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ABSTRACT The tremendous development of the Internet of Things (IoT) technology in the last decades has
fostered advancement in automatic medical assistive devices to support the existing Electronic Health Record
(EHR) system. As an integral part of the EHR electronic model, public cloud servers store medical data.
Unfortunately, public cloud servers are prone to security and privacy breach. This paper introduces a novel
non-cryptographic approach to preserve electrocardiograph (ECG) data confidentiality and integrity in the
EHR environment. The main objective of the proposed anonymization algorithm is to obscure the patient’s
cardiac information during transmission and to protect information stored in the cloud database. Although
we focus on ECG data, generalization to other types of clinical data can be derived using the proposed
method. Performance evaluation of the proposed scheme showed that the algorithm conceals both fiducial
and non-fiducial features of the data. Therefore, confidentiality feature is preserved. This paper examined
confidentiality of the anonymized data using the Percentage Residual Difference (PRD) and investigated
the integrity of the reconstructed data in terms of cross-correlation. Security analysis carried out using the
PRD, brute force attack, and performance comparison between the proposed algorithm and existingmethods.
Evaluation showed that the proposed scheme offers a secure non-cryptographic model for transmission and
storing clinical data in the cloud. Moreover, in terms of processing time, the proposed algorithm is ten times
faster than the existing wavelet packet method when processing long ECG data, 65,536 sample points. In a
real-time experimental testbed, the implemented proposed system was successful.

INDEX TERMS Eelectrocardiography, electronic health record, fast Fourier transform, information security.

I. INTRODUCTION
With the advent of Internet of Things (IoT) technology and
the development of medical Internet-based applications and
devices, we have witnessed remarkable progress over the last
two decades [1]–[6]. For example, according to the Global
Market Insights, the Electronic Health Records (EHR)market
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size in 2018 was valued at over 25.5 billion USD around the
world and it is forecasted that the market size will become
38 billion USD in 2025 [7].

The proliferation of the current information and com-
munication technology has changed the way medical data
recorded and stored. These medical data may include several
personal medical data such as: medical histories and med-
ication and laboratory test results. Additionally, it contains
vital information such as an electrocardiograph (ECG),
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phonocardiograph (PCG), electroencephalogram (EEG),
blood pressure, respiration rate, and body temperature (the
so-called human vital signs). The vital signs data were pre-
viously recorded in paper-based format. The transforma-
tion from paper-based electronic documents has gradually
become a compulsory requirement to provide efficient and
flexible healthcare services. EHRs have several advantages,
including enabling data sharing across various stakeholders
for future clinical analysis and decision making, easy data
access at any time and anywhere, reduced time for locating
physical records, reduced physical storage, and less medical
costs [8].

Further, thewidespread use of cloud computing technology
for a broad range of applications is another key factor that has
attributed to the fast growth of EHR in the healthcare indus-
try. There are several features that make cloud computing
different from traditional computing techniques, including
on-demand self-service, broad network access, resource pool-
ing, rapid elasticity, and measure service [9], [10]. These fea-
turesmake cloud services an important part of the deployment
of the EHR, since they reduce costs associated with storing
and maintaining data, improve accuracy of processing, and
allow data to be exchanged among stakeholders.

While the cloud computing paradigm offers tremendous
change to the way EHRs are implemented, it also poses par-
ticular security and privacy threats [11], [12]. Due to the loss
of full control over their clinical data in this cloud network
model, users are more concerned about security and privacy.
The escalating threats to this cloud systemmay include spoof-
ing identity, tampering with clinical data, and the disclosure
of sensitive information 13]. Moreover, cloud virtualization
that enables multiple users to share the same physical storage
can lead to a problem of multi-tenancy, whereas malicious
users may access data that belongs to other users [9], [17].
In addition to the possibility of external threats, special atten-
tion needs to be paid to internal threats from person with
authority over data such as database administrators, software
engineers, programmers, or probably key managers.

Several attempts have been made to prevent security
breaches in the cloud-based EHR system. However, the exist-
ing security and privacy techniques do not offer adequate
protection for healthcare services [13]–[15]. For example,
the well-accepted methods such as attribute-based encryp-
tion (ABE), identity-based encryption (IBE), searchable
encryption, symmetric key encryption (SKE), were found to
be inefficient due to their computational complexity [12].
In contrast, the public key encryption (PKE) techniques have
a relatively slow operation due to larger key sizes.

Recently, blockchain technology has emerged as an
alternative method for protecting medical records and other
sensitive healthcare-related information [16]–[19]. As the
number of users of the blockchain grows linearly, it forms
a growing distributed ledger of records. Each node in this
ledger structure is commonly called a block. Each block is
digitally signed by cryptographic hashes and validated by
network peers. Due to this chain structure, blockchain can

be a secure way of storing medical records [20]. Neverthe-
less, blockchain is still in its initial phase and lack defined
standards [21].

