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ABSTRACT In highly compressed images, i.e. quality factor q ≤ 10, JPEG compression causes severe
compression artifacts including blocking, banding, ringing and color distortion. The compression artifacts
seriously degrade image quality, which is not conducive to subsequent tasks, such as object detection and
semantic segmentation. In this paper, we propose a weakly connected dense generative adversarial network
for artifacts removal of highly compressed images, namedWCDGAN.WCDGANhas threemain ingredients
of mixed convolution, weakly connected dense block (WCDB), and mixed attention. In the loss function,
we add a perceptual loss to generate photo-realistic images with compression artifact removal. Experimental
results show that WCDGAN successfully removes compression artifacts and produces sharp edges, clear
textures and vivid colors even in highly compressed images. Moreover, WCDGAN outperforms state-of-the-
art methods for compression artifact removal in terms of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM).

INDEX TERMS Image compression, convolutional neural network, generative adversarial network, weak
connection, attention mechanism, dilated convolution.

I. INTRODUCTION
JPEG [1] is a widely used image format that represents
rich and vivid contents due to the sophisticated compression
algorithm. It first converts an RGB image into YCbCr color
space and downsamples chroma components. Then, it per-
forms the discrete cosine transform (DCT) [2] on luma and
chroma components in the form of non-overlapping 8 × 8
blocks. Given a quality factor, the corresponding quantiza-
tion tables (QTs) are obtained, and the DCT coefficients are
quantized based on theQT. Finally, the quantizedDCT coeffi-
cients are converted into bitstream for transmission according
to the encoding rules. However, it can be seen from Eq. (1)
that due to the floor function, the DCT coefficients at the
encoding end and the DCT coefficients at the decoding end
are different.

Dde =
⌊
Den
Q

⌋
× Q (1)
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where bc is the floor operation, Q is the quantization step
length, Den and Dde denote DCT coefficient at the encoding
end and DCT coefficient at the decoding end, respectively.

Thus, the compression distortion is caused by quantization.
As shown in Eqs. (2)-(4), DCT coefficients represent infor-
mation in the frequency domain and the distortion of DCT
coefficients affects the pixel values involved in the calculation
in the spatial domain. Moreover, the DCT transformation is
carried out block by block and thus the compressed images
contain blocking and banding artifacts.

F(u, v) = c(u)c(v)
N−1∑
i=0

N−1∑
j=0

f (i, j) cosA cosB (2)

A =
(i+ 0.5)π

N
u (3)

B =
(j+ 0.5)π

N
v (4)

where generally N = 8; i and j represent horizontal and
vertical coordinates in the spatial domain, respectively; u and
v represent frequency; F represents DCT coefficient; f rep-
resents pixel values in the spatial domain. Note that when
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FIGURE 1. Compression artifact removal results. Left: Compressed images at q = 5. Middle: Compression artifact removal results by WCDGAN. Right:
Ground truth. WCDGAN successfully removes compression artifacts from highly compressed images while restoring vivid colors.

u = 0, c(u) =
√

1
N , otherwise, c(u) =

√
2
N . c(v) has the

same function as c(u).

A. RELATED WORK
For a long time, image compression has adopted DCT for
block based-transform coding that is successfully applied
to various coding standards such as JPEG and MPEG.
In addition to the DCT-based image compression, two-
dimensional discrete wavelet transform (2D-DWT) decom-
poses an image into low and high frequency components,
i.e. subbands, which can simultaneously capture the spatial
and frequency information. The DWT-based image com-
pression performs compression by quantizing and encoding
the low and high frequency components. Bose et al. [3]
used vector quantization (VQ) to compress medical images,
and then embedded watermark into the compressed images.
They analyzed the effect of watermarking on the content
of medical images. In recent years, JPEG compression arti-
fact removal [4]–[7] [8]–[11] [12] and image denoisingl
[13]–[15] has been treated as computer vision tasks. Existing
methods are roughly classified into two categories: tradi-
tional image processing approaches and recent deep learn-
ing schemes. The traditional image processing approaches
pay more attention to the spatial and frequency domains.
The spatial domain methods mainly focus on restoring flat
areas [16], some edges [17] and textures [18]. The fre-
quency domain methods mainly utilize DCT coefficients as
prior information [4], [19], [20]. Shape adaptive (SA)-DCT,
proposed by Foi et al. [21], combined spatial informa-
tion of the images and DCT coefficients to accomplish
compression artifact removal. Nowadays, deep convolutional

