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ABSTRACT Due to environmental interference and operational errors, problems such as incomplete and
random missing logging data have occurred during the geophysical logging data collection process. Since
it is difficult to establish a geophysical model based on logging data and geological information, the data
complementation effect of conventional methods is not very satisfactory. In this paper, we propose an MC-
GAN-BiLSTM model based on spatiotemporal sequence prediction. In the model, we adopt a generative
adversarial network (GAN) as a network framework, and a long short-term memory (LSTM) neural network
and a bi-directional long short-term memory (Bi-LSTM) as the basic modules. We use the LSTM instead of
a fully-connected layer in the GAN to extract the potential information in the logging data depth domain.
We complete the logging data missing values through an encoding-decoding structure that includes the Bi-
LSTM. In addition, the generator module also uses multiscale convolution to fully extract the logging data
features. We use logging data random missing values and consecutive missing values to simulate a field
data acquisition environment and threshold control to simulate a laboratory processing environment for
experiments. The experimental results show that the coefficient of determination (R2) of the GAN-LSTM
model reaches 0.906 when 30% of random logging data are missing and 0.851 when 30% of consecutive
logging data are missing. The effect of the model proposed in this paper is significantly higher than the
commonly used random forest (RF), sequence to sequence (seq2seq) and generative adversarial interpolation
network (GAIN) models.

INDEX TERMS Logging data, missing value, GAN, LSTM, GAIN, GAN-LSTM.

I. INTRODUCTION
High-quality and high-integrity logging data are the
prerequisite and basis for geological work such as lithology
identification. In the process of geophysical logging data
collection, due to the objective natural environment and
subjective human operations, problems such as incomplete
logging data collection, data omission, and random loss
are often caused. To complement the missing logging data,
conventional methods of analysis and comparison can
be used. These methods use existing complete logging
curve data to establish a geophysical model of logging
data and stratum lithology based on geological and rock
geophysical properties to directly fill in the missing data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nazar Zaki .

These methods have strong theoretical basis and strong
pertinence, and are widely used in actual production [1]–[3].
However, the theoretical basis of these methods is based
on an extreme simplification of an underground geological
environment, which is very hypothetical. When staff are
faced with different geological environments, the effect
is often unsatisfactory. Additionally, the choice of model
parameters is highly subjective. This is manifested in the
fact that when facing the same problem, different workers
using the same model may have different understandings of
the geological conditions and choose different parameters,
leading to different complement results.

Another effective method is based on statistics. This type
of method uses the principles of statistics, such as regression
algorithms, to find the internal relationships and overall
characteristics of logging data, and complete a prediction of
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the missing logging data. For example, Fan et al.. used a
ridge regression method (RRM) for logging acoustic curves
and achieved high accuracy [4]. However, the relationship
between logging data and formation lithology is not a
simple linear mapping, but a complex nonlinear relationship.
In recent years, many scholars have tried to use data-driven
machine learning methods to characterize the relationship
between logging data and formation lithology. Cheng et al..
used a combination of principal component analysis and
support vectors to establish a nonlinear relationship between
logging curves and reservoir permeability [5]. Shi et al.
successfully used multiple regression analysis (MRA), a
backpropagation neural network (BPNN), and a support
vector machine (SVM) to model earth science data [6].
Ibrahim et al.. used an SVM and random forest (RF)
to reconstruct a gamma logging curve. The experimental
results show that both the SVM and RF-produced models
were able to predict the gamma ray (GR) log with high
accuracies, and the SVM predicted the natural GR log with
R2 and AAPE values of 0.98, and 1.42%, respectively [7].
Garcia A P et al. strengthened the rock attribute evaluation
of the missing data wells, and reconstructed the missing
logging data through machine learning and supervised
neural networks. The reconstructed well logs agreed with
the actual measurements with relative errors of less
than 10% [8].

In recent years, deep learning has been widely used in
various fields and has achieved better results than traditional
machine learning methods [9]–[11]. Deep learning can learn
extremely complex multi-layer neural networks and build
multiple hidden layers between the input and output layers to
extract high-dimensional features of the data for complex and
nonlinear modeling [12]–[15]. Deep learning methods are
very good at constructing complex nonlinear relationships,
and they are used by many scholars in the completion
of logging data. For example, Mo etal. used a genetic
neural network (GNN), which is better than a traditional
back propagation neural network (BPNN), to reconstruct
a logging curve [16]. Zhang et al.. proposed a cascade
system based on long short-term memory (LSTM) neural
networks. Testing using real well log data shows that the
results from the LSTM neural network are of higher accuracy
than those of a traditional fully-connected neural network
(FCNN) [17]. Rolon et al.. uses a generalized regression
neural network (GRNN) to generate artificial logging curves,
and, compared with the results of an MRA, the network has
higher accuracy [18]. Alizedel et al. uses artificial neural
network and cluster analysis technology (CA) to successfully
establish a model between logging data and organic carbon
(TOC) [19].