In this paper, we introduce a new non-cryptographic
scheme to secure clinical data. Although we focus on electro-
cardiograph (ECG) data processing, generalization to other
types of clinical data such as PCG and EEG data, can
be derived using the proposed method. The main objective
of the proposed algorithm is to obscure patient’s cardiac
information during transmission of ECG data and to protect
information storing in the cloud database of the EHR environ-
ment. ECG data have been used for object evaluation because
they embody cardiac health information of a patient and
that information is highly unique for every individual [22].
As a result of this discovery, several companies are cur-
rently exploring ECG biometric that will be used for personal
attribute authentication and plan to deploy it for enterprise
applications [23], [24]. The unique features, however, also
make ECG data vulnerable to malicious attacks and make it
crucial for any service providers that handle clinical data to
provide maximum security.

The main contributions of this paper can be summarized as
follows:

i We introduce a practical non-cryptographic approach
to preserve ECG data confidentiality and integrity in
the EHR environment. It should be noted that the
approach can convey any types of clinical data, not just
ECG data.

ii The ECG data is anonymized using signal processing
algorithms, and then stored in the cloud system as a
secure data. Therefore, the proposed algorithm con-
ceals the cardiovascular features of a patient fulfilling
the Health Information Protection and Privacy Act
(HIPPA) regulations (1996) [25].

iii We establish a reconstruction algorithm to retrieve the
original ECG data from the anonymized ECG.

iv We have implemented the proposed system in a
real-time testbed e.g., wireless sensor node and ECG
signal processing module to evaluate the practicality
and attractiveness of the algorithm to support the exist-
ing EHR system.

The proposed algorithm is based on our previous devel-
opment of the anonymization algorithm in [26] with signif-
icant improvement in this paper to enhance the efficiency
and robustness of the algorithm. In common medical terms,
anonymization refers to a process that removes personal data,
e.g., name, address, postcode, so that a data subject can no
longer be identified directly or indirectly [27]. In this paper,
a similar term, anonymization will be used to describe an
algorithm to obfuscate the structure of ECG data so that it
cannot be identified without reconstruction. The term was
originally used in [28].

The rest of the paper is organized as follows. In the
first section, we elaborated on the crucial need for security
and privacy in the cloud-based EHR system followed by
main contributions of this work. Next, we will explore the
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existing anonymization algorithms and evaluate their perfor-
mance in Section II. Section III describes the detail of the
proposed algorithm including the anonymization and recon-
struction methods as well as security analysis of the proposed
algorithm. Evaluation of the algorithm and its experimental
testbed will be carried out in Section IV and finally, conclu-
sions will be drawn in the last section.

II. RELATED WORKS
A. REVIEW ON ANONYMIZATION METHODS
Several studies for securing ECG data with anonymiza-
tion techniques were widely available in the literature.
In this section, we will first discuss two approaches to ECG
anonymization. Both algorithms decompose the ECG data
using wavelet packet techniques. Later, we will explain the
fast Fourier Transform (FFT) algorithm that consumes less
energy in real-time implementation.

The authors of [28] suggested using the wavelet packet
method to transform the ECG data from the time domain into
the frequency domain and decompose the data to subband
coefficients. In this method, lower frequency components of
the data were then removed and replaced with zeros that
corresponded to the distorted coefficients. Subsequently, all
coefficients from the ECG data were reconstructed, includ-
ing those associated with the zeros in the lower subband
and those associated with higher frequency coefficients, and
transformed back into the time domain to yield anonymized
ECG data. Here, the removal of the lower subband coef-
ficients in the frequency domain distorted the structure of
the ECG data. Thus, the anonymized ECG data strongly
differed from the original. It was done purposefully in order
to deform the time domain structure of the original ECG data.
Furthermore, for distribution of the data across the networks,
the camouflaged ECGswere sent over the Internet to a certain
medical center database, while the low frequency subband
was sent to an authorized person as a secret key. Finally,
the original ECG was recovered by combining the secret key
and the distorted ECG data on the receiver side using the
reconstruction method. Careful examination in [29] showed
that the method in [28] does not fully conceal the fiducial
features of the ECG. The reason is that the RR- interval is still
present in the anonymized ECGdata and can still be identified
easily; consequently, heart rate variability of a patient can be
revealed using this anonymized data.

A short review about the fiducial and non-fiducial features
of ECG data is as follows. The fiducial-based feature repre-
sentation exploits the characteristic points on the ECG data
to reveal amplitude, distance, envelope, slope, time/interval,
and area features. The characteristic points are referring to
the locations of the peaks and boundaries of P, Q, R, S,
and T waves on the ECG waveform. In contrast, the non-
fiducial-based feature representation extracts the distinctive
information within the ECG by way of the autocorrelation
coefficient, Fourier coefficient, and wavelet coefficients.

As a result of the anonymization, it was shown in [28]
that the waveforms of the anonymized ECG data were very

similar to the original ECG data. Therefore, malicious users
might be able to recognize the anonymized data without any
difficulties and use it for their purpose. Fortunately, despite
the drawback conceived in the algorithm, it showed some
significant results. For example, the examination in the paper
revealed that the size of the secret key achieved only 5.8%
of the original ECG data size. Secondly, the algorithm estab-
lished the use of compression and encryption techniques to
secure the secret key before distribution.

Subsequently, an algorithm that was introduced in [29]
showed significant performance improvement over the
previous work by using a slightly different approach. The
security algorithm made use of the generalized wavelet
packet method to decompose the ECG data in several
subbands encompassing low-frequency components to high-
frequency components. In contrast to the work in [28], the
paper claimed that the proposed ECG anonymization method
could successfully obfuscate intrinsic features such as fidu-
cial and non-fiducial features. The algorithm had thoroughly
examined over normal and abnormal ECG data.