neural networks (CNNs) have obtained continuous success
in computer vision and image processing tasks. Inspired
by image super-resolution based on CNN (SRCNN) [22],
Dong et al. [5] proposed an end-to-end network structure for
JPEG compression artifact removal, named ARCNN, which
added one convolution layer to realize feature enhancement.
It is the first compression artifact removal work based on
deep learning. Following ARCNN, Zhang et al. [6] proposed
DnCNN for general image denoising tasks, and used it for
compression artifact removal. Chen et al. [23] proposed a
trainable nonlinear reaction-diffusion model (TNRD) based
on the fixed number of gradient descent inference steps.
However, TNRD is limited in capturing features of image
structure. Galteri et al. [24] utilized a generative adversar-
ial network (GAN) [25] to remove compression artifacts.
Tai et al. [7] proposed a persistent memory network (Mem-
Net) which was stacked by memory blocks consisting of
a recursive unit and a gate unit to learn explicit persistent
memories. A deep multi-scale CNN (DMCNN), proposed
by Zhang et al. [8], integrated spatial information and fre-
quency information to make full use of DCT coefficient
prior, thus producing higher quality results than the previ-
ous work. Liu et al. [26] developed a multi-level Wavelet
CNN (MWCNN) with U-Net architecture [27] for multiple
image restoration tasks: JPEG artifact removal, image denois-
ing and image super-resolution.

Nowadays, generative adversarial networks (GANs) have
been also rapidly developed and successfully applied to the
computer vision field, such as image super-resolution, image
inpainting, and style transfer. GAN is usually composed of a
generator and a discriminator. The aim of discriminator is to
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FIGURE 2. Network architecture of the generator in WCDGAN for compression artifact removal. WCDB: Weakly connected dense block. The generator
consists of shallow feature extraction, deep feature extraction, and reconstruction. We use 8 WCDBs for deep feature extraction.

FIGURE 3. Network architecture of the discriminator in WCDGAN. s2 means that the stride of convolution is two.

distinguish true and false images. The purpose of generator
is to produce more realistic images so that the discriminator
cannot distinguish true and false images. The ideal result is to
achieve Nash equilibrium where the generator and discrim-
inator can not reduce the cost each other. Despite its great
success, GANs still have many defects including generaliza-
tion and training stability. To solve these problems, many
solutions are proposed to improve GANs. Arjovsky et al.
[28], [29] improved the loss function and minimized the
Wasserstein distance between model and data distributions.
Then, Mao et al. [30] proposed a least squares loss for the
discriminator, which made training stable and improve image
quality.

B. MOTIVATION
When the compression rate is high, JPEG compression pro-
duces noticeable artifacts that seriously degrade image qual-
ity as shown in Fig. 1. In the figure, the quality factor q is 5.
The most serious distortion is the blocking artifacts that cause
banding effect and color distortion in images (see the sky and
statues of compressed images). Thus, the compression artifact
removal affects color restoration. In this paper, we propose
a novel and effective weakly connected dense generative
adversarial network for compression artifact removal, called

