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ABSTRACT More than half of all commercial aircraft operation accidents could have been prevented by
executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce
overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning
system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal
dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial
flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity
at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that
outperforms existing approaches.

INDEX TERMS Decision support systems, hard landing prediction, machine learning, neural networks.

I. INTRODUCTION
Between 2008-2017, 49% of fatal accidents involving com-
mercial jet worldwide occurred during final approach and
landing, and this statistic has not changed in several
decades [1]. A considerable proportion of approach and land-
ing accidents/incidents involved runway excursions, which
has been identified as one of the top safety concerns shared
by EuropeanUnionAviation Safety Agency (EASA)member
states [2], as well as USNational Transportation Safety Board
and US Federal Aviation Administration [3].

According to EASA [2], there are several known precur-
sors to runway excursions during landing. These include
unstable approach, hard landing, abnormal attitude or bounce
at landing, aircraft lateral deviations at high speed on the
ground, and short rolling distance at landing. Some precur-
sors can occur in isolation, but they can also cause the other
precursors, with unstable approach being the predominant
one. Boeing reported that whilst only 3% of approaches in
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commercial aircraft operation met the criteria of an unstable
approach, 97% of them continued to landing rather than
executing a go-around [4]. A study conducted by Blajev and
Curtis [5] found that 83% of runway excursion accidents in
their 16-year analysis period could have been avoided by
a go-around decision. Therefore, making timely decision to
execute a go-around manoeuvre could therefore potentially
reduce the overall aviation industry accident rate [4].

A go-around occurs when the flight crew makes the deci-
sion not to continue an approach or a landing, and follows
procedures to conduct another approach or to divert to another
airport. Go-around decision can be made by either flight
crew members, and can be executed at any point from the
final approach fix point to wheels touching down on the
runway (but prior to activation of brakes, spoilers, or thrust
reversers). In addition to unstable approaches, traffic, blocked
runway, or adverse weather conditions are other reasons
for a go-around. Despite a clear policy and training on
go-around policies in most airlines, operational data show
that flight crew decision-making process in deciding for
a go-around could be influenced by many other factors.
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These include fatigue, flight schedule pressure, time pressure,
excessive a head-downwork, incorrect anticipation of aircraft
deceleration, visual illusions, organizational policy/culture,
inadequate training or practice, excessive confidence in the
ability to stabilize approach, and Crew Resource Manage-
ment issues [5]. It is for these reasons that on-board real-
time performance monitoring and alerting systems that could
assist the flight crew with the landing/go-around decision are
needed [5], [6].

Such on-board systems could utilize the huge and ever-
increasing amount of data collected from aircraft systems and
the exponential advances in machine learning methods and
artificial intelligence. EASA is anticipating a huge impact of
machine learning on aviation, including helping the crew to
take decisions in particular in high workload circumstances
(e.g. go-around, or diversion [7]. Artificial Intelligence in
aviation is considered one of the strategic priorities in the
European Plan for Aviation Safety 2020-2024 [8].

Under the hypothesis that a hard-landing (HL) occurrence
has precursors and, thus, it can be predicted, this paper
presents a cockpit deployable machine learning system to
predict hard landings considering the aircraft dynamics and
configuration. In particular, this paper evaluates three main
hypothesis. A primary hypothesis is to assess to what extend
HL can be predicted at DH for go-around recommenda-
tion from the analysis of the variables recorded from FMS.
A second hypothesis is to analyze if precursors are par-
ticular to aircraft types. A third hypothesis is to validate
if the variability on the aircraft state variables can provide
enough information to predict a HL regardless of the opera-
tional context (like environmental conditions and automation
factors).

II. RELATED WORK
Although there is a lot of work addressing the prediction of
flight landing incidents [9]–[12] and other unsafety situations
[13]–[16], the prediction of hard landing accidents have been
less researched. Furthermore, most of the existing works
focus on the prediction of HL for unmanned aerial vehicles
(UAV), which dynamical features and flying protocols are
completely different from the ones of commercial flights.

A Hard Landing (HL) is a phenomenon in which the air-
plane has an excessive impact on the ground at the moment
of landing. This impact is directly related to the vertical (or
normal) acceleration, therefore, HL can be defined as flights
where the vertical acceleration exceeds the limited value of
the aircraft type during the landing phase. A threshold on
such normal acceleration (Airbus uses vertical acceleration
> 2G at TouchDown, TD) triggersmaintenance requirement,
so that can be considered as a criterion for HL detection.