Logging data not only has horizontal spatial characteristics
but also has vertical time series characteristics [20]. Although
most deep learning models can learn the distribution of the
original data and characterize the spatial characteristics of
the data when they are used for logging data completion, it is
easy to ignore the longitudinal correlation and change trend

of the logging data [21]–[23]. The result is simple, isolated,
and lacks the geological significance of the continuity of
the underground horizon. A recurrent neural network (RNN)
uses previous data and information to comprehensively
process current tasks [24]. As a special RNN, an LSTM
network can not only process the prior and subsequent
data information but also avoid the problem of gradient
explosion or disappearance as the sequence increases by
using a gated recurrent unit [25], [26]. This feature is
very suitable for processing long-sequence logging data
that needs to be compared with prior and subsequent
information [27]–[29]. A bi-directional long short-term
memory (Bi-LSTM) combines a forward LSTM network
with a backward LSTM network, making it more suitable for
long-sequence data. Khan et al. use multilayer bi-directional
long short-term memory (MBD-LSTM) to extract features
of Mitochondrial proteins of Plasmodium falciparum. The
identification rate of Plasmodium mitochondrial proteins
using this model is as high as 99.5% [30]. A generative
adversarial network (GAN) provides us with a tolerant
framework. Theoretically, all the differentiable functions can
construct the generating and discriminating modules of a
GAN framework. This paper proposes a GAN-LSTM model
for the completion of logging data from the perspective
of spatial and temporal characteristics. In the generator,
we use a codec structure to obtain the low-dimensional
representative features of the logging data [31]. In the encoder
of the generator, we abandon the fully-connected (FC) layer
and replace it with Bi-LSTM to strengthen the potential
connection between the missing data and the logging data
of the upper and lower horizon. We trained and tested the
model using the data of 170 wells. The performance of the
model proposed in this article is better than a RF, sequence
to sequence (Seq2seq) model, and generative adversarial
interpolation network (GAIN) in random missing data and
consecutive missing data completion experiments.

II. PRINCIPLE OF MODELS
A. MULTISCALE CONVOLUTION MODULE
When we use the deep learning method to complete the
logging data, the missing rate of a certain logging curve data
is too large, and it can be directly discarded. If we forcibly
complete, the obtained complete data features may introduce
noise data, which will affect the final result and subsequent
work.

In the GAN generator, we use a multiscale convolution
module to extract the spatial features of the logging data.
In the convolution operation, different convolution kernels
have different receptive fields, and the features of the
extracted data are also different. The large-scale convolution
kernel is suitable for extracting global information, and the
small-scale convolution kernel is suitable for extracting local
information. The features of the logging data extracted in
this way aremore comprehensive. Themultiscale convolution
structure is shown in Fig. 1.
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FIGURE 1. Two types of cyclic neural network calculation diagrams. The
multiscale convolution adopted by MC-GAN-BiLSTM has three channels.
The first convolution of each channel uses a 1 × 1 convolution kernel. The
second channel adds a 3 × 3 convolution kernel, and the third channel
adds two 3 × 3 convolution kernels.

B. BiLSTM MODULE
An RNN mainly processes sequence-based data, traversing
all recurrent units in a recursive manner along the direction of
the sequence. An RNN is used to process data with temporal
characteristics, such as natural speech sequence processing,
speech image processing, and machine translation. As a
neural network with short-term memory, an RNN has two
major characteristics. First, an RNN can not only receive
the current self-information but also the information from
the previous time point. Second, an RNN uses the same
parameters at all times to realize parameter sharing in the
time dimension, as presented in Fig. 2(a). At time t , assuming
that the network input is xt , the state of current hidden layer
ht is not only related to input xt at the current time but also
related to the hidden state ht−1 at the previous time. They are
calculated using Eq. (1) and Eq. (2).

ht = f (Uxt +Wht−1 + b) (1)

ot = Vht + c (2)

where f is an activation function, ot is the output value of the
current layer, U ,W , and V are weight coefficients, and b and
c are bias terms.