WCDGAN. The proposed WCDGAN aims to remove com-
pression artifacts from highly compressed images when q
is lower than 10. We build a weakly connected dense gen-
erator for WCDGAN that deploys the attention mechanism
[31], [32] and dilated convolution [33], [34] to learn the infor-
mative features for compression artifact removal. As shown
in Fig. 2, the generator of WCDGAN has three main ingredi-
ents: mixed convolution, weakly connected dense block, and
mixed attention. First, we combine dilated convolution and
standard convolution, i.e. mixed convolution, to enlarge the
receptive field and alleviate the grid effect caused by dilated
convolution. Second, we provide a weakly connected dense
block (WCDB) to reuse the features of the previous convolu-
tional layers in the network and make features more expres-
sive while reducing network parameters and computational
cost [35], [36]. Third, we combine channel attention [37]
and spatial attention with mixed convolution into WCDB to
extract informative features. To consider the color distortion
caused by high compression, we implement WCDGAN in
the RGB domain, not YCbCr domain. For the discriminator,
we use a simple network structure that contains nine con-
volution layers and two fully connected layers as shown in
Fig. 3. Finally, we add a perceptual loss in the loss function
to generate realistic images.WCDGAN successfully removes
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compression artifacts from highly compressed images while
restoring vivid colors (see Fig. 1).
Compared with existing methods, main contributions of

this paper are as follows:
• We propose WCDGAN to generate photo-realistic
images from highly compressed ones while remove
compression artifacts. The generator of WCDGAN has
three main ingredients: mixed convolution, weakly con-
nected dense block (WCDB), and mixed attention.

• We combine standard convolution and dilated convolu-
tion into mixed convolution to capture a larger receptive
field without grid effect. Moreover, we combine channel
attention and spatial attention with mixed convolution
into WCDB to extract more informative features.

• We add a perceptual loss to generate photo-realistic
images with compression artifact removal.

II. PROPOSED METHOD
A. NETWORK ARCHITECTURE
As shown in Fig. 2, the generator of WCDGAN mainly con-
sists of three parts: shallow feature extraction, deep feature
extraction and reconstruction. Denote X and Y as the input
and output, respectively. Initially, two standard convolutions
are used for shallow feature extraction, in which only the sec-
ond convolutional layer is followed by LeakyReLU activation
function. To capture more local information, we use larger
convolution kernels in shallow feature extraction, where the
sizes of which are 5× 5 as follows:

F0 = fSF (X ) (5)

where fSF (·) denotes the shallow feature extraction operation;
and F0 denotes its output and then is taken as the input
to deep feature extraction. The deep feature extraction is a
cascade of N WCDB modules (see Fig. 2). As shown in
Fig. 4, the WCDB module reuses the features of the previous
convolutional layers in the network, thus making features
more expressive and reducing network parameters and com-
putational cost. As suggested by ResNet [38] and EDSR [39],
we employ a residual connection in this operation to avoid the
emergency of gradient vanishing and gradient explosion [40].
Therefore, we get:

F1 = fDF (F0)+ F0 (6)

where fDF (·) denotes the deep feature extraction; and F1
denotes the output of deep feature extraction and then take
it as the input to the reconstruction part, which has the same
convolution structure as the shallow feature extraction part.
Note that the last convolution layer is not followed by activa-
tion function, but the former layer is. In the last two layers,
we do not adopt the large convolution kernels, but deploy the
small convolution kernels of 3×3. Finally, we obtain the final
reconstruction result as follows:

Y = fREC (F1) (7)

FIGURE 4. Weakly connected dense block (WCDB) module. cat means
concatenation along channel dimension. The purple block represents the
mixed attention module.

Our discriminator is relatively simple to manifest the
learning ability of the generator as shown in Fig. 3. This
discriminator has nine convolutional layers and two fully
connected layers. It adopts a common block composed of
Conv, ReLU and Batch Normalization [41]. s2 means the
stride of convolution is two and the number of convolution
kernel of current convolutional layer is doubled. Kernel sizes
of all the convolutional layers are set to 3× 3.

B. MIXED CONVOLUTION
In low-level computer vision tasks such as image super-
resolution, image denoising, and semantic segmentation, the
receptive field of the network is an extremely important
property [42]. In general, a large receptive field is good for
network performance. To sum up, there are the following
methods to enlarge the receptive field: (1) make the network
deeper; (2) use large convolution kernels; (3) adopt an auto-
encoder structure; (4) utilize dilated convolution. The first
and second methods inevitably introduce much calculation
cost, while the first one can cause the problem of gradient
vanishing or gradient explosion. Thus, they are not appli-
cable. The third method deploys a pooling operation in the
auto-encoder to reduce the feature size, thus achieving
the purpose of expanding the receptive field. However,
the pooling operation inevitably causes irreversible loss of
information. Excessive pooling operations are unfriendly for
pixel-level tasks [43]. Dilated convolution expands the recep-
tive field without increasing parameters and thus is popu-
larly selected. Whereas, it also has its own shortcoming that
causes grid effects. To solve this problem, inspired by [44],
we design a new convolution module as follows.

