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ABSTRACT Graphical authentication schemes have the advantage of being more memorable than con-
ventional passwords. Although some image distortion methods have been proposed to prevent the risks
of over-the-shoulder attacks (OSAs), these methods cannot prevent camera recording attacks, as the key
images are the same each time. In this study, we propose a graphical authentication scheme that generates
various distorted images, named Estimating Your Encodable Distorted images (EYEDi). EYEDi generates
distorted images by applying several image processing filters to the original images. Moreover, EYEDi
estimates the appropriate image processing filter strength based on the authentication data. To measure
attack resistance, twenty participants performed three types of attacks (OSA, camera recording attack, and
screenshot) 300 times, each using existing methods and EYEDi. The classification error rate of all three
types of attacks showed that EYEDi had a lower classification error rate between the legitimate user and
attackers. Especially for the screenshot attack, which is the most severe threat model, the existing method
was completely broken through, while EYEDi prevented the attacks with a classification error rate of 10%.
This result shows that EYEDi can eliminate the screenshot attacker by using the difference in authentication
times and a simple improvement in defense performance.

INDEX TERMS Authentication, graphical passcode, over-the-shoulder attack, camera recording, image
processing filter.

I. INTRODUCTION
Authentication schemes are used for logging into electronic
accounts, such as those with banks, mobile phones, and
emails. The key to authentication schemes is typically a secret
word only known to a legitimate user; physical characteris-
tics, such as fingerprints, retinas, and faces; or tokens (marks,
symbols, and pictures). The requirements of any authentica-
tion passcode are memorable, easy to use, and secure [1].

The alphanumeric password is among the most popu-
lar and classical authentication systems [2], [3]. It contains
numbers, alphabetical letters, and symbols to strengthen its
resistance to brute force attack [4]. It is also recommended
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to use 6-8 characters or more [5]. However, it often proves
difficult to remember a long string of letters mixed with
symbols [6]. Therefore, many people use weak passwords
that are easier to remember and consist of short letters [3],
[5], [6], only numbers or letters [5], [7], or words that are
strongly related to them [5], [8]. Such passwords are easily
guessed and insecure [3], [6], [9]. The same password is not
recommended for logging in to different accounts, as if one
password is stolen, there is a risk of other accounts also being
hacked. However, some legitimate users had to remember six-
teen different passwords to log in to different accounts [10].
In short, remembering many complex passwords imposes a
heavy memory burden on users.

Graphical passcodes are effective in solving the prob-
lems of alphanumeric passwords [1], [11], [12]. The most
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important feature of a graphical passcode is the ease of
memorizing it. According to the picture superiority effect,
image information is more easily remembered than string
information due to richer encoding [13]–[16]. In addition,
graphical passcodes stimulate cognitive memory, which has
the advantage of a low memory burden. In the case of the
most graphical passcodes, the authenticator does not need to
recall the image from memory but only needs to cognitively
identify the image on the authentication screen. From a phys-
ical perspective, the advantage of graphical passcodes is that
they are more easily entered on touchscreen-based mobile
devices than alphanumeric passwords. Since the screens of
touchscreen-based mobile devices are small, there is a prob-
lem inputting alphanumeric passwords, but graphical pass-
codes do not require a complicated input form and only need
a simple form that selects a small number of images.

Graphical authentication systems can be divided into three
categories: 1. those that authenticate by clicking on cue points
on the authentication screen [6], [11], [17] 2. those that
authenticate by searching for a preregistered key image [1],
[18]–[21], and 3. those that authenticate by searching for a
combination of key images or/and symbols [22]. The system
proposed in this paper, EYEDi, is a graphical authentication
system classified as a 2nd category in which the user authen-
ticates by searching a preregistered image.

Graphical passcodes are vulnerable to over-the-shoulder
attacks (OSAs), as the feature of being easy to remember
gives the attacker the same advantage. OSA allows hackers
to memorize key images and breakthrough authentication.
Therefore, a method of preventing OSAs has been proposed
in which key images cannot be easily remembered. Dhamija
et al. used geometric patterns as key images that are difficult
to remember for attackers [18]. However, the problem with
the geometric pattern of Déjà Vu [18] is that it may also
make it difficult for legitimate users to remember key images.
Hayashi et al. proposed a method of solving legitimate users’
memory difficulties [1]. Hayashi’s system, UYI, can use
photos or illustrations as the key image, and the user’s task is
to identify the distorted key images from the authentication
screen, which has key images and some dummy images.
UYI is based on the fact that some distorted images can be
recovered by referring to the memorized abstract images in
one’s mind. Zezschwitz et al. also show that a person with
knowledge of the original image can successfully identify
even a distorted image [23]. However, the Déjà Vu’s or UYI’s
key images on the authentication screen are the same each
time, so it is in danger to breakthrough by attackers with
a very good memory. Therefore, the elements required for
a graphical passcode are legitimate user memorability and
being unmemorable to the attacker. In summary, the elements
required for a graphical passcode are ease of memory for the
legitimate user and difficulty of memory for the attacker.

The purpose of this research was to propose a graphical
authentication scheme named Estimating Your Encodable
Distorted images (EYEDi) that generates recognizable but
sufficiently distorted images for legitimate users. EYEDi has

three features: it can be used securely even in an environment
where others can see the authentication screen, it estimates
the appropriate distortion based on the record of distortion
filter strengths and authentication result label, and only legiti-
mate users can be authenticated sensibly, while attackers have
great difficulty in the authentication.

EYEDi’s use case is a personal authentication for PCs and
mobile phones, frequently used in busy streets, exposing them
to the risk of OSAs and recoding attacks. Similarly, there are
many situations in which people work on their computers in
restaurants, and in such cases, there is a risk of OSAs and
recording attacks.

Our experimental threat models are OSA, camera record-
ing attack, and screenshot attack. OSA is a threat model in
which an attacker looks over the user’s shoulder to look at
their screen, and camera recording is the same threat model
but uses a camera. A screenshot attack is a threat model in
which an attacker zooms in on a camera-recorded video with
graphical software and can see the key image stolen from the
attack.