The algorithm in [29] removed the lower subband of ECG
data points and treated them as a secret key. This secret key
was distributed separately to a medical center server whereas
the anonymized ECG data was transformed to time domain
and stored in a public server. At the receiver end, only autho-
rized persons with the ability to access the secret key and the
reversible functionwould have the authority to reconstruct the
original ECG from the anonymized ECG. The performance
of the proposed framework had been evaluated using fiducial
features such as the cross-correlation analysis, power spectral
density, and the percentage residual difference (PRD). The
paper argued that the reconstructed ECG data was highly
correlated with the original one. In other words, the proposed
method has successfully achieved a lossless reconstruction
of the ECG data and proved its robustness. However, the
real-time practicality of both works in [28] and [29] have not
been examined and tested in a hardware testbed.

The use of the wavelet transforms to manipulate the ECG
data as in the described papers leads to the increment of over-
all computation complexity. This is mainly due to the ECG
data decomposition and reconstruction processes with the
help of the wavelet-packet algorithm that consumes almost
90% of all anonymization processing time. A study by way
of computer simulation in [26] showed that replacing the
wavelet decomposition and reconstruction procedures using
the fast Fourier transform (FFT) method could achieve the
speed of processing 5 times faster than the wavelet-packet
based algorithm. For example, this study showed that the
proposed method could anonymize ECG data with a length
of 16,384 points in 3 ms only, while in contrast to that,
the wavelet-packet transform as in [29] required approxi-
mately 33 ms to complete the whole anonymization process
using the same evaluated ECG data. Therefore, the proposed
ECG security method in [26] could be considered as the most
suitable algorithm (compared to the existing ones) for imple-
mentation of the whole set of systems in the IoT environment,
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where some constraints like power and computation limita-
tions could be substantial factors.

B. EVALUATION ON THE EXISTING METHODS
In this sub-section, the anonymization of ECG data based on
the FFT described in [26] will be investigated thoroughly.
The investigation mainly focuses on the weaknesses of the
algorithm in order to find an appropriate solution that will
mitigate the vulnerability that exists.

Assume a time-domain ECG data sequence, x[n], repre-
sented by a mathematical form {x[n]: n = 1, 2, . . . ,N},
where N is the ECG sequence length. This ECG sequence
is then transformed into its frequency domain using the fast
Fourier transform (FFT) algorithm. The mathematical form
of the frequency domain signal is expressed as {X [k]: k =
1, 2, . . . ,N – 1}. The frequency domain form is written in
capital letters as is typical of many literary works. Fig. 1
depicts the block diagram of the anonymization algorithm
developed in [26].

FIGURE 1. ECG data anonymization approach [26], [29].

The most important part of this method is the partition of
the frequency domain ECG signal into two subbands, i.e., the
low-frequency subband and the high-frequency subband as
described in (1),

X [k] = {X1 [0, · · · ,P] ,X2 [P+ 1, · · · ,Q]} . (1)

In (1), X1[0, . . . ,P] represents the low-frequency compo-
nent of the ECG data and X2[P + 1, . . . ,Q] represents the
high-frequency component.

The structure of the ECG data was then modified using
the two steps. Firstly, the algorithm removed X1[0, . . . ,P]
from X [k] and called it a secret key, κ[k]. This secret key was
subsequently encrypted, compressed, and sent as a secure key
to an authorized healthcare provider database (see Fig. 2).
Secondly, the algorithm manipulated the high-frequency
component, X2[P+1, . . . ,Q] with a reversible function,�[k]
according to (2),

X2 [k] = {X2 [k] ∗� [k] : P+ 1, · · · ,Q} (2)

where X2[k] and�[k] are an element-wise multiplication and
�[k] is a vector of

� [k] = {κ [k]+ offset: k = 0, · · · ,P} (3)

FIGURE 2. Block diagram of the anonymization algorithm in [26].

where the offset valuewas defined as offset= |min(κ)|+η and
element η is a constant value to prevent division by zero. The
anonymized signal, x2[n], was finally produced after taking
inverse FFT (IFFT) of the X2[k].

It should be noted that the element-wise multiplication
in (2) can be replaced by an element-wise division. This is
because both multiplication and division inherit the same
computational complexity notated by O(n2).

In its implementation, the anonymized signal, x2[n], shown
in Fig. 2 was transmitted and stored in a public cloud
database whereas K was stored separately in the healthcare
provider server. Therefore, a potential attacker who is some-
how able to get access to this public database can only see
the anonymized ECG data, not the original data. To retrieve
the original ECG data on the receiver side, an authorized
medical doctor/specialist performed a reconstruction method
using the secret key taken from a healthcare provider’s
server and the anonymized signal taken from a public cloud
database.

VOLUME 10, 2022 1085



J. Jusak et al.: New Approach for Secure Cloud-Based EHR and Its Experimental Testbed

Careful examination of (2) shows that the element-wise
multiplication of vector X2[k] by a vector �[k] requires both
vectors to have the same size. However, we see in (3) that the
size of vector �[k] is in fact smaller than the size of vector
X2[k]. Therefore, the vector �[k] is mandatorily repeated
several times until it has the same size as X2[k] to maintain
the valid operation of (2).