Under the former definition of HL, existing approaches for
HL prediction can be split into two groups: those based on a
classifier to discriminate flights with normal acceleration at
TD above a given threshold from other flights and those based
on a regressor that predicts the normal acceleration with the
aim of using this predicted value as the HL detector.

Classifiers can be categorized into machine learn-
ing and deep learning approaches. Machine learning
methods [17]–[19] apply a classifier to UAV flight data
recorded using the Quick Access Recorder (QAR) sampled
at a discrete set of heights that define the feature space. Most
methods [17], [19] use the values of variables describing
aircraft dynamics sampled between 9 and 2 meters before
TD. Others, like [18], use statistical descriptors (panel data)
of such variables also sampled at the very last meters before
TD. On one hand, it is not clear what is the capability of
these approaches to capture time-sequence dependencies that
variables might have across the approach phase. On the other
hand, the temporal window (9-2 meters before landing) used
for predictions in UAV flights might not be appropriate for
HL predictions in commercial flights. The approximate limit
altitude (known as Decision Height -DH-) in commercial
flights to decide a go around is 100 feet (38 meters). Thus,
regardless of their accuracy in predicting HL, these ML
methods are not applicable for commercial flights due to the
altitude range required.

Deep learning approaches are mainly based on Long Short-
Term Memory Recurrent Neural Network (LSTM) archi-
tectures. Proposed by [20], these networks are a variant of
Recurrent Neural Networks (RNN) [21] able to model long
term dependencies within temporal data. In particular, the
very recent work in [22] used the signals of 3 kinds of landing
related features (aircraft dynamics, atmospheric environment,
and pilot operations) as inputs to a LSTM network predicting
HL. Their comparison to classicmachine learning approaches
in terms of precision and recall of HL events of A320 flights
indicates a potentially higher performance in terms of HL
recall with 70%ofHL detectionwhile keepingwith a percent-
age (76%) of precision similar to the one obtained by classic
machine learning approaches. Despite the promising results,
we consider that the experimental design of [22] lacks in some
aspects for properly assessing the potential for deployment in
the cockpit. First, the test set used is balanced with almost
the same number of HL and non HL cases. However, in a real
situation, HL cases are rare events that represent only 3-4%
of flights. By balancing the test set, precision might be too
optimistic and, even unrealistic. In order to guarantee a useful
decision support system, the number of false alarms should be
properly estimated. Second, the authors conducted an analy-
sis that showed that the optimal temporal window for doing
predictions was between 10 and 2 seconds before landing.
This temporal window corresponds to heights between 164
and 13 feet, which are below the decision height (100 feet)
of commercial flights. Finally, the data only include a single
aircraft type (A320). Given that aircraft aerodynamics are
strongly related to aircraft design, the generalisation of the
approach remains unknown.

Regression approaches predicting normal acceleration are
also mostly based on deep learning LSTM strategies [23],
[24]. Both works use the values of a selection of QAR vari-
ables describing aircraft dynamics recorded at a time t to
predict the vertical acceleration at time t + 1. In order to
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accelerate the convergence of networks, there is a previous
selection of QAR variables using classic machine learning
feature selection methods (aerodynamic theory and correla-
tion analysis in the case of [23] and random forest followed by
Principal Component Analysis in the case of [24]). Thismight
be limiting the capability of the system for fully exploring
time dependencies and might discard discriminative features.
Although both works obtain accurate predictions with an
average Mean Squared Error (MSE) of the order of 10−3,
LSTM is not trained to predict the vertical acceleration at
TD at the next time interval after the current observation.
In fact, a recurrent network can only predict acceleration at
the immediate time interval from the current observation and
its capability for long term predictions is not clear. Since
HL depends on the values of such vertical acceleration in
a tight temporal window at the time of TD, this limits the
deployability of system in a cockpit.