This convolution module consists of standard convolution
and dilated convolution. As shown in Fig. 5, the input feature
acts as inputs for both standard convolution and dilated con-
volution, then both convolutions are concatenated along the
channel dimension with the same weight. Finally, we adopt a
1 × 1 convolution to compress the feature along the channel
dimension and maintain the same shape as the input feature
as follows:

Fout = f1×1([δLRe(fS (Fin)), δLRe(fD=d (Fin))]) (8)

where Fin and Fout represent the input and output of the
mixed convolutionmodule, respectively; and fS (·) denotes the
standard convolution, while fD=d (·) denotes the dilated con-
volution. Note that d is the number of dilation. Additionally,
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FIGURE 5. Mixed convolution module. Note that the outputs of both
standard conv1 and dilated conv are concatenated, which is taken as the
input of standard conv2 with kernel size 1× 1.

[·] represents the concatenation operation and f1×1(·) is a 1×1
convolution. δLRe(·) denotes the LeakyReLU with a negative
slope of 0.02.

C. WEAKLY CONNECTED DENSE BLOCK
It has been proved that ResNet solves the gradient vanishing
and gradient explosion of a deep neural network to a great
extent, which makes the network acquire more powerful
representation capabilities. Later, some people have done
experiments, in which they randomly dropped some layers
of the network and then retrained ResNet. Eventually, they
found that the generalization performance of ResNet was
significantly improved. It shows that the neural network is
not necessarily a hierarchical structure, i.e. a layer in the
network can not only rely on the features of the adjacent
upper layer, but also on the features of the higher layer.
Based on them, Huang et al. [45] proposed dense connection
to alleviate the problem of gradient vanishing, strengthen
feature propagation, and encourage feature reuse. It achieves
good performance inmany low-level and high-level computer
vision tasks.

Nevertheless, with the same deep networks, deploying too
many dense blocks brings a lot of burden in the network
training, especially in terms of memory consumption, and
the performance is not significantly improved. As a result,
we remove a part of dense connection and all Batch Nor-
malization layers [41] to achieve satisfactory results while
reducing the computational cost. Another difference between
WCDGAN and Huang et al.’s is that we substitute the pro-
posed mixed convolution for the original standard convolu-
tion to obtain a larger receptive field as shown in Fig. 4. The
following is a detailed description of this module:

X ′D=1 = f ′D=1(X
′) (9)

X ′D=2 = f ′D=2(f
′

D=1(X
′)) (10)

X ′D=3 = f ′D=4(f
′

D=2(f
′

D=1(X
′))) (11)

X ′D=4 = f ′D=8(f
′

D=4(f
′

D=2(f
′

D=1(X
′)))) (12)

Eqs. (9), (10), (11) and (12) represent the calculation
process from the first mixed convolution to the last mixed
convolution, where X ′ denotes input feature, f ′D=d (·) means

the mixed convolution with d dilations, and X ′D=d is the
output of the corresponding mixed convolution.
Then, we also utilize a 1 × 1 convolution to compress the

concatenation of both the input feature and output of every
mixed convolution. We also add a residual connection to
make the training process stable. Next, we calculate:

X ′′ = f1×1([X ′,X ′D=1,X
′

D=2,X
′

D=3,X
′

D=4])+ X
′ (13)

Finally, the proposed mixed attention module is denoted
as fMA(·):

X ′′′ = fMA(X ′′) (14)

where X ′′′ is the final output of the deep feature extraction.

FIGURE 6. Mixed attention module. fGAP denotes global average pooling
operation. The number of convolution kernels of the first two 1× 1
convolutions is C

r , and that of the others is C , where r is the
downsampling factor. We set r to 4.