FIGURE 3. Power Spectral Density (PSD) of the anonymized ECG:
(a) element-wise multiplication, (b) element-wise division.

Our further studies showed that the modification of the
X2[k] by way of element-wise multiplication or division of
the repetitive vector�[k] has eventually produced an obvious
vulnerability for the anonymized ECG data itself. This defect
is clearly shown in Fig. 3 whereas the power spectral density
peaks appear every 125 Hz for both element-wise multiplica-
tion and element-wise division operations.

Fig. 3 shows the frequency response in terms of power
spectral density of the anonymized ECGdata (i.e., patient245,
signal s0474 from PTB database) with sampling frequency
fs = 1, 000Hz. The frequency response of the ECG in
Fig. 3a has been modified using an element-wise multiplica-
tion of vector X2[k] and vector �[k] as shown in (2). On the
other hand, Fig. 3b depicts the frequency response of the
anonymized ECG data that has been modified using element-
wise division. The two figures obviously show repetition of
the magnitude peak and subband of the frequency response
every 125 Hz period. Although signal repetition in Fig. 3b
is more subtle than the one in Fig. 3a., careful examina-
tion shows that there is a clear individual peak started at
every 125 Hz span (i.e., 125 Hz, 250 Hz, 375 Hz) followed
by several ripples.

Frequency domain recurrence in Fig. 3 directly associates
with the repetition of the vector �[k] as a result of the
operation in (2) and (3). Therefore, a malicious attacker can
potentially detect the structure of vector �[k] and use it
to exploit the ECG anonymization due to this vulnerability.
An attacker who has access to the secret key, can easily
interpret and reconstruct the anonymized ECG data by simply

repeating the secret key every 125 Hz period followed by
a reverse function operation of the vector �[k] and vector
X2[k], subsequently.

III. THE PROPOSED METHOD
Modification of the existing anonymization algorithm will be
presented in this sub-section. Besides removing frequency
domain repetition, the new algorithm should comply with
sensor devices limitation, such as low energy consumption
and low computational processing. Therefore, vector oper-
ation and other mathematical operations in the proposed
algorithm were set to obey such behavior while at the same
time improve the security of data transmission. Fig. 4 displays
a block diagram of the proposed method.

A. THE PROPOSED ANONYMIZATION ALGORITHM
Assume ECG data sequence in the form of {x[n]: n =
0, . . . ,N – 1}. In the first step of the algorithm, we apply
the FFT to the ECG data sequence to obtain the frequency
domain representation that is represented by {X [k]: k =
1, 2, . . . ,N − 1}, where N is the length of the ECG data
sequence.

Secondly, the frequency domain segmentation takes place
after transformation from time to frequency domain in the
first step. At this stage, we split the frequency domain vector,
X [k], into two subbands, i.e., X1[k] and X2[k]. The first
subband, X1[k] represents low-frequency components of the
ECG data whereas X2[k] signifies high-frequency compo-
nents. Segmentation of this frequency domain ECG data can
be seen in (4),

X [k] = {X1 [k] ,X2 [k]} . (4)

To eliminate the recurrence behavior of the existing
algorithm as shown in Fig. 3, we employ individual operation
for each segment in the vector X2[k] without repeating vec-
tor �[k]. Suppose the segmentation of X2[k] is represented
by (5),

X2 [k]={X2.1 [k] ,X2.2 [k] , · · · ,X2.r [k] : r=1, 2, · · · ,R}

(5)

where R is the number of segments or sub-subbands created
from X2[k].
Next, consider Ẍ [k] as a Root Mean Square (RMS) of the

ECG data computed in the frequency domain and denoted as
in (6).

Ẍ [k] =

√√√√∑
k

∣∣∣∣X [k]
N

∣∣∣∣2 (6)

The RMS represents the overall energy level contained
in the ECG data across a frequency range and will be used
to define the offset values in the anonymization process.
Utilization of RMS as in (6) will guarantee non-zero val-
ues for the offset as the total energy is preserved in the
signal. Nevertheless, several experiments showed that this
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FIGURE 4. Block diagram of the proposed anonymization algorithm.

RMS value requires a scaling operation to obtain accept-
able offset values for the anonymization process. Therefore,
the offset values are defined according to (7),

offsetr =
Ẍ [k]

max (|X2.r [k]|)+ η
: r = 1, 2, · · · ,R (7)

The element η in (7) is a constant to prevent division by
zero in both the anonymization and reconstruction processes.

Subsequently, the vector �[k] can now be redefined as
in (8)

�r [k] = {κ [k]+ offsetr : r = 0, · · · ,R} (8)

where κ[k] is a secret key which has been defined above as
κ[k]= X1[0, . . . ,P].

We define the core of the anonymization process as an
element-wise multiplication between X2.r[k] and �r[k] as
shown in (9).

Ẍ2.r [k] = {X2.r [k] ∗�r [k] : r = 1, 2, · · · ,R} (9)

Element-wise multiplications in (9) serve as a reversible
operation in the anonymization procedure. Consequently,
it will become a division between X̃2.r and �r[k] in the
reconstruction process to retrieve the original data back.