A. CONTRIBUTIONS
This paper presents an analysis of approaches for early pre-
diction of hard-landing events in commercial flights. Unlike
previous works, experiments are designed to analyze to what
extendmethods can be deployable in the cockpit as go-around
recommendation systems. With this final goal, we contribute
to the following aspects:

1) Hybrid model with optimized net architecture. We
propose a hybrid approach that uses features modelling
temporal dependencies of aircraft variables as input to a
neural network with an optimized architecture. In order
to avoid any bias caused by a lack of convergence
of complex models (like LSTM), we use a standard
network and model potential temporal dependencies
associated with unstable approaches as the variability
of different types of aircraft variables at a selected
set of altitudes. The concatenation of such variability
for variables categorized into 4 main types (physical,
actuator, pilot operations and all of them) are the input
features of different architectures in order to determine
the optimal subset.

2) Exhaustive comparison to SoA in a large database
of commercial flights. Amain contribution compared
to existing works is that our models have been tested
and compared to SoA methods on a large database of
Flight Management System (FMS) recorded data of an
airline no longer in operation that includes 3 different
aircraft models (A319, A320, A321). Results show that
the optimal classification network when all variable
types are considered achieves an average recall of HL
events of 85% with a specificity of 75% in average,
which outperforms current LSTMmethods found in the
literature. Regarding regression networks, our hybrid
model performs similarly to LSMT methods with an
average MSE of the order of 10−3 in accelerations
estimated at TD.

3) Analysis of the performance of classifiers and
regressors. With the final goal of developing a

cockpit deployable recommendation system we have
conducted a study of the performance of classification
and regression models in terms of the flight height
and different aircraft variables including the impact of
automation and pilot manoeuvres. Results on our large
dataset of commercial flights, show that although our
regression networks performs similarly to SoA meth-
ods (with MSE of 10−3 in estimations at TD), the accu-
racy for detecting HL is very poor (46% of sensitivity).
This indicates that regression models might not be the
most appropriate for the detection of HL events in a
cockpit deployable support system.

4) Sources of errors and capability for go-around rec-
ommendation. Unlike previous approaches, we anal-
yse the capability of networks for the detection of HL
before the decision height, as well as, the influence
of the operational context. We have also performed an
analysis of the sources of errors, including selection of
the best variable type, optimal altitude range used for
predictions, biases due to aircraft type and capability of
regressors for HL prediction.

The paper is organized as follows. Section 2 describes the
methodology, including the description of variables, analysis
of automation factors and network models. Section 3 reports
the experiments conducted to assess the performance of mod-
els and error analysis. Section 4 discusses the results obtained
and compares them to existing methods.

III. METHODS
A. DATASET DESCRIPTION
The authors have access to a large database of Flight Moni-
toring System (FMS) recorded data of an airline no longer in
operation. This database has the following information:
• Fleet: A319/A320/A321.
• Various airports.
• 377,446 flights.
• 370 parameters available at various sampling frequencies.
Several primary criteria were defined to limit the data to

what is considered meaningful for the hard landing predic-
tions and the evaluation of the 3 hypothesis posed in this
paper:
• All (A319/A320/A321).
• LHR - Heathrow Airport.
• Start of data: Final Approach Fix (FAF).
• End of data: 20 seconds after touch down.
• 58 parameters selected.
Heathrow airport was chosen as the sole airport to ease

flight comparison and training of ML. Moreover, aircraft
landing at Heathrow must follow a straight corridor further
easing the landing comparison. This drops the number of
available flights to 178,654. The data retrieved from the
FMS starts at the FAF defined as 3 minutes before touching
down and ends 20 seconds after touching down to capture
the maximum G, labelled maxG, at touch down. A binary
variable, labelled Wheel_on_Ground, was added to indicate
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the time of touch down when set to 1. Then, maxG was com-
puted as the maximum value of Normal_acc_g in a window
of +/− 5 seconds around Touch Down (TD) time as the
maximum time Wheel_on_Ground equals 1.

Parameters linked to characterizing unstable approaches
are selected for the study. These parameters are linked to the
aircraft dynamics (e.g. accelerations, rates, angle of attack),
the position relative to the runway (glideslope and localizer),
the aircraft configuration (landing gear state, control sur-
faces position) and the cockpit activity with the stick and
throttle inputs. This reduces the number of raw parameters
from 370 to 58. Additionally, dropouts and a significant
amount of noise and data quantisation were identified. The
poor data quality led to a reduction in the number of flights
to approximately 58,177. Flights with maxG higher than the
Mean plus 2x Standard Deviation of the normal acceleration
at TD are classified as HL. This defines the threshold at
1.4037g and 2673 flights are flagged as HL. This represents
approximately 4,6% of the total number of flights, which is
consistent with the numbers reported [25].