D. MIXED ATTENTION MODULE
Previous methods for compression artifact removal process
channel information equally. However, the learned features
have different meanings in channel dimension because the
features in different channels are learned by different and
unrelated convolution kernels. Therefore, to learn more infor-
mative features, we exploit channel attention to make the
learned features more representational [46], [47]. Therefore,
we firstly convert the channel-wise global spatial information
into channel weights by using global average pooling [48].
As shown in Fig. 6, X = [x1, x2, . . . , xc, . . . , xC ] denotes
the input feature with C channels and xc means c-th channel
feature. Let zc denote the pooling result of the c-th channel
feature. Similarly, Z = [z1, . . . , zc, . . . , zC ]. We formulate as
follows:

zc = fGAP(xc) =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j) (15)

where xc(i, j) is the value at the position (i, j) of the
c-th channel feature xc, fGAP(·) is the global average pooling
operation, and the spatial size of feature is H ×W .

To further exploit channel-wise dependency from the
aggregated feature information by the global average pool-
ing, we modify the original structure after that in [49].
We employ a 1×1 convolution followed by LeakyReLU, and
then is another 1 × 1 convolution followed by LeakyReLU.
Since we utilize the values less than zero after activation,
we use LeakyReLU, instead of ReLU. LeakyReLU makes
the weights more robust. At last, it is a 1 × 1 convolution
followed by Sigmoid function. Compared with the original
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FIGURE 7. Visual comparison in ‘Barbara’ (Classic5 dataset) with quality factor 5 (PSNR(dB)/SSIM).

FIGURE 8. Visual comparison in ‘Lighthouse’ (LIVE1 dataset) with quality factor 10 (PSNR(dB)/SSIM).

structure, we add a middle layer, and LeakyReLU activation
function can focus on the weaker elements to a certain extent.
Since this channel attention structure fully captures nonlinear
interaction between channels and takes the learned relevance
as the weight, the features are refined to make the output fea-
tures have stronger information expression ability as follows:

FC = σ (f1×1(δLRe(f
C
r

1×1(δLRe(f
C
r

1×1(Z ))))))× X (16)

where δLRe(·) denotes LeakyReLU, σ (·) means Sigmoid func-

tion, and f
C
r

1×1(·) is a 1×1 convolution which acts as channel-
downscaling with a ratio r .

Different from the channel attention that emphasizes
‘‘what’’ is meaningful [50], the spatial attention focuses on
‘‘where’’ is an informative part, which is complementary to
the channel attention. First, we substitute a 1× 1 convolution
for the original both average-pooling and max-pooling oper-
ations to obtain self-adaptive statistical characteristics. Then,
we use a 5×5 convolution to produce a spatial attention map
and then refine features as follows:

FS = σ (f5×5(f1×1(FC )))× FC (17)

where f5×5(·) represents a convolution with the kernel size of
5× 5.
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E. LOSS FUNCTION
We use L1 distance to calculate the content loss Lc between
the output image Iout and the ground truth Igt expressed as
follows:

Lc =
∥∥Igt − Iout∥∥1 (18)

Perceptual loss Lp proposed by Johnson et al. [51] is to
measure perceptual similarity. It is defined as the distance
between two features of a pre-trained deep neural network.
We first put Iout and Igt into VGG-19 to obtain the outputs
from a certain convolutional layer, then calculate the L1 dis-
tance between two features as the perceptual loss as follows:

Lp = E[
∑
j=1

∥∥φ(Igt )− φ(Iout )∥∥1] (19)

where φ() stands for the last convolution layer of VGG19.
Lp is more informative and implements stronger supervi-
sion, thus leading to better performance. We use the least
squares loss as the adversarial loss in both discriminator
and generator. LSGAN [30] not only makes the training
process more stable but also generates more gradients than
standard GAN, thus improvingWCDGAN performance. The
discriminator is to distinguish true and fake images and
the adversarial loss for the discriminator LDadv is obtained
as follows:

LDadv = EP[D(Igt − 1)2]+ EQ[D(Iout − 0)2] (20)

where P and Q are the distributions of Igt and Iout ,
respectively. The generator aims to make Iout close to Igt ,
thus the adversarial loss for the generator LGadv is obtained as
follows:

LGadv = EQ[D(Iout − 1)2] (21)

A little noisemay have a very big impact on the results. At this
time, it is required to add regularization terms for optimiza-
tion that maintain the smoothness of the image. TV loss Ltv is
a common regularization term used in conjunction with other
losses to constrain noise by reducing the differences between
adjacent pixels as follows:

Ltv =
∥∥∇xI +∇yI∥∥1 (22)

where ∇x and ∇y calculates the gradient in the x and y
directions, respectively. To get Ltv, we compute the gra-
dient of each channel in a color image, and then average
the sum of them. As the training progresses, total varia-
tion in Eq. (22) is minimized and the sensitivity to arti-
facts is weakened. Moreover, Ltv is helpful for smoothing
noise generated by GAN. Finally, we combine the losses as
the generator loss function for training, which is expressed
as follows:

LG = Lc + Lp + LGadv + Ltv (23)

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
In all experiments, we use 800 training images in DIV2K,
released during the NTIRE2017 [52] challenge for image
restoration tasks. The LIVE1 [53] dataset, the Classic5
dataset and the validation set of DIV2K are used for eval-
uation. In terms of the restoration of Y channel, all train-
ing and evaluation processes are kept consistent for a fair
comparison. Since the methods involved in comparison do
not consider color distortion, we design more compara-
tive experiments to verify the feasibility and effectiveness
of WCDGAN. We use MATLAB JPEG encoder to gener-
ate JPEG-compressed images with q = 5, 10, 20. All the
approaches including the proposed WCDGAN are imple-
mented with the Pytorch toolbox [54].

We use Adam optimizer with momentum parameters β1 =
0.5, β2 = 0.999 and initial learning rates 0.0002 and 0.0001
for generator and discriminator, respectively. The learning
rate is divided by 2 after every 20000 iterations, while the
batch size is set to 16.We extract 80×80 patches with a stride
of 75 from image pairs. Adam optimizer is computationally
efficient with less memory requirement, which is easy to
implement. Thus, Adam optimizer is well suited for problems
that the amount of data and parameters are large. It has been
reported that Adam optimizer achieves the best performance
in optimization [55]. In addition, hyper parameters usually
need little adjustment, which makes the use of the optimizer
easier and more convenient. That is, Adam optimizer is suit-
able for a wide range of nonconvex optimization problems
in the field of deep learning [56]. Therefore, we choose
Adam optimizer to optimize WCDGAN. At the beginning of
training, the discriminator has a better ability to distinguish
true images from fake ones, thus we only train the generators
individually for 4 epochs and then update one step for either
generators and discriminators alternately. Unless otherwise
specified, convolutional kernel size is 3 × 3 and the number
of convolutional kernel is 64. In the proposed discriminator,
when the size of feature map is reduced by 2 times, the
number of output channel is enlarged by 2 times.

B. COMPARISON WITH OTHER METHODS ON Y CHANNEL
In YCbCr color space, Y channel represents the luminance
information, which mainly contains textures and details.
Therefore, we specially get rid of the color influence and
directly compare the restoration effect of textures and details.
To be a fully convincing comparison, we compareWCDGAN
with SA-DCT, ARCNN, TNRD, DnCNN and MemNet.
We apply PSNR and SSIM [57] as evaluation metrics for
quantitative comparison, which are widely used for image
quality assessment. As shown in Table 1, WCDGAN outper-
forms the others in terms of both PSNR and SSIM. Although
the gain of WCDGAN over MWCNN is not very high,
the improvement cannot be ignored. WCDGAN reconstructs
natural-looking images with clear textures, vivid colors, and
good perceptual quality from highly compressed images,
i.e. quality factor q ≤ 10. Since the TV loss in WCDGAN
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TABLE 1. Average PSNR (dB) and SSIM values of Y channel on Classic5 and LIVE1. Bold numbers represent the best performance.