The individual segment multiplication in (9) results in the
modification of each subband of the ECG data where the
secret key performs as a modifier. After the multiplication
of each segment, the process continues to the next step
that merges each segment into one single vector, i.e. X2[k].
It becomes:

X2 [k] =
{
X2.1 [k] ,X2.2 [k] , · · · ,X2.r [k] :

r = 1, 2, · · · ,R
}

(10)

In the final step, the inverse fast Fourier transform (IFFT)
algorithm performs its action to transform the modified fre-
quency domain ECG data, X2[k], into its time-domain data
as in (11). The result is the anonymized ECG data,

x2 [k] = IFFT
(
X2 [k]

)
. (11)

Fig. 4 shows that the proposed algorithm produces two
sets of vectors, i.e., the secret key, κ[k] stacked with the
offset, and the anonymized data, x2[n]. It is advisable that for
security purposes the two vectors should be stored in different
locations/cloud systems. Furthermore, the key security will
be achieved by encrypting the secret key and the offset vectors
according to (12),

K = E (κ,8) , (12)

where E is the encryption operator and 8 is a collection of
offset defined in (13),

8 = {offset1, offset2, · · · , offsetr : r = 1, 2, · · · ,R} . (13)

After encryption, the K can be securely distributed to
the healthcare providers’ storage while at the same time the
anonymized data stored in the public cloud server. See Fig. 1
for clarity. Both data are stored with a unique identification
number and specific metadata for each ECG data.

B. THE PROPOSED RECONSTRUCTION ALGORITHM
An expert or doctor resided in a particular healthcare provider
needs to employ a reconstruction algorithm to retrieve the
original ECG data based on the anonymized ECG stored
in the digital storage. Here we elaborate on the reconstruc-
tion algorithm as a backward procedure for the previous
anonymization algorithm.

On the first step, the device on an expert or a doctor side
requires to download both the encrypted secret key and 8
from the healthcare provider storage and the anonymized
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ECG from the public cloud server. It is then followed by
decryption of the secret key and 8 according to (14),

(κ,8) = D (K ) , (14)

where D (.) is the decryption operator.
Secondly, the algorithm transforms the anonymized ECG,

x2[n], from the time domain to frequency domain repre-
sentation using the well-known FFT algorithm. As a result,
we get the segment X2[k] that contains the modified fre-
quency domain ECG as defined in (10).

In order to retrieve the high frequency subband ECG data,
X2[k], it is compulsory to do a reverse operation of X2[k]
shown in (9) towards the vector �r[k]. Therefore, when
vector operation in (9) performs element-wise multiplication,
the reconstruction algorithm should enforce element-wise
division as shown in (15). Conversely, when vector operation
in (9) takes element-wise division, the reconstruction algo-
rithm in (15) should impose an element-wise multiplication
operation.

X2.r [k] =

{
X2.1 [k]
�r [k]

: r = 1, 2, · · · ,R

}
(15)

The last procedure in the reconstruction algorithm is com-
bining the reconstructed vector X2[k] and the secret key
κ[k]= X1 [k] to become X̃ [k] as shown in (16),

X̃ = {X1 [k] ,X2 [k]} (16)

Subsequently, an inverse FFT operation should be applied
to (16) to obtain the estimation of the time domain original
ECG data, x̃[n].

C. SECURITY ANALYSIS
Within the EHR system, we include security aspects that
emphasize confidentiality and integrity in our proposed algo-
rithm to ensure that the ECG data is secure throughout the
cycle. Confidentiality ensures protection of the ECG data
from being exposed to unauthorized individuals or parties
whereas integrity refers to protection of the data from being
modified intentionally or unintentionally.

The confidentiality aspect is shown by relationship
between the original and the anonymized data in terms of the
Percentage Residual Difference (PRD). The PRD has been
used by several papers [26], [29] to quantify the distinction
between the original ECG data and the anonymized ECG
data. It is defined according to

PRD =

√√√√∑N
i=1 (x [i]− x2 [i])

2∑N
i−1 x

2 [i]
, (17)

where x[i] denotes the original ECG data, x2[i] is the
anonymized ECG data, and i = 1, . . . ,N ,N is the total
number of samples in the ECG data. A careful examination
of formula (17) will reveal that PRD = 0 when the two time
series are identical. Therefore, PRD> 0 measures the degree
of distortion among the two data sequences.

The PRD of the ECG data with identification number
bs10089603 as in Fig. 6 for different values of η is shown in
Table 1. Our experiment shows that the PRDs are larger than 0
for all η. Based on this table, it can be interpreted that the
anonymized ECG is significantly different from the original
ECGdata. Themalicious attackers who forcefully gain access
to this anonymized data from the public cloud servers will
find it nearly impossible to unravel the fiducial features of the
ECG data. According to this analysis, the proposed algorithm
protects the confidentiality of the data well.

TABLE 1. PRD of ECG data (bs10089603) for variation of η.

Despite confidentiality, brute force attacks are commonly
used to compromise data. The current strong computing
power enables this attack to guess passwords or encryption
keys by guessing combinations of characters.