The selected dataset allows to validate the 3 hypothesis
posed in this paper. The temporal window always includes
the decision height in order to validate to what extend the
analysis of the aircraft dynamic state variables is enough for
a go-around recommendation. The inclusion of the 3 types of
aircraft allows to evaluate if HL precursors are particular to
aircraft types, which is the second hypothesis of the paper.
Finally, in order to validate the impact of environmental con-
ditions (third hypothesis) data did not included the weather
measurements rather its impact on the aircraft parameter
features.

The selected parameters were recorded at sampling fre-
quencies between 0.25 and 8 Hz. However, since pilots make
decisions according to altitude, we resampled all numerical
variables as a function of altitude. To do such a change of
variables, we used a linear interpolation of the values sampled
at the frequencies to obtain values sampled at a uniform
sampling of altitudes.

The final set of selected parameters were split into four
different categories: 1) actuators, linked to actuators states,
2) pilot, related to pilot activity in the cockpit, 3) physical,
as those parameters related to physical magnitudes as well as
other factors such as 4) automation factors, as those binary
parameters indicate whether an automatic system or guidance
is engaged. The final set of selected parameters is described
in Table 1. Aircraft weight is not listed, as the parameter was
deemed unreliable. Those parameters posteriori computed are
indicated in the description.

B. IMPACT OF AUTOMATION FACTORS IN HL
In order to explore the impact of automation in HL, the
correlation between maxG and the following pilot decision
making variables: autopilot, flight director, speed break, land-
ing gear, and autothrust is evaluated. Autopilot, autothrust
and flight director are computed as the last time/ altitude they
are engaged. Landing gear and speed break are computed as

the time/altitude they are first engaged. To better explore the
impact of the above factors in HL, the data has been split into
hard landing (labelled HL) and non-hard landing (labelled
NHL) events to detect any bias in the factors associated
with HL.

Figure 1 shows the boxplots for the factors grouped accord-
ing to their label. Notice that there are no significant differ-
ences between the values obtained in HL and NHL. Therefore
automation factors do not seem to have an impact on the
maxG and do not favour HL. Consequently, they will not be
included in prediction models.

C. HL PREDICTION MODELS
A hard landing (HL) is defined as an event where vertical
(or normal) acceleration exceeds a threshold value specific
to the airplane type during the landing phase. A threshold on
such normal acceleration (Airbus uses vertical acceleration
> 2G at touch down, TD) triggers maintenance requirement
and, thus, can be considered as a criterion for HL detection.
Under this criterion, a Machine Learning System (ML) for
HL prediction could be a classifier to discriminate flights with
normal acceleration at TD above a given threshold from other
flights. However, the values of the normal acceleration at
TD follow a continuous unimodal probabilistic distribution.
This fact also suggests using a regressor to predict the normal
acceleration at TD and use either its value or a threshold on
it as the HL predictor. In this work, we have considered both
approaches:

• Regressors: The dependent variable to be predicted is
the maximum normal acceleration (labelled maxG) at
TD. This variable is computed as the maximum value of
Normal_acc_g in a window of ±5 seconds around TD
time set as the maximum time Wheel_on_Ground = 1.

• Classifiers: We have considered a binary problem to
classify hard landing (labelled HL) from non-hard-
landing (labelledNHL). In our dataset flights withmaxG
> 1.4037 at TD are classified as HL.

For all ML methods (both regressors and classifiers)
the input features are the concatenation of the variability
of the continuous variables described in subsection III-A
at a discrete set of flight altitudes which include the
decision height, DH. The discrete sampling altitudes are
[1500, 1000, 500, 400, 300, 200, 150, 100, 50, 40, 30] and
the decision height was set to 100 feet. The lower altitude
of 30 feet was selected as the limit point the pilot can safely
avoid a HL event.

For each variable, the variability is computed as the
standard deviation in a temporal window of size 2w sec-
onds centred at each sampling altitude. If X (t) denotes a
time-dependant aircraft variable and ta is the first time that
the sampling altitude is achieved, then the variability at ta,
noted Xstd(ta) can be computed as the integral:

Xstd(ta) =
1
2w

∫ w

−w
(X (ta− t)− X )2 dt (1)
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TABLE 1. Set of selected parameters.