TABLE 2. Average PSNR(dB) and SSIM values of RGB images on LIVE1 and validation of DIV2K. Bold numbers represent the best performance.

causes smoothing effects, we add L1 loss and perceptual
loss in the loss function to make up for them. Thus, they
lead to the detail enhancement of the results. As shown in
Figs. 7 and 8, the original blocking and banding artifacts
are removed clearly, and the restoration performance of the
details and textures in images is also very good. On details,
it can be observed from Fig. 7 that WCDGAN restores more
continuous texture details but the other methods do not (see
the red boxes). In Fig. 8, it is obvious that in the part of
the leaves, the proposed method achieves the best restora-
tion performance. Compared with the other methods, our
results contain clear and obvious lines, and there are no band-
shaped artifacts or block-shaped artifacts. It is obvious that
WCDGAN performs the best in details, and the results by the
other methods are somewhat rough. From the perspective of
overall image quality, our results are better than the others.
Therefore, it can be concluded that WCDGAN performs
better than the other methods in terms of both local and global
visual quality.

C. COMPARISON WITH OTHER METHODS ON RGB
IMAGES
The previous experiments mainly focus on the Y channel
to show the restoration performance for image textures and
details. However, in the high compression rate, the color
distortion is also very serious as shown in Fig. 1. Thus,
we provide the restoration performance for compressed RGB
images. We mainly test the restoration performance of the
model on the compressed RGB image with quality fac-
tors 5 and 10. Here, we select LIVE1 and validation set of
DIV2K as the testing dataset. We provide more deblocking
results in Figs. 9-12. From the perspective of the overall visual
perception, MWCNN and WCDGAN perform the best in
Fig. 9. Both of them remove blocking and banding artifacts
better than the others. However, the enlarged areas reveal
that our result produces clearer edges and weaker artifacts
around the numbers. Additionally, the result of MWCNN
also has some slight color distortion compared toWCDGAN.

It can observed from Fig. 10 that in the global structure or
local details, our results are the best by producing apparent
textures and details. Especially, in the enlarged areas, our
artifacts are the least among them. A close look at Figs. 11
and 12 reveals that WCDGAN removes most compression
artifacts, while successfully restoring textures and details
of the images. In the quantitative measurements, it can be
observed from Table 2 that perceptual loss and GAN remark-
ably increase PSNR values while slightly decreasing SSIM
values. Thus, perceptual loss and GAN could sacrifice part
of the structure information for leading to better perceptual
quality in HVS. It focuses on the deep features learned by
the model, and emphasizes the semantic information. This is
quite different from the image structure in the spatial domain.
In a word, GAN structure and perceptual loss are helpful
for improving the perceptual quality of human eyes. On the
whole, WCDGAN achieves good perceptual quality in the
results after compression artifact removal.

D. COMPUTATIONAL COMPLEXITY
As shown in Table 3, we provide comparison of
computational complexity in terms of model size and run-
time. We compare WCDGAN with state-of-the art meth-
ods: ARCNN, DNCNN, MemNet, and MWCNN. For tests,
we use a PC with Nvidia GeForce GTX 1080Ti GPU and
Intel i7-7700 3.60GHz CPU. It is obvious that the model
size of WCDGAN are less than MemNet and MWCNN,
while the runtime ofWCDGAN is faster than them. Although
the model size and runtime of WCDGAN are not the best,
WCDGAN keeps a balance between compression artifact
removal and computational complexity. The results indicate
that WCDGAN is effective for removing compression arti-
facts from highly compressed images with low complexity.

E. ABLATION STUDY
We examine the impact of various important modules on per-
formance. First, we evaluate the network performance with
and without the mixed convolution. No mixed convolution
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FIGURE 9. Visual comparison in ‘Sailing’ (LIVE1 dataset) with quality factor 5 (PSNR(dB)/SSIM).

TABLE 3. Comparison of computational complexity in terms of model size and runtime. For tests, we use a PC with Nvidia GeForce GTX 1080Ti GPU and
Intel i7-7700 3.60GHz CPU.