In our proposed scheme, the secret key, κ[k], comprises
of analog numbers with certain length. For example, a key
length of 1024 contains 1024 floating-point numbers rep-
resenting the X1[k] vector as in (4). Computers normally
comply with the IEEE 754 standard to adequately store this
secret key into the single precision (32 bit) or double preci-
sion (64 bit) digital form. Consequently, for the case of the
single precision format and a key length of 1024, a secret
key in our model can be represented by 32.768 bits length
in the IEEE 754 standard. Therefore, it may take 232.768

combinations to brute force the secret key.
We examine processing time for brute forcing the secret

key with a key length of 1024. However, due to limitation
in our computer, we considered a brute force simulation by
injecting as many as 109 key combinations (it approximately
equals to 230 combinations) out of 232.768 combinations that
ran for several types of Microprocessors, i.e., Intel Core i7
memory 16GB, Intel Core i7 memory 8GB, and Intel Core i5
memory 12 GB. Fig. 5 shows that the slowest processor took
approximately 1976.2 s (32.94 minutes), whereas the fastest
processor spent approximately 1031.2 s (17.2 minutes) to
complete the simulation. Therefore, assuming the processing
time grows linearly with the number of trials for brute force
attack, it will take approximately 1031.2 × 232.738s for the
fastest computer in the study to attempt all combinations.
In other words, it is extremely difficult to accomplish this task
using today’s fastest processor within acceptable time.

To conclude the security analysis of the proposed algo-
rithm, Table 2 presents performance comparison study among
the existing methods for electronic healthcare cloud security
and the proposed algorithm in terms of their characteristics,
strength, and weakness.
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IV. RESULTS AND DISCUSSIONS
This section provides an evaluation of the proposed algorithm
for securing ECG data both in transmission and storing in the
cloud database. The first evaluation includes the algorithm
ability to obscure fiducial and non-fiducial features and its
ability to maintain ECG data integrity. We then compare the
processing time of the algorithm with the similar function
of the existing methods, i.e., the wavelet packet-based and
the FFT-based algorithms. Secondly, we will elaborate on
a real-time implementation of the proposed algorithm in a
small device. The hardware implementation of the proposed
algorithm serves as an experimental testbed that observes its
applicability in the future.

FIGURE 5. Brute force simulation using 109 key combinations on several
computers powered with Intel Core i7 memory 16GB, Intel Core i7
memory 8GB, and Intel Core i5 memory 12 GB.

A. RESULTS AND ANALYSIS
Simulations and comparisons with existing methods were
used to observe the performance of the proposed algorithm.
Both time domain representation and frequency domain rep-
resentation of the ECG data were evaluated in terms of power
spectral density (PSD).

The ECG data were collected from a real-time measure-
ment of 32 healthy volunteers with careful supervision from
a medical doctor (volunteers’ mean age is 23 ± 2 years).
The process of capturing ECG signals in this study was
a non-invasive process, thus it did not involve any harm-
ful procedure. However, all volunteers consented before the
signal was retrieved. Each segment of the ECG data has
10 seconds duration with a sampling frequency of 1000 Hz.
Therefore, the number of samples in each segment is 10,000
samples. To ensure the broad application of the proposed
algorithm, we also applied the algorithm to anonymize ECG
data obtained from the publicly available PTB database [30].

In this evaluation, the size of the secret key as in (1) was
set to P = 1, 024, associated with a frequency range of 0 Hz
to 125 Hz. Based on application of (4) to the ECG data,
the frequencies between 0 Hz and 125 Hz are removed and

retained for use as the secret key. Meanwhile, the frequency
components larger than 125 Hz will be anonymized and
uploaded to a public cloud server after being transformed into
its time-domain data. In the anonymization phase, the ECG
data was adjusted using (7) to (9) with a constant value of
η = 0.3. This value was chosen to provide moderate PRD
shown in Table 1.

Fig. 6 shows a time-domain representation of original ECG
data from a subject with identification number: bs10089603
and its anonymized ECG. It can be seen in Fig. 6b that the
algorithm has removed fiducial features of the original ECG
wave, i.e., the P, Q, R, S, and T peaks. The peaks have been
concealed by high fluctuations of signals.

Fig. 7 (a) and (b) exhibit frequency domain representation
in terms of Welch’s power spectral density (PSD) estima-
tion for both the original ECG and the anonymized data,
respectively. Both diagrams show the PSD in dB/Hz as a
function of frequency ranging from 0 Hz to one-half the
sampling rate, i.e., 500 Hz. It can be seen in Fig. 6b that
the non-fiducial features of the ECG data have been removed
utterly by the anonymization process of the proposed algo-
rithm. For example, repetition of the peaks and subbands
displayed in Fig. 3 has completely disappeared. Additionally,
multiplication in (9) gives an effect on leveraging the magni-
tude of the PSD of all frequencies above 125Hz. Therefore,
modification in the frequency domain is directly associated
with the presence of the high-frequency components in the
anonymized ECG as shown in Fig. 6b.

Fig. 6b also infers that the original ECG data can-
not be interpreted properly after being anonymized. The
anonymized data appear to be random and unstructured. If a
malicious attacker successfully penetrates a cloud system
to acquire the anonymized ECG data, he/she cannot elu-
cidate the structure of the anonymized ECG data without
reconstructing it. The anonymized data bears meaningless
information in the absence of the reconstruction algorithm
and the secret key. Due to the secret key being stored in a
different database system, e.g., in the healthcare provider’s
server, it will be difficult for attackers to access both servers.
Therefore, the proposed scheme guarantees a secure and
robust model for protecting patient’s ECG data.