EYEDi’s authentication procedure first registers 5 key
images, as shown in Fig. 1(a), then presents a grid of 25 dis-
torted images (5×5) on the authentication screen, and finally
finds and selects the distorted key image by clicking on it,
as shown in Fig. 1(e). Details are described in Chapter 3.
EYEDi can generate a variety of filtered patterns from a
single image. It is difficult for an attacker to break through the
authentication by previously remembered memories, which
are obtained by OSAs, as many different patterns are gen-
erated from a single image. The attacker will try to hack
the graphical passcode by referring to the previously taken
key image of the authentication system. However, the key
image displayed on the authentication screen by EYEDi will
have a different pattern than the previous image generated
using the same key image, which makes it difficult for an
attacker to find the correct key image, as shown in Fig. 1(f).
Thus, a legitimate user can be identified sensibly by seeing
EYEDi’s distorted images, but attackers will have great diffi-
culty breaking through authentication. Fig. 1(b) and (c) show
the generating process of EYEDi’s filtered patterns. EYEDi’s
filtered patterns are generated by trimming and applying three
image processing filters to the original images. This study
estimated the boundary of legitimate user identification in the
image processing filter intensity space based on pretraining
with authentication data.

II. RELATED WORKS
According to Hayashi et al., personal authentication systems
can be characterized by 1. ‘‘something you have (Physical
key)’’, 2. ‘‘something you are (Biometrics)’’ or 3. ‘‘something
you know (Memory)’’ [1].

1. Physical Key: The most classical authentication sys-
tem is a physical key, which is a key that authenticates by
matching specific physical properties. In recent years, typical
physical authentication systems have used combined physical
shapes andmagnetic patterns. However, since physical tokens
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FIGURE 1. System Configuration and user interface of EYEDi: (a) First, a legitimate user registers several key images from his or her mobile device
or PC. In our experiment, the number of key images was five. For simplification, this illustration shows three key images. The key image is stored
in a database, and the experimenter prepares a dummy image in advance. (b) The key image is randomly cropped to a size of 4/5. Crop processing
makes it difficult for the attacker to find the cue since the feature points in the key image appear and disappear with each authentication.
(c) Three image processing filters, Gaussian, Posterization, and Mosaic, are randomly applied to the key image. (d) The strengths of the three
filters are calculated from the classification curve estimated from past authentication data. (e) The key images and dummy images distorted by
cropping and filtering are presented on the authentication screen in random order. (f) The user selects the key images from the screen to
authenticate. The legitimate user will recall many key image features using familiar memories of these key images as cues. Attackers can record
all the selected images by camera recording the authentication screen of a legitimate user. The attacker tries to break through the authentication
based on the features contained in the recorded images but cannot find the key image due to the loss of feature points caused by cropping and
various distortion changes.

can be lost or stolen, they are often used as a part of hybrid
authentication schemes in conjunction with others, such as
one-time passwords.

2. Biometrics: It is a system that authenticates individu-
als based on the characteristics of their fingerprints, faces,
voiceprints, and behavioral patterns [24], [25]. These features
vary between people, so we can identify a person by rec-
ognizing their appropriate biometric features. Biometrics are
widely used in mobile devices, gates, and banking services.

Biometrics have become popular because they are conve-
nient, as there is only a need for the presence of the user,
and not for physical tokens. However, biometrics have some
problems, such as high error rates due to noise and lighting
conditions and theft of fingerprints, voiceprints, and facial
features from photographs and recordings [24].

3. Knowledge-based Authentication: In the following parts
of this chapter, we describe a knowledge-based authentica-
tion system (memory) that makes physical thefts difficult.

A knowledge-based personal authentication system does
not use physical features but uses knowledge. Typical
knowledge-based personal authentication systems include
alphanumeric and graphical passwords [2], [3].

3a. Nongrapical Authentication: Since the key for authen-
tication is knowledge, the risk of physical loss or theft is low,
but the loss and difficulty of memory are problems [26], [27].
An alphanumeric password is a string password that mainly
consists of letters and numbers. An alphanumeric password
should ideally be a complex and long string of characters to
avoid an attacker guessing the password. Using both alphanu-
meric characters and symbols can make brute force attacks
difficult [4]–[7]. However, the difficulty of remembering
complex passwords has led many users to use dictionary
words or short strings of characters as passwords, which is
problematic [5], [8], [9]. It has been shown that a password
can be easily guessed by using words from the dictionary.
We also know that many people use the same password to log

2258 VOLUME 10, 2022



T. Kawamura et al.: EYEDi: Graphical Authentication Scheme of EYEDi to Prevent Screenshot Attacks

into different accounts [10]. Thus, alphanumeric passwords
often use inappropriate passwords due tomemory difficulties,
which cause various problems.

3b. Graphical Authentication: To solve the memory prob-
lem of alphanumeric passcodes, various graphical passcodes
have been proposed [2], [9], [11], [12], [19], [21], [22],
[28], [28]–[32]. Graphical passcodes are a set of authenti-
cation schemes that utilize the visual superiority effect that
visual information is easier to remember than textual infor-
mation [4]. The advantage of image information is that it can
present a vast amount of information at once compared to
textual information. Furthermore, although it can be difficult
for humans to recognize a huge amount of information in text
strings, humans can recognize the necessary features in image
information [3]. Compared to character string information,
graphical information can generate many patterns, making
brute force attacks very difficult and could be a very effective
authentication system because it is easy to remember.

However, while graphical passcodes are easy to remem-
ber, they may be susceptible to OSAs. In recent years, with
the spread of mobile devices, authentication has become a
common practice in many places. In busy urban areas and on
trains, peoplemust repeatedly authenticate to use their mobile
devices. A rogue user can attempt to steal an authentication
key by watching a legitimate user’s authentication process
from behind them. The main advantage of a graphical pass-
code is that legitimate users can easily memorize it, but the
main disadvantage is that it is equally easy for illegitimate
users to memorize it through OSAs. Therefore, it is essential
to devise a method to prevent OSAs in graphical passcodes.