FIGURE 1. Impact of automation factors.

where X denotes the expected value in the temporal window:

X =
1
2w

∫ w

−w
X (ta− t) dt (2)

Since, according to subsection III-B, the automation fac-
tors did not have any impact on neither maxG values nor

HL, they were, thus, not considered in the training of the
models. In order to account for the difference in units and
magnitudes, variables were normalized to follow a Gaussian
normal distribution of 0 mean and standard deviation 1.
The normalization parameters were learned from the
training set.
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FIGURE 2. Altitude sampling.

TABLE 2. Network models.

In order to effectively deploy the ML in a cockpit as a
decision support system it is essential to obtain accurate pre-
dictions as soon as possible to deliver instructions at the most
appropriate time. In particular, methods should be able to
predict HL before the decision height, DH. In order to explore
the full capability of theML systems, as well as the capability
for early detection of HL, variables were categorised into 3
groups of altitude ranges:
• AP2TD Range: This includes all sampling altitudes,
from the beginning of the approach phase to touchdown.
Models trainedwith this set of altitudes set themaximum
accuracy that the system can achieve.

• AP2DH Range: This includes altitudes from the begin-
ning of the approach phase to the decision height: [1500,
1000, 500, 400, 300, 200, 150, 100]. Models trained
with this set of altitudes set the actual capability for HL
early detection and the usefulness of the system for a
go-around recommendation.

• DH2TD Range: This set includes altitudes from the
decision height to 30 feet before touchdown: [50, 40,
30]. Models trained with this altitude range will assess
the capability to predict HL just in time to safely avoid it.

Figure 2 shows the 3 ranges of altitude sampling. The range
from the beginning of the approach phase to the decision
height takes the sampling from 1500 to 100 meters, while the
sampling from decision height to touch down only contains 3
samples, although they are closer together. As well, the range
from approach phase to touch down is also considered.

A different network was trained for each variable category
(Physical, Actuator, Pilot) and range of altitudes (AP2TD,
AP2DH and DH2TD). We also trained a model having as
input the concatenation of the 3 categories. This model was
labelled as AllÂI. Table 2 reports the dimensionality of each
of the networks input features for the 9 models considered, as
well as the concatenation of all of them.

Regarding the neural networks architectures, several
configurations were explored. We considered the same
architectures for, both, the regressor and the classification
networks. For each case, we have implemented architectures
increasing dimensionality as well as architectures reducing it.

The number of layers was kept relatively low, since according
to the literature [23], very deep architectures do not signif-
icantly improve results. The number of neurons per layer
was varied from a low number to a large one (including
architectures with several neurons linked to the variable cat-
egory dimensionality, noted dim). Table 3 summarizes the
different architectures that have been considered, each vector
contains the number of neurons for each hidden layer of the
network together with the label that will be used, from now
on, to reference them.

For classification networks, we used a softmax activation
function for the output of the last layer, a cross-entropy loss
and a balanced class sampling for training. Meanwhile, for
regression networks, we used a linear activation function for
the output layer, the quadratic error as loss function and no
class balancing for training.

IV. EXPERIMENTS
A. EXPERIMENTAL DESIGN
The performance of the different approaches for detection
of HL events was assessed using sensitivity and specificity
measures, which are commonmetrics in classification assess-
ment. The sensitivity measures the capability of the system to
detect HL events, while the specificity measures the capabil-
ity for detection NHL.

Let us note TP the number of true positives (i.e.
HL correctly detected by the system), FP, the number of false
positives (NHL detected as HL by the IA system), TN the
number of true negatives (NHL detected by the system) and
FN the number of false negatives (HL missed by the system),
then sensitivity and specificity are given by equations in (3)
and (4).

Sensitivity =
TP

TP+ FN
(3)

Specificity =
TN

TN + FP
(4)

For regression models, we have considered the mean
squared error (MSE) of the predicted maxG:

MSE =
1
N

∑
i

(maxGi − m̂axGi)2 (5)

for m̂axGi the values of maxG predicted by the regressor for
the i-th sample of the test set, maxGi the true values of maxG
for the i-th test sample and N the size of the test set. Since a
sample is considered aHL if themaxG predicted by themodel
is above 1.4037, in order to assess to what extent a good
regression also ensures good detection of HL, the predicted
maxG was binarized with a threshold equal to 1.4037 to also
compute sensitivity and specificity.