Fig. 8a shows the reconstructed ECG data and Fig. 8b
depicts the cross-correlation between the original ECG data
and the reconstructed data. The cross-correlation at lag 0
is 1 that clearly indicates the reconstructed signal is exactly
the same as the original ECG. It proves that the proposed
reconstruction algorithm explained in III.Bworks remarkably
well to retrieve the original ECG data without losing any
information. In this way, the proposed algorithm guarantee
integrity of patient’s ECG data during transmission and stor-
ing in the public cloud database.

Fig. 9 shows the anonymization process of the ECG data
when the algorithmwas executed using element-wise division
in (9). Fig. 9a reveals that the amplitude of the anonymized
signal is relatively small due to the element-wise division.
However, it can also be noticed that the fiducial structures
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TABLE 2. Performance Comparison of Electronic Healthcare Security Methods [8]–[13].
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FIGURE 6. Anonymization by employing element-wise multiplication
in (9). (a) Original ECG data (Subject ID: bs10089603) and (b) its
anonymized data.

FIGURE 7. Power spectral density (PSD) of the original ECG data (Subject
ID: bs10089603) and PSD of its anonymized data.

of the ECG data are successfully disguised by the algorithm.
For example, the R-to-R peaks of the ECG data can not
be detected from the figure. Fig. 9b shows the frequency
response of the anonymized ECG and Fig. 9c shows the
reconstructed data. A strong correlation between the original
and the reconstructed ECG is indicated by a value of 1 at
lag 0 in Fig. 9d. Moreover, a comparison between Fig. 9a and
Fig. 6b concludes that element-wise division operation in (9)
generally produces anonymized ECGdata with lower average
amplitude than the operation of element-wise multiplication.

To observe the computational complexity of the algorithm,
we examined the processing time between the proposed algo-
rithm and the existing anonymization schemes [26], [29].
We have used the ECG data that were obtained from the
PhysioNet PTBDatabase [30] (i.e., patient180, signal s0475).
Fig. 10 draws a comparison graph of the processing time (ms)
as a function of ECG data sequence length (2log(N )) among
several anonymizationmethods. The figure clearly shows that
the processing time of the proposed algorithm is comparable

FIGURE 8. Reconstructed ECG data (Subject ID: bs10089603) and the
cross-correlation between the original ECG and its reconstructed ECG
data.

FIGURE 9. Anonymization by employing element-wise division in (9).
(a) Anonymized ECG data (Subject ID: bs10089603), (b) PSD of the
anonymized data, (c) Reconstructed ECG data, and (d) the
cross-correlation between the original ECG data and its reconstructed
ECG data.

to the FFT-based anonymization algorithm [26]. However,
when ECG data sequence length is increasing up to N =
216 = 65, 536 data, the processing time of the proposed
algorithm is slightly longer than the anonymization algorithm
in [26]. This is true because the algorithm requires time to
compute the RMS in (5) and the offset values in (7) whereas
the FFT-based algorithm does not undergo those processes.

In contrast, the wavelet packet-based anonymization
algorithm spends the longest processing time among others.
For example, the wavelet-based algorithm has approximately
10 times slower process than the proposed algorithm for pro-
cessingwith 65,536 points of ECG data. Surprisingly, for pro-
cessing with N = 212 = 4, 096 data, the proposed algorithm
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FIGURE 10. Processing time of the proposed algorithm for several key
lengths compared to the existing anonymization algorithms including
(FFT-based) in [26] and wavelet packet-based algorithm in [29].

TABLE 3. Averaged processing time of the anonymization algorithms.

performed 150 times faster than the wavelet packet-based
algorithm processing time. The detail of the averaged pro-
cessing time over 1000 trials for all schemes is shown
in Table 3.

B. EXPERIMENTAL TESTBED
To conclude this section, we describe the experimental
testbed development of the proposed scheme. The ECG
data from an observed person were captured using a
three-electrode ECG sensor that was directly connected to
an integrated single-lead ECG signal conditioning module,
i.e., AD8232 as shown in Fig. 11 whereas the circuit diagram
connection between the AD8232 and the microcontroller
unit is illustrated in Fig. 12. The AD8232 module provides
high signal gain (G = 100) with dc blocking capabilities.
It is also equipped with a two-pole adjustable high pass
filter for reducing motion artifacts, a three-pole adjustable
low pass filter for eliminating any additional noise, and a
right leg drive (RLD) amplifier. The RLD is commonly used
to eliminate interference noise from any biological signals.

Volunteers were positioned in the seated posture as shown in
Fig. 13 with the ECG electrode clamps positioned at the left
arm, right arm, and right leg to obtain single-lead ECG data.

Referring to Fig. 12, the output pin of the AD8232 module
was connected to the analog input of a microcontroller for
analog to digital conversion. After this process, the micro-
controller transmitted the data to the ECG security processing
module. In this paper, we made use of the Arduino Uno
microcontroller board that has an embedded 10-bit analog
to digital conversion (ADC) module which converted analog
input from the AD8232 directly to digital form. At this point,
the single-lead ECG signal could be directly monitored using
a display module attached to the board.