PassPoints is a graphical passcode that allows users to
authenticate themselves by clicking on some points on an
image in a sequence [6]. PassPoints makes use of the fact
that humans can easily remember characteristic points in
images. If the user selects the five or six click points in an
image as keys, he or she can create the same security level
as 64-character or greater alphanumeric passwords. The click
point is recognized by clicking on a predefined area on an
image without clicking on the exact pixel. By constructing
a story for the click points on the image, they can easily
remember the key points. However, there is a problem in
that it is easy to detect hints from personal information and
personal information in images due to the use of clear images.

Dhamija et al. proposed a geometric pattern-based graph-
ical authentication system [18]. Their geometric patterns are
much easier to remember for attackers than text data for
legitimate users because geometric patterns are unfamiliar in
everyday life. However, Déjà Vu’s geometric patterns have
the problem that it is difficult for legitimate users to find
stories and familiar features to remember. Therefore, if no
authentication is performed for a long period of time, a legit-
imate user may not be able to remember their key image.
When attackers hack a graphical authentication system, they
focus on the areas that humans tend to focus on.

Katsini et al. proposed a system that encourages users to
create strong passwords by hiding areas where they are likely

to concentrate their gaze [17]. If the area of concentrated gaze
is hidden, the user pays attention to other areas and registers
the key gesture, which is difficult for the attacker to estimate.
Thus, there is a deep relationship between gaze and graphi-
cal authentication systems, and research on the relationship
between gaze and image recognition has attracted a large
amount of attention [33]–[35].

Hayashi et al. proposed a geometric pattern-based authen-
tication system that generates geometric patterns from pho-
tographs or pictures [1], [20]. Legitimate users can register
images stored on their mobile devices or PCs as key images.
An abstract geometric pattern is generated from the registered
key image, and then authentication is achieved by finding
the key image among the geometric images. Since legiti-
mate users know the original image, they can easily find
the geometric patterns transformed from the original image.
Meanwhile, it would be difficult for an attacker to remember
the geometric patterns when attempting to memorize images
by OSAs.

Khamis et al. proposed a letter password system that pro-
tects against OSAs by distorting characters [36]. Common
letter password systems use a method of replacing the input
characters with asterisks to protect against OSAs. However,
the problem is that many users often forget what they have
typed. When using Mohamed’s system, a legitimate user can
mentally recover the replaced characters from one’s memory.
On the other hand, the attacker has difficulty identifying
replaced characters, as they do not have this memory.

Thus, graphical passcodes have been studied to main-
tain the ease of memory and OSA resistance. However,
there is a drawback that any of the abovementioned graph-
ical passcodes can be easily broken by the difficult situ-
ation of OSAs, such as camera recordings or screenshot
attacks.

III. GRAPHICAL AUTHENTICATION SYSTEM BASED ON
THE SCHEME OF ENCODABLE DISTORTED IMAGES
A. OVERVIEW
EYEDi can generate appropriate distorted images that legit-
imate users can recognize. In this section, the authenti-
cation system of EYEDi is divided into a user interface,
a distorted image generator, and appropriate filter strengths.
First, we explain an overview of EYEDi in this subsection.
As shown in Fig. 1(a), a legitimate user can use arbitrary
images, such as photos or illustrations, stored in his or her
mobile devices or PCs. A few key images in total should be
registered (in our experiment, five key images were regis-
tered, but to simplify the demonstration, Fig. 1(a) shows three
key images). As shown in Fig. 1(e), EYEDi’s UI displays
several distorted images in a gridded authentication screen.
The gridded authentication screen contains all of the dis-
torted key images, and the other images are distorted dummy
images. These dummy images were prepared in advance by
the experimenters. A different dummy image set is used for
each user. Furthermore, the dummy images are distorted by
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FIGURE 2. One of the original images and the images distorted by EYEDi in the same grid order: EYEDi can generate images with different
impressions so that the impression of Entry UI is different each time. Attackers are distracted by the different impressions of the Entry UI.
In this figure, the four image grid orders are the same, but EYEDi’s authentication system generates different image grid orders at each
authentication attempt. These authentication screens of EYEDi have the same arrangement of images, but the distortion of the images is
the same level of the experimental authentication, so the distortion of these images is not emphasized.

filtering processing as well as the key images. The distortion
processing of each dummy image is randomly chosen from
the processing filter applied to the key images. The user
authenticates their access by clicking on all preregistered
distorted key images among the authentication screens. Thus,
EYEDi can be used for touchscreen-based mobile devices
since it does not require complex operations and only requires
five clicks. EYEDi’s method of generating distorted images
applies clipping and three types of image processing filters.
The requirement for filter strength is to generate appropriate
distortions identifiable to the legitimate user and difficult
for the attacker to recognize. To estimate the filter strength,
we used the training dataset of discrimination success or
failure at the filter strengths shown in Fig. 1(d). We labeled
the discrimination success or failure on the space stretched
by the filter strength and estimated the discrimination avail-
ability boundary. EYEDi determines a set of filter strengths
on the success side near the classification boundary as the
appropriate filter strengths. The distorted image generated at
the filter strength determined is identifiable to the regular
user and is sufficiently distorted. Figure 2 shows EYEDi’s
authentication screen, which was used in our experiment.
These images are used with different trimming patterns and
filter processing, so those that do not have the original image
find it difficult to identify each image on these authentication
screens. The distorted images are generated by extracting
them from many filter strength sets so that EYEDi can gen-
erate various patterns of distorted images.

B. USER INTERFACE
A legitimate user can select several images from his or her PC
or mobile device and register them as key images, as shown
in Fig. 1(a). In this study, the legitimate users registered five
key images. Each key image can be an arbitrary image, such
as a photo or an illustration. The advantage of using photos
or illustrations is that the images the user selects are more
memorable to them than other images. In addition, when
users choose the images themselves, they can devise a way
of choosing images that they will find easy to remember.
PassPoints and PassFaces are undesirable when using images
that contain personal information, as they can lead to hints

of key guessing and identity theft through OSAs, but EYEDi
displays sufficiently distorted images that there is no risk of
guessing or identity theft. Since there is no such restriction,
various memorable images can be used as key images for the
user.