TABLE 4. Ablation study on mixed convolution and mixed attention in
Classic5 and LIVE1 datasets.

means that we replace the mixed convolution with the stan-
dard convolution. As shown in Table 4, when the mixed
convolution module is not deployed, in Classic5 dataset the

PSNR value is reduced by about 0.2dB and the SSIM value
is reduced by about 0.018. In LIVE1 dataset, the PSNR
value is reduced by about 0.15dB and the SSIM value is
reduced by about 0.016. They are average performance over
three different quality factors. It is enough to show that the
mixed convolution plays an important role in improving the
performance ofWCDGAN. The results indicate that the large
receptive field can improve the network performance. Also,
we explore the effects of the attention mechanism. As shown
in the figure, the PSNR is reduced by about 0.08dB and the
SSIM is reduced by about 0.014 in Classic5 dataset, while the
PSNR is reduced by about 0.09dB and the SSIM is reduced
by about 0.014 in LIVE1 dataset. It can be figured out that
the mixed attention mechanism has a positive impact on the
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FIGURE 10. Visual comparison in ‘Owl’ (validation dataset of DIV2K) with quality factor 5 (PSNR(dB)/SSIM).

FIGURE 11. Visual comparison in ‘Caps’ (LIVE1 dataset) with quality factor 10 (PSNR(dB)/SSIM).

compression artifact removal. The experiments demonstrate
that both mixed convolution and mixed attention are effective
and valuable for compression artifact removal. Furthermore,

we perform another ablation study on perceptual loss and
GAN. Table 5 indicates that perceptual loss andGAN remark-
ably increase PSNR values while slightly decreasing SSIM

1646 VOLUME 10, 2022



B. Xie et al.: WCDGAN for Artifact Removal of Highly Compressed Images

FIGURE 12. Visual comparison in ‘Castle’ (validation dataset of DIV2K) with quality factor 10 (PSNR(dB)/SSIM).

FIGURE 13. Ablation study on perceptual loss and GAN in ‘Owl’ (validation dataset of DIV2K) with quality factor 10.

TABLE 5. Ablation study on perceptual loss and GAN in LIVE1 and DIV2K
validation datasets in terms of PSNR and SSIM. The numbers represent
PSNR(dB)/SSIM, while the bold ones represent the best performance.

values. That is, perceptual loss and GAN sacrifice part of the
structure information benefiting to better visual perception in
HVS. In addition, we provide Inception Score (IS) [58] and
Fréchet Inception Distance (FID) [59] in Table 6 to evaluate
the realism of the generated images. As shown in the table,
the perceptual loss and GAN contribute to the generation of
photo-realistic images. Note that bigger IS and smaller FID

TABLE 6. Ablation study on perceptual loss and GAN in LIVE1 and DIV2K
validation datasets in terms of Inception Score (IS) [58] or Fréchet
Inception Distance (FID) [59]. The numbers represent IS/FID values, while
the bold ones represent the best performance.

indicate better performance. We provide an ablation study on
the perceptual loss andGAN in Fig. 13. It can be observed that
the result without perceptual loss and GAN contains serious
artifacts, which seriously degrades the visual quality. How-
ever, the perceptual loss and GAN almost completely remove
the artifacts while generating clear and natural textures in the
result, thus greatly improving the visual quality.
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IV. CONCLUSION
In this paper, we have proposed a novelWCDGAN for artifact
removal of highly compressed images. We have attempted
to remove compression artifacts and recover high-quality
images from highly compressed images. The mixed convo-
lution is able to enlarge the receptive field of the network
mitigating the grid effect of dilated convolution. WCDB
enhances feature reuse and makes features more expressive.
Moreover, the mixed attention module makes WCDGAN
learn informative features. Experimental results demonstrate
that WCDGAN reconstructs natural-looking images with
clear textures, vivid colors, and good perceptual quality from
highly compressed images, even in q = 5. WCDGAN out-
performs the state-of-the-art models for compression arti-
fact removal in terms of both visual quality and quantitative
measurements.

Although WCDGAN has achieved good performance in
compression artifact removal, it has a limit of implementing
a lightweight model for practical applications. Therefore,
we will investigate yielding a lightweight network for com-
pression artifact removal by replacing common convolution
with depthwise separable convolution.
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