An RNN can only predict the output of the next time
point based on the timing information of the previous
time point. However, the predicted value to be output may
depend on the entire input sequence in the application of
logging data completion. It requires that the current output
is not only related to the previous state but also has some
relationship with the future state. A bi-directional recurrent
neural network (BRNN) can satisfy such needs. In the design
of a BRNN, at time t , the input will pass the data in two
directions to a hidden layer neuron. The neuron will calculate

the deep-level feature information from the forward and
reverse directions. The calculated result represents the ‘‘past’’
and ‘‘future’’ information, and the BRNN combines them to
yield an output result, as presented in Fig. 2(b). The values
are calculated using Eq. (3), Eq. (4) and Eq. (5).

ht = f (U1xt +W1ht−1 + b1) (3)

gt = f (U2xt +W2gt−1 + b2) (4)

ot = V1ht + V2gt + c (5)

where f is an activation function, ht is the current forward
hidden layer state, gt is the current reverse hidden layer
state, ot is the current layer output value, U1, W1, and V1
are the weight coefficients of the forward cyclic network,
U2, W2, and V2 are the weight coefficients of the reverse
cyclic network, and b1, b2, and c are the corresponding bias
terms. From the perspective of ‘‘time’’ order, a BRNN has
two states: one is passed from the beginning of the sequence
back with time; the other is passed from the end of the
sequence forward with time. As a result, the output can
benefit from past data-related features as well as future data-
related features. In general, a BRNN’s structure allows the
output unit to have the data feature constraints of the past and
future sequences at the same time, and it can also maintain the
sensitivity of the current data-related features. Additionally,
when aBRNNevaluates the state of the current input data, it is
not necessary to expand the scope of input in order to increase
the overall control. However, whether it is an RNN or BRNN,
when long-term tasks are involved, the gradient decreases
exponentially with the corresponding calculation, or even
disappears. This ultimately causes the weight to update
slowly, and the model performance decreases. In practical
applications, a gating system is usually used to solve the
problem of gradient disappearance in an RNN. LSTM is the
most typical gating system, and its exploded view is presented
in Fig. 2.

LSTM controls the flow of the history and current
information through a forget gate, input gate, output gate and
cell state. State C is like dealing with a ‘‘fast car’’ on a high-
speed channel, which only runs in the channel and rarely
interacts with the hidden unit of the recurrent neural network.
Then it is relatively easy for state C to maintain smooth
fluctuations in a long-time scale, as shown in Fig. 3(a). State
C passes through the discriminative control of the door, and
transmits the original information state ht to itself by adding
or removing, as shown in Figure 4-6(b) The forget gate
controls the degree of forgetting previous cell states, as shown
in Fig. 3(a)-Fig. 3(f). The first gate is called the forget gate,
which discriminates the information that the system should
discard from the original cell state, see Fig. 3(c) and Eqn. (6).

ft = σ
(
W f · [ht−1, xt ]+ bf

)
(6)

For the status update, see Figure 3(d) and Figure 3(e). The
process of updating from Ct−1 to Ct determines what new
content is delivered to the state. For Figure 3(d), the input
is still the accumulation state ht−1 of the hidden unit of the
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FIGURE 2. Two types of cyclic neural network calculation diagrams. The bi-directional neural network (BRNN) has two states from the perspective of
‘‘time’’. First is from the beginning of the sequence going backward with time. The second is from the end of the sequence going forward with time.
Then, the output can benefit from past data-related features as well as data-related features from the future.

FIGURE 3. Exploded view of LSTM.

recurrent neural network and the current data sequence input
xt is then divided into two parts of calculation. The first
part, similar to the previous forget gate, uses the sigmoid
neural network layer to determine the updated content, and
the output is it ; the second part uses the tanh function layer
to create a new candidate value vector C̃t . The operating
calculations of it and C̃t are as follows:

it = σ (W i · [ht−1, xt ]+ bi) (7)

C̃t = tanh (W cxt + Ucht−1 + bc) (8)

Finally, the LSTMmerges the product of the updated content
it of the current input information and the candidate value C̃t .
The specific calculation diagram is shown in Figure 3(e), and
the calculation is as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

where C̃t is the candidate information of the current depth.
It is multiplied by the input gate state it to determine which
new information is updated to the cell state. The output gate
determines the information that is output from the cell state
at the current depth, see Fig. 3(f) and Eqn. (10), Eqn. (11).

ot = σ (Woxt + Uoht−1 + bo) (10)

ht = ot � tanh (Ct) (11)

where xt is the input to the current LSTM unit, ht is the
hidden state of the output of the current LSTM unit, W f ,
U f , W i, U i, Wo, Uo, W c, and Uc are the weight matrices
of each structure, bf , bi, bo, bc are corresponding bias terms,
σ is a sigmoid function, and � is the corresponding element
multiplication.

In general, ordinary neurons can only extract data features
from the past and current inputs to evaluate the current
state. In the process of logging data completion, many
current predictions need to rely on the input sequence of
the overall logging signal data. For example, when logging
data are consecutively missing due to the different logging
signal characteristics of different formations, the logging data
characteristics of the formation boundary not only depend on
the logging data of the previous layer but also the analysis and
comparison of the logging data from the next layer or even
the overall logging data. If the current data changes are not
obvious or abnormal (including unreasonable data processing
in the previous period, such as data distortion and other
reasons), it may be necessary to expand the data area forward
(into the future) or backward (into the past) for identification.
An ordinary RNN cannot do this, which brings us to a BRNN.
For the problem of vanishing or exploding gradients, LSTM
can solve this problem. Therefore, we use Bi-LSTM based
on LSTM as the basic module to be introduced into the entire
logging data completion framework.