Figure 2 shows an example of EYEDi’s authentication
screen in our experiments. These authentication screens dis-
play 25 distorted images in total in a 5 × 5 grid. Of the
25 total distorted images, 20 are dummy images, and five
are distorted key images. The experimenters prepared the
dummy images in advance. The authentication task followed
two simple steps:

1) The user identifies the five distorted key images among
the 25 images and clicks on them. When the user clicks
the images on the authentication screen, a focus frame
is drawn around their selected images. (If the user
wants to deselect an image, the focus frame for the
selected image will disappear when the user clicks on
it again.)

2) When the user selects a total of five or fewer images and
inputs the end key, EYEDi displays the authentication’s
success or failure.

C. DISTORTED IMAGE GENERATOR
EYEDi’s distorted images are generated by trimming and
three different image processing filters. Figure 1(b) shows
a trimming processing. Depending on the difference in the
cropping process, the arrangement of feature points, such as
circles and corners, may change, disappear, or appear. These
feature point changes cause effective disturbance in EYEDi.
In the case of trimming a clear image, the disturbance effect
of the cropping process is small, but if the filtering process
distorts the image, as shown in Fig. 1(c), the disturbance
effect becomes very large. In this study, the images were
trimmed to 4

5 size, and the trimming position was random.
Figure 1(c) shows EYEDi image filter processing. This

study used three image processing filters: the Gaussian filter,
Posterization filter, and Mosaic filter. The desired filter char-
acteristic in this study is the ability to generate an abstract
image from the original image. However, digitally scanned
and computationally restored distorted images are a risk if
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only reversible filters are used. Therefore, we used not only
reversible but also irreversible filters. We used reversible
Gaussian and irreversible mosaic filters to create an abstract
pattern from the original image and an irreversible posterior-
ization filter to reduce the boundary information in the image.
Gaussian and mosaic filters reduce the features of interest to
an attacker by omitting details in the image. Conversely, legit-
imate users can seek help in recovering their memories from
abstract patterns. Combined with posterization to smooth the
brightness change, it reduces the number of characteristic fig-
ures in the image. By applying these three filters in sequence,
we can generate abstract patterns that are difficult to recover
informationally but still retain the general shape of the image.

The distorted image, g(x, y), is generated by applying the
three image processing filters to the original image, f (x, y),
in random order as follows:

g(x, y) =

 ∏
i∈G,P,M

F̂i

 · f (x, y),
where F̂G, F̂P, and F̂M denote the operator of the Gaussian
filter, posteriorization filter, and mosaic filter, respectively.
In this study, to generate appropriate distorted images, EYEDi
estimated the standard deviation σ of the Gaussian filter,
the number of colors c of the Posterization, and the filter
width w of the Mosaic filter using the authentication data and
generated the images as shown in the following equation.

For a given f (x, y), the image filtered by Gaussian, F̂G ·
f (x, y), is defined as

F̂G · f (x, y)
def
=

σ∑
n=−σ

σ∑
m=−σ

f (x + m, y+ n)G(m, n),

wherem and n denote the horizontal and vertical widths of the
Gaussian filter, respectively; σ denotes the standard deviation
of the Gaussian filter defined as follows:

G(m, n) =
1

2πσ 2 exp
(
−
m2
+ n2

2σ 2

)
,

respectively.
Since the Posterization filter was applied together with

standardization, the Posterization filter performance in this
study is as follows. For f (x, y), the image filtered by posteri-
zation, F̂P · f (x, y), is

F̂P · f (x, y)
def
=

⌊ c
2nb

(
F̂S · f (x, y)

)⌋
,

where c and F̂S denote the number of colors and the stan-
dardization filtering operator, respectively. The colors were
randomly applied as the

⌊
360
c

⌋
degree for the Hue difference

between the colors, with a fixed value for the saturation of
200 and value 200 in the HSV color space.

For f (x, y), the image filtered by standardization, F̂S ·
f (x, y), is defined as

F̂S · f (x, y)
def
= (f (x, y)− µ)

s
s′
+ 2nb−1,

where µ denotes the input image’s average value, s, s′ denote
the input and output image’s standard deviation, nb denote the
input image’s bit number, and 2nb−1 is the average value of
the output image.

For a given f (x, y), the image filtered by Mosaic, F̂M ·
f (x, y), is

F̂M · f (x, y)
def
=

w∑
n=−w

w∑
m=−w

f (b w
255xc + n, b

w
255yc + m)

nm
,

where w denotes the Mosaic filter width.
Figure 1(c) shows how the Gaussian filter makes the

image’s outline fuzzy; how the posteriorization filter reduces
the color gradation and changes colors at the same time; and
how the mosaic filter gives the image an angular appearance.
Since Gaussian and posteriorization filters irreversibly delete
information from the image, it is difficult to recover informa-
tion from them.

It was also found that when the order of application for
these three filters and trimming area was different, the dis-
torted images produced differed significantly, as shown in
Fig. 2, even if each filter had the same intensity. Therefore,
we treated the three filter application orders 3!= 6 as different
data to determine the filter intensity values described below.

D. APPROPRIATE FILTER STRENGTHS
When generating distorted images with EYEDi, it is neces-
sary to estimate the filter strength that can be authenticated
for legitimate users but not for attackers in each filter order.
Therefore, we estimated the three filter variables, σ , c, and w,
by applying machine learning to each user’s authentication
data. During authentication, the filters and success labels of
the distorted images are obtained, and machine learning is
performed using these data.

The appropriate filter strength, S, is calculated by

S =
⌊
Ep × p× D

⌋
, (1)

where Ep denotes the random point on the classification
curve obtained by machine learning; p denotes the most
recent correct answer rate; D denotes the attenuation rate,
D; and S denotes the applying filter strength. In this exper-
iment, we applied D = 0.75 based on our preliminary
experiments.

In generating the distorted image, one of the six orders
of filter processing was selected in each attempt and image.
The data used for the estimation were three types of image
processing filter intensity values and a discrimination label
of success or failure.