For all models, the optimization of the loss functions was
done with the scaled conjugate gradient back-propagation
with default parameters sigma = 5e-5 and lambda = 5e-7.
The batch size was equal to the number of training samples
and training was stop if the performance gradient was below
1e-06 for 6 epochs.
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TABLE 3. Architecture of the neural networks.

We followed a 15-fold approach to split data into training
and test to allow statistical comparison of methods perfor-
mance. To account for data unbalancing, a different fold was
computed for each class and NHL train fold was randomly
sub-sampled to the size of the HL training fold set. The testing
fold was not altered to measure performance in a realistic
setting. The number of samples of each train fold is 6066
(half of them being HL cases) and the size of each test fold
is 3280 with around 100 being HL. For each score, confi-
dence intervals (CI) at 95% of confidence were computed in
order to detect significant differences. Significance in per-
formance across factors and methods was further assessed
using a Student t-test for paired data in case of pairwise
comparisons and an analysis of variance (ANOVA) in case of
multiple comparisons. A p-value under 0.01 was considered
significant.

The following experiments have been conducted:
1) Predictive Power of Models: Optimal architectures

were chosen as the ones that achieved better quality
scores (sensitivity, specificity for classifiers and MSE
for regressors) in training. The optimal regression neu-
ral network is compared to the optimal classification
nets in terms of sensitivity, specificity in testing.

2) Cockpit Deployable Potential: In order to assess to
what extent models can be effectively deployed in the
cockpit, we have analyzed their performance accord-
ing to the categorization of variables to determine the
minimum set of variables and according to the altitude
ranges to assess their capability for early detection of
HL and for recommending a go-around.

B. RESULTS
1) PREDICTIVE POWER OF MODELS
Boxplots in figures 3 and 4 show, respectively, sensitivity and
specificity for classification networks and boxplots in figure 5
show MSE for regression networks grouped according to
network architecture. We show a different boxplot for each
altitude range and variable type.

Visual analysis of the boxplots for sensitivity indicate that
all architectures seem to perform equally for models trained
using the 3 categories of variables for any altitude range.
For models trained using the concatenation of all variables,
Config5 and Config7 could perform worst for some models.
This is confirmed by an ANOVA test which detects a signifi-
cant lower sensitivity of Config5 and Config architectures for
all altitude ranges.

Visual analysis of the boxplots for specificity indicate
that all architectures seem to perform equally for models
seem to perform equally for models trained using the Pilot

and Actuator variables for any altitude range. ANOVA test
confirms this fact and the multicomparison for the remaining
cases show that Config1, Config3, Config4 and Config6 are
significantly worse in all altitude ranges when either Physical
or All variables are considered.

Visual analysis of the boxplots for MSE indicates that
Config6 and Config4 are the worst performers for most mod-
els (with the exception of AP2DH for Pilot variables and
DH2TD for Actuators), but Config5 and Config8 also show
limitations (for all models using DH2TD ranges and AP2TD
using Actuators). ANOVA detects a significant higher MSE
for Config6 in all cases, Config4 in AP2DH and DH2TD
ranges when Physical and All variables are used and, Config5
in DH2TD ranges and Config8 in DH2TD ranges when Pilot
and Physical variables are used. Although it is not significant,
Config7, Config2 and Config3 seem to have lower MSE for
all cases.

Tables 4 and 5 report, respectively, the confidence intervals
of sensitivity and specificity in testing data for Config6,
which is one of the best classification networks. The variable
categories correspond to columns, while the altitude ranges
correspond to rows. The average detection of HL events
reaches 85% when either physical or all variables are con-
sidered, with average specificity of 72%.

Table 6 reports MSE confidence intervals in the test set for
Config2, one of the best architectures for regression models.
Config7 achieves its optimal MSE when only physical vari-
ables are considered in the range DH2TD with average MSE
of 2.6 × 10−3. Like classification networks, an increasing
number of layers and neurons does not seem to improve
performance.

Tables 7 and 8 report confidence intervals for sensitivity
and specificity for a classification obtained by thresholding
the maxG estimated by Config2 regression network accord-
ing to the limit set for HL. In spite of an average MSE of
2.6 × 10−3, the sensitivity is quite low with an average of
46% at most.