C. NETWORK FRAMEWORK GAN AND GAIN
A GAN is a deep learning architecture based on game
theory. Since end-to-end training can be performed in the
neural network, it can learn the potential distribution of
training samples. In the case of fewer artificial priors,
it can use random noise to generate ‘‘real’’ samples, and
finally generate usable data. Compared with other generation
algorithms, a GAN has obvious advantages. It can generate
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samples in parallel and can be flexibly combined with other
networks, such as a CNN or RNN.

The structure of a GAN is composed of two parts:
a generator and discriminator. The generator is used to
synthesize simulated samples that are almost the same
as real samples. The discriminator is used to determine
whether a sample comes from the real world or was
generated by simulation. The function of the generator
is to generate samples that ‘‘mix the spurious with the
genuine’’, which makes it difficult for the discriminator to
distinguish. The function of the discriminator is to distinguish
between synthetic samples and real samples. The purpose
of the generator and the discriminator is opposite and there
is a contradictory relationship. By putting two mutually-
independent models together for synchronous training, the
simulated samples generated by the generator will be more
realistic, and the discriminator will make more accurate
judgments of the samples.

Specifically, the generator and discriminator are both
functions in nature. The generator is responsible for capturing
the distribution of sample data and mapping it to a new
data space with a noise vector z that obeys a uniform or
Gaussian distribution. Finally, it tries to generate simulated
samples G(z) that obey the distribution of real data G(z). The
discriminator takes simulated sampleG(z) or real sample x as
input, and the output is a scalar, representing the probability
that the input sample is a real sample. The optimization goals
of a GAN are as follows:

min
G
max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1− D(G(z)))] (12)

where x is the real sample, z is random noise, pdata is the
real data distribution, and pz is the noise data distribution.
The GAN optimization problem is a maximum and minimum
problem. First, we need to define a priori input noise
distribution pz(z). During the model learning process, the
discriminator should try to improve the prediction accuracy of
the discriminant generated samples, and the generator should
try to reduce the optimal performance of the discriminator.
When the optimal performance of the discriminator reaches
the lowest, the generator distribution pg is closest to the
real data distribution pdata at this moment. The process and
structure of a GAN is presented in Fig. 4:

The GAIN network was proposed by Yoon etal. [32] in
2018. A GAIN is similar to the GAN model, and it is also
composed of a generator and a discriminator. The difference
from a GAN is that a GAIN has no special requirements for
input data. A GAIN does not need complete data as the input
to the model, and directly uses missing data that needs to be
completed, as shown in Fig. 5.

Generally, the input data to a GAN is random noise,
while the input to a GAIN is data that needs to be
completed. The discriminator of a GAN model mainly
discriminates the authenticity of a sample, while the
discriminator of a GAINmodel discriminates the authenticity

FIGURE 4. The process and structure of a GAN.

FIGURE 5. The structure of a GAIN. The structure diagram comes from
reference [32].

of each element in the sample. Specifically, the missing data
are converted into three different forms as input data. First,
the GAIN fills in the missing data with 0, and combines the
original data to form a Data matrix. Second, the GAIN fills
in the original data with 0, and fills in the missing data with
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random data to generate a Randommatrix. Finally, the GAIN
replaces the original data with 1 and the missing data with
0 to generate a Mask matrix that records the location of the
missing data. The above three matrices are used as inputs
to the generator. The output of the generator is the Imputed
Matrix of the GAIN model. Additionally, the Mask matrix
is transformed into a Hint matrix through a Hint generator.
The Hint matrix combines the Imputed Matrix output from
the generator as the input to the discriminator. The output
of the discriminator is also a matrix, and the value of each
element of the matrix represents the probability of missing
data. The model calculates the error between the input of
the generator and the initial completion matrix, which is
also called reconstruction error. The reconstruction error, the
input to the discriminator and the Mask matrix are used to
calculate the cross entropy, and this cross entropy is used
as the loss function of the model. Finally, the generator and
the discriminator are updated iteratively by backpropagation
until the network converges. At this time, the performance of
the generator and the discriminator has reached a relatively
optimal level. The generator can complete the missing data,
and the result of the completion is close to the real data.