Table 1 shows the initial values of the data. The default
values are labeled success for filter intensity values that result
in a clear image and failure for the settings that produce
unrecognizable distortions. Initially, 6× 3× 3 = 54 success
labels and 6 × 3 × 4 = 72 failure labels were prepared.
In this regard, success labels were set for all initial data so
that the image distortion was small and close to the original
image. In contrast, the failure labels were set up such that
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FIGURE 3. (a) Over-the-shoulder attacker’s view, (b) camera recording attacker’s view, and (c) screenshot attacker’s view (c.1) The five key images
obtained from the screenshot. The attacker obtained all five key images shown in (c.2) in the screenshot attack. The attacker tried to hack the
authentication of (a) by checking the key images of (c.2).

TABLE 1. Initial values of learning data set.

the images were heavily distorted and far from the original
images. The reason for inputting these initial data was that
the amount of data required to estimate the support vector
machine (SVM) had to be greater than a certain amount.
We estimated the classification curve in the space stretched
by the filter strength, and SVM was used for estimation.

The distorted image generated by the determined filter
strength was presented to the authentication user interface,
as shown in Fig. 2. After authentication, the key image ID
data, the filtering order, three filter intensity values, and the
label of success or failure were stored in the database. After
the second time, the filter strength is estimated using the
updated data.

IV. USER TEST
A. USE CASE
EYEDi’s use case authenticates with a PC or mobile device
in a crowded, busy street or restaurant. The attacker will try to
identify the key image by recording the authentication screen
in the crowd. Therefore, the threat model in this paper is a
screenshot attack, which assumes that a camera records the
authentication screen. Since the captured video is clear, the
attacker can identify and extract all the distorted key images
selected by enlarging and editing the video. Therefore, it is
possible to perform an attack by referring to the identified
images. However, in this study, we created a simple sys-
tem that achieves the same effect to reduce the actual video
recording and editing work with a camera. We built a threat
model system that stores five distorted key images selected
by a legitimate user and presents the stored images to the
attacker.

B. EVALUATION METRICS
Themetrics of this study are the number of correct key images
and authentication time. In addition, this authentication

system identifies between attackers and legitimate users
based on the limits of the number of correct key images and
the authentication time. Therefore, even if the number of
correct key images was sufficient, the user would be rejected
if the authentication time was longer than the limit, and even
if the authentication time was shorter than the limit, the user
would be rejected if the number of correct key images was
small.

1) USABILITY METRICS
The usability metrics are the classification error rate of the
false rejection rate (FRR) and how short the authentication
time is compared with the attackers. The longer the authen-
tication time is, the worse the usability and the more tired
legitimate users are. Ideally, legitimate users should be able
to authenticate for a short period. The larger the FRR, the
worse the usability. Ideally, the FRR should be a low rate.

2) SECURITY METRICS
The security metrics are the classification error rate of the
false acceptance rate (FAR) and how long the authentica-
tion time is compared with the attackers. The longer the
authentication time is, the worse the security and the greater
the chances for attack. Ideally, legitimate users should be
able to authenticate for a short period, and attackers should
be forced to take a long time to do so. The larger the
FAR, the worse the security. Ideally, the FAR should be a
low rate.

To identify the attacker and the legitimate user, we cal-
culated some regions for classifying the attacker and the
legitimate user based on the number of correct key images
and the authentication time.

3) LONG-TERM MEMORY METRICS
Since the images in EYEDi are distorted images, there is a
possibility that the key images will be forgotten. Therefore,
it is necessary to verify the long-term memory of legitimate
users of EYEDi. In addition, in a real environment, most
users do not consciously memorize the images. In this study,
we conducted the experiment 2–3 weeks later without prior
notice to collaborators.
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C. EXPERIMENTAL TEST SUBJECTS
The participants of the study were 20 university students
between the ages of 20 and 25 years old, with 12 males and
8 females in total. The number of attackers was 13, seven
attackers attacked one account with 15 trials, five attackers
attacked two accounts with 15 trials, and one attacker attacked
three accounts with 15 trials. All attack trials consisted of
15 trials each of OSAs, as well as camera and screenshot
attacks, and the total number of attack attempts for each threat
model was 300. We conducted the experiment 2-3 weeks
later for the long-term memory experiment without prior
notice to the collaborators. Because the long-term memory
experiment was conducted without prior notice, the number
of collaborators for the long-term memory experiment was
5 due to the schedule of the collaborators. Five long-term
memory experimental collaborators attempted to log in to
their account 10 trials after 2–3 weeks of the legitimate user
experiment. We experimented during August and September
2020. All collaborators were briefed on how to use the graphi-
cal password and practiced before the experiment. Legitimate
users were given an explanation of the proposed method
and practiced with it before the experiment. The role of the
attacker was performed by someone skilled in the manip-
ulation of the proposed method. Specifically, the attacker
participated in the experiment as a legitimate user before,
and those who were sufficiently familiar with the operation
of EYEDi participated in the experiment as the attacker.

The experimental design was based on ethical consider-
ations1 If a collaborator feels tired, he or she can stop the
experiment and take a break during the experiment to reduce
the physical burden.

D. EXPERIMENTAL PROCEDURE
To prepare for the experiment, the collaborators submitted
five key images. The collaborators could submit any images
from their PC or mobile devices. EYEDi has no user authen-
tication data at the beginning of the experiment, and the filter
strength cannot be estimated by SVM. Therefore, we initial-
ized the authentication data by the pseudo authentication data
at the beginning of the experiment. We initialized the authen-
tication data with the values shown in Table 1, assuming that
the extremely small filter strength is successful as there is
almost no distortion, and the extremely large filter strength
is unsuccessful as the distortion is too large.

The user completed the authentication by finding five key
images from the authentication screen. A legitimate user
needed to try a total of 100 authentication attempts, but they
could take a break if they felt tired. The attacker’s authenti-
cation screen is shown in Fig. 3(a), and the five distorted key
images identified by recording are shown in Fig. 3(b). The
attacker attempted to break through the authentication screen

1The study was conducted according to the guidelines of the Declaration
of Helsinki and approved by the Ethics Review Committee of the Faculty of
Engineering, Information and Systems, University of Tsukuba (2020R445).

in Fig. 3(a) while referring to Fig. 3(b). The attacker could
attempt this 15 times.