2) COCKPIT DEPLOYABLE POTENTIAL
The analysis of Tables 4-6 indicates that the performance of
models (both, classifiers and regressors) depends on the type
of aircraft variable used to train models. Figure 6 show box-
plots for sensitivity and specificity for the classifier and MSE
for the regressor grouped according to the 4 types of variables.
For both approaches, we show results for models trained with
altitudes in the range AP2TD. Boxplots for sensitivity clearly
show a better performance of models trained with Physical
and All variables, while boxplots for specificity indicate a
worse performance of these variables. Finally, boxplots for
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FIGURE 3. Sensitivity for classification networks.

TABLE 4. Confidence intervals of sensitivity for the classification network with Config6 architecture.

TABLE 5. Confidence intervals of specificity for the classification network with Config6 architecture.

MSE indicate that actuators and pilot related variables per-
form worse.

According to ANOVA test, differences are clearly sig-
nificant for, both, sensitivity, specificity and MSE with

7496 VOLUME 10, 2022



D. Gil et al.: E-Pilots: System to Predict Hard Landing During Approach Phase of Commercial Flights

FIGURE 4. Specificity for classification networks.

TABLE 6. Confidence intervals of MSE for the regression network with Config2 architecture.

TABLE 7. Confidence intervals of sensitivity for regression neural network with Config2 architecture.

p-val < 0.01. A multi-comparison across variables detects
that Physical variables are the ones that have the highest

sensitivity for predicting HL, at the cost of a decrease
in specificity. Average differences for sensitivity are
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FIGURE 5. MSE for regression networks.

TABLE 8. Confidence intervals of specificity for regression neural network with Config2 architecture.

[6.97%, 14.36%] with only [−8.21%,−4.85%] drop in
specificity. Finally, in the case of regression, MSE Physical
variables perform better than Actuators and Pilot, which
do not have a significant difference in average errors. The
combination of all categories by straight concatenation of
features does not significantly improve the performance of
models trained with the Physical variables alone in any of the
approaches.

Regarding the impact of altitudes, boxplots for sensitivity
shown in Figure 7 do not present any clear difference in

performance across the 3 altitude ranges. However, ANOVA
was significant for both measures. A multi-comparison test
detected that, both, sensitivity and specificity for AP2DH and
AP2TD altitudes were comparable and significantly better
than the one obtained for DH2TD altitudes. The confidence
intervals for the differences in sensitivity and specificity
between AP2TD and DH2TD were, respectively, [10.03 %,
13.44%] and [7.32%, 9.45%]. This drop in sensitivity is not
unexpected given the dynamic nature of a landing and the
fact that a stable approach can quickly turn unstable due to
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FIGURE 6. Impact of variable type on performance.

FIGURE 7. Impact of altitude range on performance.

changes in environmental conditions close to TD (like sudden
tail win).

In the case of the regressor MSE, ANOVA detected sig-
nificant differences between the range AP2DH and the ones
that used data until TD. This indicates that regressors might
only accurately predict maxG if data close to TD is taken
into account. This together with their poor performance for
actually detecting HL events, discards regression models as
the approach to use in a cockpit deployable system for early
detection of HL.

V. DISCUSSION
A. COMPARISON TO EXISTING METHODS
We have compared our method when all variables are con-
sidered to the LSTM model of [22] and two typical models
(Support Vector Machine (SVM) and Logistic Regression
(LR)) also reported in [22].

We have re-trained from scratch LSTM, SVM and LR
in our data set using the variables and metrics proposed
in our study. Following the same procedure as in [22], we
build a LSTM network with one fully connected layer for
classification, and train it using 9 sampled seconds of data
from second 2 to 10 before TD. As there is no indication for
the values of hyperparameters in the aforementioned work,
we manually tuned the batch size and learning rates to 8
and 0.0001, respectively. We used an Adam optimizer and
train for 55 epochs. To be able to handle overfitting, at each
fold we divided the training set into training and validation
using 5% of training data, and saved the model only when the
validation loss decreases. As in the original study the authors

do not use any regularization term, we also avoided using
one.

We fine-tuned the number of neurons of the LSTM by
performing a 15-fold grid search over the same values as in
the mentioned study, [20, 30, 40, 50, 60], and obtain metric
values over the validation set. Finally, once we have selected
the best performing value, we perform 15 fold training for
the specific value and test it on the test set, obtaining the
definitive results. The SVM kernel was also optimized using
grid search. LR has not any hyperparameters.