D. NETWORK FRAMEWORK MC-GAN-BiLSTM
In a traditional GAN and GAIN, the generator and
discriminator use an FCNN. The generator of the MC-GAN-
BiLSTM is realized by a self-encoder which consists of
an encoder and a decoder. Before input, we use multiscale
convolution to fully extract the spatial features of the
logging data. In addition, logging data are the response of
underground lithology. The formation and lithology of an oil
field are related to the depositional cycle. The depositional
cycle is caused by periodic changes in the global sea level.
Specifically, a depositional cycle affects the deposition and
the deposition conditions that allows them to be repeated in
the same order and deposited into a sequence. Therefore,
a depositional cycle has the characteristics of alternating
lithology. As a response to lithology, logging data also has
a similar trend. This trend leads to the data that needs to be
completed not only being related to the overall characteristics
of the input sequence but also related to the top (past
information) and bottom (future information) logging data of
the missing data. From a geological point of view, missing
lithology data are not only related to the entire sedimentary
environment but also related to the upper and lower contact
lithology of the strata. Therefore, we used a Bi-LSTM
network that can extract past information, future information,
and overall information as the basic module of the model.
The encoder of the MC-GAN-BiLSTM adopts a Bi-LSTM
model, which can establish the potential connection between
a missing value and the logging value of the upper and lower
formations. It compresses the input missing logging data into
a low-dimensional intermediate vector z. The decoder uses
the LSTM model to obtain the generated complete logging
data by decoding z. The discriminator is composed of an
LSTM cyclic layer and a fully-connected layer, and its input

FIGURE 6. Network structure diagram of the MC-GAN-BiLSTM logging
curve completion model.

includes two types: generated complete logging data and real
complete logging data. Through the loop layer and the fully-
connected layer, the discriminator maps the input to a one-
dimensional vector, and obtains the probability value that the
input data are ‘‘true’’. When the generator and discriminator
reach a balanced state, the model training is completed. The
network structure of the MC-GAN-BiLSTM logging curve
completion model is presented in Fig. 6.

The methodology implemented in this research is shown in
Fig. 7. First, due to the different measurement methods, the
dimensions of each type of logging data are also different.
Unifying the dimensions of the logging data facilitates the
joint input of data. Second, according to the content of the
experiment, we generated two sets of 5 different test sets,
which represented different missing rates. Finally, we use
an RF, sequence to sequence Seq2seq, GAIN and the MC-
GAN-BiLSTM to analyze and compare the results of each
experiment. Through 10 different missing rate experiments,
we determined the maximum missing rate of each model
when dealing with different types of missing data.

III. MC-GAN-BiLSTM LOGGING DATA
COMPLETION PROCESS
The problem solved by a logging data complement method is
to complement the logging data of each well in the data set,
that is, to replace all missing values with reasonable logging
values, as presented in Fig. 5 of the estimated mask matrix.

When the MC-GAN-BiLSTM method complements
missing logging data, the first step is to determine the input
and output variables. First, we define the missing log data
and missing identification matrix.

X = (x1, x2, · · · , xt , · · · , xT ) ∈ RD×T (13)

M = (m1,m2, · · · ,mt , · · · ,mT ) ∈ RD×T (14)

xdt =

{
if xdt exist mdt = 1
if xdt does not exist mdt = none

xdt ∈ RD×T (15)

where xt is the logging value at sampling point t , xdt is the dth
logging value at sampling point t , mt is the missing identifier
at sampling point t , D is the dimension of the data, and T is
the length of the data. Therefore, the corresponding missing
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FIGURE 7. The framework of this research.

identification is:

M =


1 none 1 1
1 1 1 none

none 1 none 1
1 1 none none

 (16)

where 1 means data exists and none means data are missing.
So, the generated complete logging data and real and
complete logging data can be expressed as:

X ′ = (x ′1, x
′

2, · · · , x
′
T ) ∈ RD×T (17)

Y = (y1, y2, · · · , yT ) ∈ RD×T (18)

After determining the input and output variables, we use
the generator to generate simulation data from them. The
sum of the missing data and the noise vector z is used as
the generator input. Adding noise makes the input data and
the original data have a certain degree of difference to reduce
the over-fitting phenomenon in the process of generating data.
The input to the generator is mapped to a low-dimensional
semantic encoding vector c through the encoder. The task of
the decoder is to reconstruct vector c into complete logging
data X ′ and obtain a complete logging sequence.
The loss function of the generator includes two parts: the

discrimination loss that makes the discriminator misjudgment
and the reconstruction loss that reconstructs the original data.
The generator loss is presented in Eq. (19):

Gloss = −(1− λ)D(G(X + z))

+λ ‖M � ((G(X + z)− X)‖2 (19)

where λ is a coefficient of reconstruction loss and ‖·‖2 is the
L2 norm.
We use the discriminator to distinguish the authenticity of

the data. The real samples Y and the generated samplesX ′ are

input into the discriminator. The discriminator is composed
of an LSTM cyclic layer and a fully-connected layer. The
cyclic layer is responsible for processing the real or generated
logging data and obtaining the historical memory vector from
the sample data. The fully-connected layermaps the historical
memory vector into a one-dimensional output and uses a
Sigmoid function to calculate the probability that the input
data are ‘‘true’’. The training goal of the discriminator is
to recognize the real samples as ‘‘true’’ and the generated
samples as ‘‘false’’ as much as possible. The discriminator
loss function is:

Dloss = −D(Y )+ D(G(X + z)) (20)

Finally, we optimize the objective function to obtain
complementary data through iteration. The generator and the
discriminator have opposite goals and oppose each other.
In the optimization process of iterative training, the overall
performance of the model continues to improve until it
reaches a balance. The distribution of the simulated sampleX ′

generated at this time is sufficiently close to the distribution of
the real sample Y . We replace missing values with generated
values to obtain the completed data Y .

Ŷ = Y �M + (1−M)� X ′ (21)

IV. DATA PREPARATION, EVALUATION INDEX, AND
PARAMETER ADJUSTMENT
A. DATA PREPARATION
The study area is the Jing’an Oilfield Dalugou II, located
in the north central Shanbei Slope Basin, and the overall
monoclinic structure is west-inclined at an angle less than 1◦.
The structure in the area is relatively simple, with only a few
faults and folds developed, and the distribution of wells is
shown in Fig. 8.
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FIGURE 8. Drilling distribution in the study area.

FIGURE 9. Seven types of logging data.

During the logging phase in the study area, four types
of logging curves of spontaneous potential (SP), natural
gamma ray (GR), acoustic time difference (AC) and true
resistivity (RT) were recorded. There is a complex correlation
between these four curves. Physical parameters such as

porosity (POR), permeability (PERM) and water saturation
(SW) can also be expressed linearly by these logging data, as
in Fig. 9.

In the experiment, we build a model for these 7 types
of data to complement the 18 wells in the area that had
missing logging curves. We used the missing rate to represent
the proportion of missing values in the input data, which is
expressed by Eq. (24).

Missing Rate =

T∑
t=1

D∑
d=1

1− mdt

T × D
(22)

where mdt is the missing identifier of the dth type logging
value at sampling point t , D is the dimension of the data, that
is the type of curve, and T is the length of the data.

According to our statistics, 18 wells in the study area had
missing data, and the missing rate was approximately 5-40%.
We used the remaining 177 wells with complete logging
curves as standard data to establish a complementary model.
Among them, 150 wells were used as the training set, and
30% of the data was randomly discarded. Under the guidance
of the real data, the training model made the missing values
approach the known values. Twenty-seven wells were used as
the test set, and the discarding ratios were set to 10%, 20%,
30%, 40%, and 50%. According to the different discarding
ratios, two types of random deletion and consecutive deletion
in the actual logging data were simulated.

B. PERFORMANCE EVALUATION INDEX
The evaluation index of the model performance adopts
the root mean square error (RMSE) and coefficient of
determination (R2). The RMSE reflects the difference
between the complement value and the true value, which
is calculated using Eq. (23). The R2 represents the degree
of fit between the complemented log curve and the original
curve, which is calculated in Eq. (24). To prevent themutation
data from adversely affecting the statistics of the completion
results, we also adopted the Mean Absolute Error (MAE),
which is calculated in Eq. (25) [33]. TheMAE is the deviation
between the complement value and the true measurement
value, and then the absolute value is taken and averaged. The
deviation is the absolute value, and there will be no positive
and negative offset, Therefore, the MAE can better reflect the
actual situation of the predicted value error [34].

RMSE =

√√√√√ T∑
t=1

(
yt − y′t

)2
T

(23)

R2 = 1−

T∑
t=1

(
yt − y′t

)2
T∑
t=1

(yt − ȳmiss)2
(24)

MAE =

T∑
t=1

∣∣(yt − y′t)∣∣
T

(25)
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FIGURE 10. Comparison chart of the relationship between parameters
and the RMSE. (a) is the learning rate, (b) is the number of hidden nodes,
(c) is the λ, and (d) is the number of iterations.

where yi is the real log value of the ith sampling point in
the missing section, y′i is the generated log value of the ith
sampling point in the missing section, and N is the total
number of sampling points in the missing section.

C. PARAMETER ADJUSTMENT
During the training process, the performance of the model
was optimized by adjusting various parameters. In this
process, the RMSE was used as the evaluation index.
According to the comparison of the parameters listed in
Fig. 10, when the learning rate is 0.001 and the number of
hidden layer nodes is 16, the RMSE is the lowest and the
model has the best performance. So, we set the number of
hidden layer nodes of the LSTM layer and the learning rate
to 16 and 0.001, respectively, and then adjusted the parameter
λ of the model. The completion effect under different λ
values is presented in Fig. 10(c). When the parameter is
close to 1 or 0, the completion effect is poor. This implies
that the two parts of the generator’s loss function are not
functioning as they should. When parameter λ is set to
0.3, the RMSE is the lowest and the completion effect is
the best. When the number of iterations is 400, the RMSE
basically stabilizes, as seen in Fig. 10(d). So, we set the
maximum number of iterations to 400. In summary, the
learning rate, the number of hidden nodes, the λ parameter,
and the number of iterations are set to 0.001, 16, 0.3, and 400,
respectively.