In the OSA, camera, and screenshot attack resistance
experiment, we measured EYEDi’s attack resistance by pro-
viding the number of correct key images to the attacker in a
favorable setting for the attackers.

E. LOG-IN TIME AND FEATURE POINT CHANGES IN EACH
TRIAL RANGE
The authentication time was measured fromwhen the authen-
tication screen was displayed, the end time was set to when
all the images were selected, and the end button was entered.
Fig. 4(a) shows the legitimate user’s authentication time for
an authorized user to log in when using EYEDi in each
trial range. We detected a Shapiro–Wilk test in each trial
range of authentication time and confirmed that all groups
did not follow a normal distribution. Therefore, we detected
the Wilcoxon signed-rank test and found significant differ-
ences in the trial number ranges {(1,10], (51,60]}, {(11,20],
(51,60]}, {(11,20], (61,70]}, {(21,30], (51,60]}, {(21,30],
(61,70]}, {(31,40], (61,70]}. The authentication time for
legitimate users remained constant at approximately 34 sec-
onds in the trial number range of 1-10 for the first and 91-100
for the last log-in attempts. It is important to note that the
system is set up such that the distortion of the image displayed
on EYEDi is small at the first log-in attempt and the distortion
increases as the number of log-in attempts increases. In this
regard, we can see that legitimate users can be authenticated
in approximately 34 seconds, regardless of the presence or
absence of image distortion; The distorted images generated
by EYEDi neither overburden the identification process for
legitimate users nor affect the authentication time.

We used AKAZE to calculate image features, which is
robust to object scaling, rotation, blurring, and brightness
changes, making it suitable for use on images distorted by
EYEDi [37]. We computed the feature points with the best
feature match in brute force for the feature points calculated
from each image. The feature distance was treated as the
Hamming distance of the 61-dimensional features, and for the
feature points that disappeared by EYEDi, all 61-dimensional
features were treated as 61 × Nb, where Nb is the feature bit
number.We calculated the feature matching rate R as follows:

R =

∑Np
n=1Dn

61× Nb × Np
, (2)

where Nb and Np denote the feature distance of the n-th
feature point and the number of feature points, respec-

tively. Matching rate R as R =
∑Np

n=1 Dn
61×Nb×Np

, We calculated
the feature matching rate for the key and distorted images
and used it as an image change index. Fig. 4(b) shows
the feature matching rate between the key image and the
EYEDi’s distorted image in each trial range of legitimate
users. We performed a Shapiro– Wilk test in each feature
matching rate trial range and confirmed that all groups did
not follow a normal distribution. Therefore, we detected the
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FIGURE 4. Authentication time and feature matching rate between the key image and EYEDi’s distorted images in each trial number range. (a) The
authentication time using box plots. (b) The feature matching rate between the key image and the EYEDi’s distorted image using the box plot. AKAZE
calculated the image features. We calculated the feature matching rate to the feature point distances with the best match in a brute force fashion for the
61-dimensional features obtained by AKAZE. We treated all 61-dimensional features of feature points lost by EYEDi’s distortion as zero. For distorted
images for which no feature points could be obtained, the feature distance was calculated as 300. The authentication time in each trial range was
approximately 30 seconds. The feature distance between the key image and the distorted image increased with the number of authentication attempts,
and the number of cases where the feature points of the distorted image could not be obtained increased. For outliers, the length limit of the whisker
was set to 1.5 times the length of the box.

Wilcoxon signed-rank test and found significant differences
in the trial number ranges {(1,10], (21,30]}, {(1,10], (31,40]},
{1,10], (41,50]}, {(1,10], (51,60]}, {(1,10], (61,70]}, {(1,10],
(71,80]}, {(1,10], (81,90]}, {(1,10], (91,100]}, {(11,20],
(51,60]}. As the number of trials increases, the average fea-
ture matching rate decreases, the learning progresses, and the
change in images becomes larger. In the range of 71-80 trials,
the average feature matching rate was the smallest, and then
it increased in the range of 81-90 trials and 91-100 trials. The
distortion was too large in the 71-80 trials range, so the learn-
ing reduced the distortion. Figure 4(b) shows that EYEDi
gives changes to the image as the number of trials increases.
In summary, Fig. 4(a) and (b) show that EYEDi can distort
the image by increasing the number of trials, but it does
not significantly affect the authentication time for legitimate
users.

F. ATTACK TEST
In this experiment, we used a more robust attack configura-
tion for OSAs than in previous studies. Compared to OSAs,
screenshot attacks and camera recording allow us to have
perfect memory and more powerfully hack the image authen-
tication system. Since modern mobile devices are equipped
with standard cameras and have a widespread filming func-
tion, it is more reasonable to assume they are exposed to
screenshotting or other camera recording attacks rather than
OSAs. The videos captured by a high-performance camera
are very clear, and the attacker can magnify and edit the video
to identify all the distorted key images selected by a legitimate
user. Therefore, we assumed that all five sets of distorted key
images had been stolen from the authentication screen of a
legitimate user. This study automatically stored distorted key

images selected by a legitimate user and presented them to the
attacker to simplify the recording and editing process. In other
words, the attacker can see all five distorted key images.

Figure 3 is an example of the interface of EYEDi’s
authentication screen. The attacker tried to break through
EYEDi while checking the five distorted key images pre-
pared, as shown in Fig. 3. The attacker tried to break through
the authentication by using lines, circles, and patterns in given
distorted key images as clues. The attackers had previously
participated in the EYEDi experiments as legitimate users
and had sufficient knowledge of EYEDi. The attack process
involved a trial to find and click the distorted key images on
the EYEDi authentication screen, as shown in Fig. 3(a) while
checking the distorted key images shown in Fig. 3(b).