The ECG security processor in Fig. 11 performs the
anonymization algorithm. In terms of hardware specification,
this processor can be anything ranging from single-board
computers like a Raspberry Pi or a dedicated computer/server
that is able to receive multiple connections from several sen-
sor nodes. Due to this reason, we decided to separate the sen-
sor node and the ECG security processing. The scheme allows
the ECG security processor to execute the proposed algorithm
for several ECG signals from different sensor nodes. At the
same time, it can maintain mobility activities of the sensor
nodes when each of the sensor nodes is equipped with wire-
less connection capabilities like Bluetooth or WiFi. As part
of our experiment, we utilized a Raspberry Pi 3 single-board
computer with a processor speed of 1.2GHz and Random-
Access Memory (RAM) of 1GB, which is more than enough
to run the anonymization algorithm. Using Raspberry Pi has
another advantage in our case since it has onboard Bluetooth
and 802.11 wireless LAN connections, which should support
scalability and mobility for the nodes in the future.

The ECG security processor produces the anonymized
ECG data as in (11), a sequence of the secret key in (8), and an
offset vector,8, in (13). Because the secret key and the offset
vector were left unprotected by the algorithm, we instructed
the processor to run the AES-256 encryption to encrypt the
secret key and the vector 8 altogether.

Finally, the gateway received the anonymized ECG data,
the encrypted secret key, and the offset vector as shown in the
rightmost of Fig. 11. Upon receiving these data, the gateway
transmitted the anonymized ECG data to a public cloud server
and at the same time transmitted the encrypted secret key
and offset vector to the healthcare provider server as shown
in Fig. 1.

On the receiver side, an authorizedmedical doctor or expert
equipped with amobile application could display and observe
the reconstructed ECG data after reconstruction. Reconstruc-
tion’s backend process is described as follows. Firstly, the
healthcare provider’s server performed decryption of both the
secret key and offset vector. Secondly, the server downloaded
the anonymized data from public cloud database. Finally,
it executed the reconstruction algorithm for the anonymized
data using the decrypted secret key and offset vector.

Fig. 14 presents a mobile phone display of ECG data from
a subject with identification number ss25029503. The left
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part of the figure displays the anonymized ECG data taken
from the public cloud server without reconstruction. This
figure is an example of ECG data that was being exposed
by an attacker that was somehow able to break through the
cloud server security and got access to the data. The figure
shows that the mobile phone displays a mere noisy like
data instead of the expected ECG data. Only the authorized
medical doctor or expert who has the secret key and the
offset vector (stored in the healthcare provider server) can

FIGURE 11. Block diagram of the single-lead ECG recording and
processing.

FIGURE 12. Circuit diagram of the sensor node.

FIGURE 13. ECG data acquisition in the seated posture and the sensor
node (inset).

FIGURE 14. Mobile phone display of the ECG data (ss25029503). The
anonymized ECG data stored in the cloud server (left) and the
reconstructed ECG data displayed in the medical doctors/experts mobile
phone (right).

TABLE 4. Averaged processing time of anonymization and reconstruction
algorithms.

successfully obtain, reconstruct, and display the original ECG
data. The reconstructed ECG data is shown in the right part
of Fig. 14.

To conclude the evaluation, we measured averaged
processing time for the anonymization and reconstruction
algorithms independently to acquire clear figure of the algo-
rithm time response in a real environment. Table 4 shows the
averaged processing time (over 100 trials) that appears to be
constant against variation of the key length. The results are
in agreement with the results of our previous examination in
Table 3. Due to the efficacy of the FFT and iFFT algorithms
used in the proposedmodel, the single-board computer would
not be able to detect small differences in processing times
between key lengths. Furthermore, the table reveals that the
anonymization and reconstruction phases consume similar
amount of time. The only difference is that the anonymization
algorithms was performed in a single-board computer (see
the ECG security processor in Fig. 11) whereas the recon-
struction algorithmswas executed in the healthcare provider’s
server.
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V. CONCLUSION
This paper established a non-cryptographic approach to pre-
serve ECG data confidentiality and integrity in the EHR
environment. The proposed algorithm has been shown to
perform well to preserve confidentiality of patient’s cardiac
information (both fiducial and non-fiducial features) during
transmission of ECG data and to protect information storing
in the cloud database. We have examined confidentiality of
the anonymized data using the PRD. In order to prove the
integrity of the reconstructed ECG data, we have evaluated
both the original and the reconstructed data in terms of the
cross-correlation. On the other hand, security analysis has
been carried out using PRD, brute force attack, and perfor-
mance comparison between the proposed algorithm and the
existing methods. Based on this evaluation, it can be con-
cluded that the proposed scheme offers a secure and robust
model for protecting patient’s privacy in both transmission
and storing patient’s clinical data in the cloud. Additionally,
performance evaluation in terms of processing time proved
that the proposed algorithm approximately 10 times faster
than the existing wavelet packet-based algorithm for process-
ing with 65,536 points of ECG data and it approximately 150
times faster for processing with 4,096 points of data. Finally,
the experimental testbed has been accomplished to show
that the proposed scheme works well to support the existing
EHR system. Evaluation on the processing time of both the
anonymization and reconstruction algorithms shows advan-
tages of the proposed model in a way that the processing
speed is not affected by variation of the key length.
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