While optimizing the model parameters, we also adjusted
the parameters of the GAIN to be optimized. The GAIN
uses a traditional GAN framework, and both the generator
and discriminator use a fully-connected neural network.
In the following experiments, we use the GAIN model as a
reference to compare the effects of the model proposed in this
article.

TABLE 1. Model accuracy for random missing data completion.

V. ANALYSIS AND DISCUSSION OF THE
EXPERIMENTAL RESULTS
A. RANDOM MISSING DATA COMPLETION
EXPERIMENT
In this section, we use conventional RF and Seq2seq models,
a traditional GAIN, and the MC-GAN-BiLSTM to compare
their accuracies. In the study area, the lack of logging data is
mainly concentrated on the AC measurement. We combine
the four types of logging data, GR, SP, RT and AC,
and the three physical parameters, SO, POR and PERM,
as the data input to the model. The advantage is that
the joint multi-dimensional data have better constraints
on the model, and can increase the completion accuracy
of the model after training. For example, when the AC
data in the study area is severely missing, it may affect
the model to extract the characteristics of the AC data.
However, when we combine other logging data as input,
we can dilute the impact of the serious lack. In other words,
when a certain logging curve data are seriously missing,
we can rely on the other 6 logging data to complement
the seriously missing data. Compared with the input of
a single logging data type, the joint input increases the
dimensionality of the input data from 1 to 7 dimensions,
which increases the difficulty and cost of calculation.
However, we believe that the processing of 7-D data is within
an acceptable range compared with the dimensions of image
processing.

We focus on the AC measurements with a large range of
missing data in the study area. In this experiment, 27 wells
were selected as the test set, and the amount of deleted
data was controlled at 10%, 20%, 30%, 40%, and 50% by
randomly deleting measurement points. This can simulate
the real situation of field logging data loss. The performance
results of the four models on the test set are shown in
Table 1 and Fig. 11.
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FIGURE 11. Completion of random missing data for different evaluation indicators.

We compare the performance of the four models through
three evaluation indicators: the MAE, RMSE, and R2. The
smaller the value of the RMSE and MAE, the more accurate
the completion value, and the better the performance of the
model. The larger the R2 value, the better the fit between the
completed data and the real data. In general, the completion
results of the MC-GAN-BiLSTM are slightly better than the
other three models. The average values of the MAE and
RMSE are 0.189 and 0.295, respectively, which is lower
than the 0.36 and 0.417, 0.313 and 0.35, and 0.241 and
0.331 of the RF, Seq2seq and GAIN. The R2 average value
is 0.911, which is higher than the 0.813, 0.862, and 0.875 of
the RF, Seq2seq and GAIN. Specifically, when the random
missing rate is less than 40%, the R2 completion accuracy
is not much different. The three evaluation indicators are
all within an acceptable range except for the RF. When the
random missing rate exceeds 40%, the accuracy of the RF,
Seq2seq and GAIN decreases. The R2 of the RF is less
than 0.85. A large proportion of random data missing has
caused similar effects to consecutive missing data, which
brings difficulty to the model. For example, the RF ignores
the time series characteristics of the logging data, and the
completed data are only related to other data values at that
location. The RF lost the correlation of logging data from
the upper and lower formations. When large areas of data
are missing, the accuracy of completion decreases. The MC-
GAN-BiLSTM proposed in this paper can effectively extract
the spatial and temporal characteristics of the logging data.
When the missing rate increases, the MC-GAN-BiLSTM can
use the features of the intact data to ensure the accuracy of
completion. The specific completion effects of each model
are shown in Fig. 12.

Through the above experiments, we can count the missing
data in the model applications. When there is less randomly
missing data in the study area, we prefer a conventional
completion model. This is because the model is simple, and
the result will be more efficient within an acceptable range.
When the missing rate is large, the MC-GAN-BiLSTM is
used to ensure the accuracy of the completion

B. RANDOM MISSING DATA COMPLETION EXPERIMENT
We used the same four models to complete consecutive
missing data. Due to the consecutive lack of data, the models

FIGURE 12. Practical application of the MC-GAN-BiLSTM for random data
completion. (a) is a random missing data rate of 40% and (b) is a random
missing data rate of 50%.

lack the context of the data during the process of completion,
which makes the experiment in this section more challenging
than the random missing data completion experiment in
the previous section. The training set also uses 150 wells
with complete data, and each well also contains 7 types of
measurement data. The test set selects 27 wells to control the
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FIGURE 13. Completion of consecutive missing data for different evaluation indicators.