Each authentication trial was completed, and success or
failure was presented to the attacker. In addition, the attacker
was shown the success or failure and how many of the five
key images they identified correctly. The attacker made 15 of
the above attack attempts. Note that the distorted key images
shown in Fig. 3(b), which were presented during the 15 attack
trials, did not change in each trial. Moreover, during this
experiment, the data from the authentication results were not
updated to ensure that the difficulty level of each attacker did
not change due to changes in the EYEDi strain estimation
results.

To compare the performance of EYEDi, we used the UYI
authentication system as an existing method in our experi-
ments [1]. A total of 25 = 5 × 5 images are shown for
both EYEDi and UYI, and we can see that the images are
distorted. The most significant difference between EYEDi
and UYI is that UYI can only produce one type of distorted
image, whereas EYEDi can produce various distorted images.
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FIGURE 5. We compared the number of correct key images, time, and the classification error rate of both EYEDi and UYI (an existing method).
(a, b) The bars for the number of correct key images and time show the mean values, while the whisker line and the numbers behind
the ± symbols show the standard deviations, and the gray area shows the standard deviation area for EYEDi’s legitimate users. (c) The
classification error rate indicates the false rejection rate (FRR) for a legitimate user and the false acceptance rate (FAR) for an attacker when the
response time is 60 seconds. There are three, four, or five correct key images. (d) The equal false rejection rate shows the value obtained when the
parameters of the number of correct key images and the authentication time are varied; the UYI data show the results for legitimate users and
three attacks: screenshot, camera, and OSA. In the EYEDi data, the auxiliary bar graphs for each filter applied at the end are also shown together.

The method for generating the oil-colored image was set to
20× 20 applied pixels; the frequency of the luminance mode
of the filtered range was set to bmf ; and the integrated value
of the rgb of the luminance mode was set to Rmt , Gmt , and
Bmt , respectively, so that the applied values were R = Rmt

bmf
,

G = Gmt
bmf

, and B = Bmt
bmf

. The attacker was presented with a

set of five distorted key images and authenticated while the
distorted images were at hand.

1) NUMBER OF CORRECT KEY IMAGES
Figure 5 shows a bar graph of the number of key images,
authentication time, classification error rate, and equal error
rate for legitimate users and attackers. In the case of the
UYI system (existing method), the number of correct key
images was 5 for legitimate users, but the screenshot attack
completely breached the UYI system. Similarly, in the case
of the camera recording attack, the number of correct key
images was 4.95, which was almost completely breached by
the attack. However, the number of correct key images for
the OSA was 3.65, indicating that the attack had a protective
effect.

On the other hand, the number of correct key images for
EYEDi is 4.50 for legitimate users, which is inferior to UYI.
However, the results for screenshot attacks, camera attacks,
and OSA are 2.95, 2.75, and 1.90, respectively, indicating that
EYEDi provides better protection than existingmethods in all
attack methods.

Since the distorted image impression of EYEDi tends to
be determined by the last image processing filter, we also
analyzed the details of the correct answer by the last filter.

However, there was no significant difference in the order of
any of the filters.

We also found no significant difference in the number of
correct key images for regular users two weeks after registra-
tion. In other words, the regular users of EYEDi retained their
long-term memory even after two weeks.

2) AUTHENTICATION TIME
The authentication times of UYI (existing method) were
17.5 s for the legitimate user, 20.2 s for the screenshot attack,
and 20.4 s for the camera recording attack, which were close
to one another, but only the OSAwas slightly longer at 30.7 s.

The authentication time of EYEDiwas 34.7 s for legitimate
users, which is slightly longer than the existing methods.
However, the screenshot attack took 110.0 s, the camera
recording attack took 72.4 s, and the OSA took 47.6 s. The
more advantageous the settings were for the attacker, the
longer it took. Two weeks after registration, the authentica-
tion time of the legitimate users was found to be not signifi-
cantly different.

From the usability viewpoint, the authentication time for
a legitimate user is approximately twice as long in EYEDi,
indicating that usability is reduced. However, from the secu-
rity viewpoint, the authentication time for attackers is suffi-
ciently longer than that of legitimate users. This result shows
that EYEDi improves security performance.

3) CLASSIFICATION ERROR RATE
We used the number of correct key images and the authen-
tication time as the classification criteria for legitimate users
and attackers. The classification error rate in Fig. 5 clearly
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shows the results when the authentication time was less
than 60 s, and the number of correct key images was more
than 3, 4, or 5.

The existing method (UYI) has a false rejection rate (FRR)
of 0% for legitimate users in all conditions. However, the
OSA classified the attacker with a false acceptance rate (FAR)
of 79% for 3 correct key images, 52% for 4 correct key
images, and 24% for 5 correct key images, and the camera
recording attack had a very low FAR of 91-95%. In contrast,
the screenshot attack of the existing method never succeeded
in correctly classifying the attacker.

For legitimate users of EYEDi, the classification error
rate was an FRR of 10% for 3 correct key images, 16%
for 4 correct key images, and 43% for 5 correct key images.
Especially when the number of correct key images was 5 and
the authentication time was within 60 s, the FRR was large
at 43%. The classification error rates of the OSA, camera
recording attack, and screenshot attack were 0-9%, 2-28%,
and 3-16%, respectively, showing lower classification error
rates than existing methods for all attack methods and clas-
sification conditions. For the OSA, EYEDi showed a small
classification error rate of FAR, in particular, 0% for 5 correct
key images. Similarly, existing methods showed a classifica-
tion error rate larger than 90% for camera attacks, but EYEDi
showed a small error rate with a 28% FAR for 3 correct key
images, 9% for 4 correct images, and 2% for 5 correct images.
In particular, while the screenshot attack completely broke
through the existing methods, EYEDi showed a lower error
rate with a FAR of 16% for 3 correct key images, 9% for
4 correct key images, and 3% for 5 correct key images. Two
weeks after registration, the EYEDi’s legitimate users had
a lower error rate with an FRR of 20-36%. The legitimate
users after two weeks had an increased authentication time
compared to the short-term memory group, which may have
resulted in an increased FRR. As described above, we showed
that EYEDi could classify legitimate users and attackers with
better accuracy than UYI (existing method) by limiting the
number of correct key images and the authentication time.

