. Average distribution cost in αBB and αBB-PSO.

efficiency. As mentioned in section V-A2, this computational
overhead can be further minimised or eliminated by cali-
bration of PSO parameters (i.e. heuristic stop parameters,
number of particles, maximum iteration count) or potentially
by looking at the computational contribution of the SQP fine-
tuningmechanism. The lower bound optimisation (Lb Solver)
has been the third-largest contributor in the BB-iteration cost.
The computational cost of the node selection process and
auxiliary algorithmic routines were very negligible across all
configurations.

4) ON THE SOLUTION ACCURACY OF THE αBB-PSO
HEURISTIC CONFIGURATION
The performance profile in Figure 7 and results in Table 5
assess the capabilities of the hybrid algorithm as a heuristic
search (i.e. maximum iteration limit) against PSO in terms
of solution accuracy. This experiment was performed on
equal grounds guaranteeing that both PSO and the hybrid
will perform an equal number of function evaluations (i.e.
10000 per particle), and the results of both solvers were
fine-tuned by an SQP solver subsequently. It can be observed

that the hybrid algorithm outperforms PSO in terms of
solution accuracy yielding a performance profile with a win
probability of 100% and an improvement in solution accuracy
in excess of 100 fold. In addition, the hybrid algorithm
could guarantee complete search in several instances (F3,
F6, SF38, SF43, SF44 and SF154), thus ending the search
with confidence of exhaustive exploration. The above results
exemplify the benefits of combining the search capability
of the branch and bound framework with that of PSO in
the same vein as [35]. On the other hand, PSO presented a
better time efficiency than the hybrid algorithm. To further
improve the computational efficiency of the hybrid algorithm,
interval analysis could be used as the sole lower bounding
scheme because statistically, it yields much tighter and more
computationally efficient than α-convex relaxation (Figure 6
and Table 6).

5) ON THE CONTRIBUTION OF INTERVAL ANALYSIS TO
REGION PRUNING
The results in Table 6 show a comparison of bound tightness
between interval analysis and the α−convex relaxation over
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FIGURE 7. Performance profile of PSO against heuristic αBB-PSO in terms of solution accuracy.

TABLE 5. Solution accuracy: Heurestic αBB-PSO vs PSO. Max Function eval: 10000.
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TABLE 6. Bound tightness comparison (Average of 50 optimisation runs, Dimension 3).

a series of fifty optimisation runs, counting the number of
times interval analysis had attained a tighter lower bound
than α-convex relaxation and vice-versa. It also evaluated the
gap between the two underestimators in each iteration during
BB-procedures. The results show how interval analysis
was much tighter than α-convex relaxation on most lower
bounding routines for most test profiles (except SF144).
In most test profiles, interval analysis totally outperformed
convex relaxation in finding tight bounds. Also, in instances
where α-convex relaxation was unable to find a finite lower
bound (i.e. lbi = −∞), interval analysis supplemented the
shortcoming. Hence, interval analysis was able to anticipate
tighter bounds much earlier than α-convex relaxation, which
eventually led to early pruning to quicken the overall
convergence of the hybrid algorithm.

However, it should also be noted that interval analysis
does not always lead to tight bounds as in many instances,
it also leads to overestimation as caused by the dependency
problem related to the inner structure of the problem
algebraic expression [20]. This can also explain why the
hybrid algorithm did not manage to quicken convergence
for several other test profiles, albeit reaching the global
optimum earlier in most cases (See Table 3). Further study
should be performed towards the improvement of classical
interval analysis or the implementation of other interval
analysis approaches reported in the literature such as Taylor
model-based interval analysis [46], [47] or affine interval
analysis [48]. Such an improvement in accuracy will not
only improve lower bounding by interval analysis, but it

will also ameliorate the tightness of α-convex relaxation,
which typically depends on interval analysis (i.e. Interval
Hessian matrix). In addition, possible restructuring of the
problem algebraic expression [49], [50] can also contribute
to improving the bound tightness of classical interval analysis
and α-convex relaxation.

VI. CONCLUSION
The current study has proposed the hybridisation of particle
swarm optimisation with αBB in a bid to improve the
convergence speed of the branch and bound framework,
on the one hand, and to obtain a better heuristic solver on
the other hand. It has shown an improvement in convergence
speed of the branch and bound framework on several test
profiles owing to an early solution discovery by PSO and
owing to the availability of sharp lower bounds supplemented
by interval analysis. Also, it has shown a drastic improvement
in solution accuracy when PSO is used via branch and
bound framework, combining the search capabilities of both
devices. Interval analysis has been very determinant in the
proposed algorithm yielding much tighter bounds than α-
convex relaxation and at a better computational efficiency,
therefore, hinting that it could be used as its substitute to fur-
ther improve computational efficiency. More investigations
should be performed on tighter bounding schemes in interval
analysis which would subsequently boost the convergence
speed of the hybrid algorithm. Additional calibration work
should be conducted to improve the computational cost
of PSO as an upper bound solver in order to minimise
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computational overhead and ameliorate the efficiency of the
hybrid algorithm.
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