TABLE 2. Model accuracy of the consecutive missing data completion.

consecutive missing rate in the form of deletion at 10%, 20%,
30%, 40%, and 50%, which forms five test sets. We gradually
increase the missing rate and analyze the accuracy of the
model to determine the maximum missing rate for model
completion.

We also train the model according to the joint input of
7 types of data. The output results of the 27 wells in the
test set are shown in Table 2. Compared with the random
data missing completion experiments, the accuracy of the
consecutive data missing completion experiments decreased.
For example, in the GAN-LSMT’s random missing data
completion experiment with a missing rate of 30%, the
MAE is 0.3, the RMSE is 0.4, and the R2 is 0.85. In the
consecutive data missing and complete experiment, the MAE
is 0.17, the RMSE is 0.27, and the R2 is 0.92. When the
missing rate is less than 30%, compared with the real data,
the completion data of the four models have certain errors
in their details, as shown with the blue marker boxes in
Fig. 13(a). The trend of the curve shape has not changed
much, and it is within an acceptable range. As the missing
rate increases, the performance drops faster, as shown in
Fig. 10. When the missing rate increases to more than 40%,
the curve shape trend of the RF, Seq2seq and GAIN model

data completion changes greatly (Fig. (b)). When the missing
rate exceeds 50%, the curve shape trend of the GAIN-LSTM
data completion has also changed (Fig. (c)). At this time,
we should consider manual completion based on geological
data.

C. DISCUSSION OF THE EXPERIMENT
The ultimate goal of this experiment is to use an objective
and intelligent method to complement the missing logging
data as much as possible. In this paper, we use the MC-GAN-
BiLSTM model. The biggest advantage of the MC-GAN-
BiLSTM model is that not only the spatial characteristics of
logging data are used, but the RF and Seq2seq modules in
the model can effectively extract the timing characteristics
of the logging data. This advantage greatly increases the
performance of the model. In addition, we adopt a method
of the joint input of 7 types of data, which can effectively
improve the accuracy of all models. For example, when
the incomplete data are randomly missing, the accuracy
of the four methods involved in this article are all within
an acceptable range. Finally, we simulate the lack of real
data collected in the field through two types of test sets
with random deletion and consecutive deletion, so that
the experiment is more in line with the actual application
environment. Additionally, we gradually increase the missing
rate of the data, determine the application scope of the
model developed in this article according to the application
effect, and indirectly improve the efficiency of logging data
completion.

Although the MC-GAN-BiLSTM model proposed in this
article has achieved results, it also has shortcomings. First,
we use 7 types of data in a joint input methods. The method
of joint input helps to improve the performance of the model,
but it has strict data requirements. Although the logging data
of most oilfields in China contains the same data used in this
paper, a very small number of oilfields lack one ormore types.
Second, the model proposed in this paper requires a large
amount of complete data to train the model, which forces the
application of the model to be based on the completion of
logging work. Finally, because the input of the LSTMmodule
requires a certain amount of data space, the model is not
useful for the completion of real-time data from loggingwhile
drilling.
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FIGURE 14. Practical application of the MC-GAN-BiLSTM consecutive
random data completion. (a) is a consecutive missing data rate of 30%,
(b) is a consecutive missing data rate of 40%, and (c) is a consecutive
missing data rate of 50%.

VI. CONCLUSION
This paper proposes a new method of complementing
logging data based on a MC-GAN-BiLSTM. This method
combines the characteristics of a GAN module to learn the
distribution of real data and the advantages of an BiLSTM

module to process the time series. It can memorize the
trend of logging curve changes with depth and the spatial
correlation of logging data at different depths, which is
more in line with actual geological analysis experience
experiments. In addition, we use multiscale convolution
to fully extract the spatial features of the logging data.
Multiscale convolution combined with BiLSTM makes
the extracted features have spatiotemporal characteristics.
On this basis, we construct a log curve complement model,
using known values to complement the missing values of the
curve. The experimental results show that the completion
effect of the MC-GAN-BiLSTM method proposed in
this paper is better than the traditional GAIN method.
It can complete the missing part of the logging curve with
reasonable simulation values that are close to the real logging
data. This method provides certain guidance for researchers
and achieves the goal of reducing logging costs as much as
possible. However, due to the complexity of the underground
geological environment, when the missing rate of the curve
is large (>30%), it is difficult to accurately reflect the
missing section based only on the limited known logging
data, and there is a large deviation in the completion of this
method. For the 18 wells in the study area with missing data,
15 of them were complemented by the MC-GAN-BiLSTM
method, and logging data of 3 wells with a high missing rate
were discarded.
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