From the viewpoint of usability, the rejection rate of legit-
imate users in EYEDi is 10–43% (depending on the con-
figuration of how many correct key images are required
in the authentication phase), which indicates that usability
is reduced. However, from the security viewpoint, EYEDi
shows high protection performance even in the threat model,
where the situation in which attackers almost always break
UYI. This result shows that EYEDi improves security
performance.

4) EQUAL ERROR RATE
The equal error rate is calculated by equaling FRR and FAR
with adjusting the parameters, such as the number of cor-
rect key images and authentication time. The bars shown in
Fig. 5 are the equal error rate, and the value shown next to the
bar is (equal error rate, number of correct key images, authen-
tication time). The equal error rate of the existing methods
was 11% for OSA and 22% for camera recording attacks and

screenshot attacks. On the other hand, the equal error rate of
EYEDi was 7% for OSA, 11% for camera recording attacks,
and 16% for screenshot attacks, and the equal error rate was
small for all attacks. The number of correct key images to
answer where FRR and FAR become equal was five for the
existing method and three for EYEDi. In other words, it was
not necessary to find all the key images when authenticating
by EYEDi. The authentication time of the existing methods
is 15 s for OSA, 10 s for camera recording attacks, and
10 s for screenshot attacks, while the time of EYEDi is
115 s for OSA, 90 s for camera recording attacks, and 60 s
for screenshot attacks. In other words, the existing methods
require a short authentication time, while EYEDi requires a
longer authentication time.

V. DISCUSSION
A possible future direction for this work is on applications
in personal authentication systems that use both images and
voices with appropriate filter strength estimates. In the future,
we believe that it will be possible to realize a system that
does not require prior training or authentication by using
deep learning and other methods by accumulating images
and authentication data. The inverse estimation of appropriate
distortions from key image features allows us to present a
sufficiently distorted image even during initial authentication.
The realization of EYEDi’s system of inverse estimation
would avoid the risk of a recording attack on authentication
in the early stages of EYEDi.

For the authentication time in Fig. 5, we focused on
the three types of attacks, OSA, camera, and screenshot
on EYEDi. We hypothesized that screenshot was the most
advantageous for the attacker and OSA was the most disad-
vantageous. However, the authentication time was the longest
for screenshots and the shortest for OSA. This result was
probably because OSA was too difficult for the attacker, and
they quickly gave up, while screenshots took more time as the
attackers thought they could answer correctly. The authen-
tication time of long-term memory users increased slightly
compared to two weeks ago. This may be because the long-
termmemory users needed more time to recall the key image.
Therefore, the authentication time will decrease again after
the user recalls the key image.

Table 2 shows a comparison between existing authentica-
tion systems and EYEDi. The feature of EYEDi is resistant
to recording attacks, which are difficult for other authenti-
cation systems to defend against. However, the table also
shows that EYEDi has the disadvantage that the authenti-
cation time needs to be improved. Although EYEDi has the
disadvantage of a longer authentication time, it is resistant to
various attacks and can be used for personal authentication
in companies that need to be protected even with a long
authentication time. Focusing on the graphical passwords in
Table 2, we can see that PassPoints is vulnerable to OSAs
and recording attacks. Déjà Vu has improved OSAs, which
is the problem with PassPoints. UYI solved the problem of
long-term memory, which is an issue of Déjà Vu, and EYEDi
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TABLE 2. The characteristics shown in the table are G for good, F for fair, and B for bad.

solved the problem of recording attacks, which had not been
solved to date. Conceivably, we believe it is also possible to
create passcodes by extracting features in the images, such as
GhostNet [38].

VI. CONCLUSION
In this study, we proposed a graphical authentication scheme
that generates various distorted images, Estimating Your
Encodable Distorted images (EYEDi). The distorted image
of EYEDi is generated by applying several image processing
filters to the original image. Through 20-subject experiments
and 300 screenshot attacks, we confirmed that EYEDi esti-
mated the appropriate filter strength based on the authenti-
cation records and that the attacker had difficulty estimating
the key image. Through these experiments, EYEDi prevented
OSA, camera recording attacks, and screenshot attacks better
than the existing method. Thus, EYEDi makes it possible to
authenticate individuals with their own memories rather than
easily forgotten keywords.

Necessary improvements for EYEDi include estimation,
a stronger threat model, and difficulties in continuous authen-
tication for the attacker. First, let us consider how to improve
the estimation. In this paper, the data used in EYEDi are
filter strength and discrimination success or failure. However,
the time taken to discriminate will be an important factor
in estimating discrimination ability; therefore, it would be
possible to extend the weighting of the discrimination success
or failure labels to the time spent on each image discovery.
Next, we consider the powerful threat model configuration.
Nowadays, threat models are familiar with memory based
on actual measurements, but in practice, we should also
expect multiple recordings by cameras. As shown in this
study, normal authentication systems are typically breached
by recording hand-held images and log-in screens at the
time of entry. Since EYEDi displays different impressions
of images each time, we can show that it is significantly
more difficult to break through authentication when assuming
a single screenshot attack than existing methods. However,
we expect that attackers can learn and gradually become able
to identify key images by repeating multiple recordings.

We also have to assume an attack where the key image is
mechanically inferred through multiple recordings. EYEDi’s
distorted images are difficult to restore to their original
images due to the multiple filter processes. However, with
the recent remarkable development of image processing
technology, it is expected that this danger can be resolved
by collecting a large amount of data. The difficulty of

continuous authentication was confirmed in the screenshot
attack experiment. During the EYEDi screenshot attack
attempts, we found many cases in which authentication was
not possible after a successful attempt. In many previous
studies, once an attacker had succeeded in authentication, the
attacker would remember the key combination of the success-
ful authentication attempt so that their subsequent attempt
would also succeed. In contrast, our EYEDi system is difficult
to use for continuous authentication, as the impression of the
image presented on the next authentication screen changes
significantly even if the authentication is successful once.
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