Barplots in figure 8 graphically compare average speci-
ficity and sensitivity achieved by our method at the 3 ranges
of altitudes, the LSTM model of [22], SVM and LR. For the
AP2TD, AP2DH altitude ranges our method has a sensitivity
5% higher than the best performer LSTM. Regarding speci-
ficity, AP2TD, AP2DH have average precision 7.7% higher
than LSTM.

Regarding regression models, the MSE error achieved by
our model in training and testing is comparable to the one
obtained by the LSTM model reported in [23]. However,
in spite of an error in maxG estimation of 2.6 × 10−3 in
testing the regressor performs poorly in the detection of HL
events with a 46% sensitivity. Such poor performance, can be
attributed to two main issues. First, MSE is of the order of the
squared absolute error, so MSE = 2.6 × 10−3 corresponds
to a deviation in maxG predictions of

√
MSE = ±0.05.

Second, we have observed (as the plots in 9 illustrate) that
the regression error (residuals) is a decreasing function of
maxG. This implies that models are underestimating maxG
for the HL class and discourages us from using the prediction
of maxG to detect HL events.
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FIGURE 8. Accuracy results of different models.

B. IMPROVEMENTS
The proposed models only use the selected parameters on the
final approach (below 2000 ft above ground). Wind direction
and amplitude, the level of turbulence and the risk of gusts
can have a significant impact on the possibility of an unstable
approach resulting into a hard landing. The current analysis
capture some of these effects as the variability the aircraft
physical parameters are directly linked to the aforementioned
weather conditions. Low visibility conditions, such as fog,
and icing conditions can also impair the quality of the landing
thus increasing the risk of hard landings but they are not
considered in the study. The distance of flight has no specific
influence on the results but the quality of the approach before
reaching the final straight will have a significant impact.
The aircraft might not be correctly configured or still have a
significant level of energy to dissipate. This can be the result
of ATC commands such as delayed descent instructions.

Another issue to be considered is that models did not
include some key parameters that could have an impact in
predictions.

First, aircraft weight (mass) was missing in the study
because the aircraft mass dataset from the flight database
is unreliable. However, aircraft weight has several potential
impacts:
• The potential energy needed to be dissipated to land is
directly proportional to aircraft weight. In other words,

the heavier the aircraft, the more energy needs to be
dissipated to land at an acceptable speed and descent
rate.

• Similarly, the energy that the landing gear must dissipate
at TD is also proportional to the potential energy.

• The aircraft weight will have an impact on the aircraft
dynamics. The aircraft inertias are directly linked to the
aircraft weight. The aircraft centre of gravity is another
parameter impacting aircraft stability and controllability
and thus takeoff and landing performance. That is the
reason why an aircraft will have load planner as well
as in-flight centre of gravity target system with a trim
tank to maintain it within operational ranges. The more
forward the centre of gravity is, the higher the minimum
speed, the higher the landing speed. This is mitigated by
the presence of a stability augmentation system found
on aircraft such as the Airbus A320 studied herein. The
centre of gravity is not normally known but the weight is.

Secondly, the aircraft centre of gravity, or the point at
which the total weight of the aircraft is centred, is also a key
parameter in the vehicle stability and control margins calcu-
lation which can greatly impact aircraft take-off and landing
performance. Although commercial aircraft have trim-tank
with centre of gravity target systems, the centre of gravity can
vary within a range of certified positions within its airworthi-
ness requirements. Therefore, including the centre of gravity
and mass within the model could substantially improve the
accuracy of the hard landing prediction.

The machine learning approach can also be improved in
several aspects. Although results appear superior to existing
methods, our models would benefit from a more complex
analysis of temporal dependencies using a convolutional neu-
ral network to extract deep dependencies. The impact in
predictions of meteorological conditions affecting visibility
or aircraft aerodynamics should also be investigated to assess
the benefits of their incorporation into our models. Given that
the combination of all categories by straight concatenation
of features does not significantly improve the performance
of models trained with any single category, alternative archi-
tectures for their combination should be further investigated.
Finally, the percentage of HL due to condition changes at
TD should be determined to properly assess the capability of
systems for early prediction of HL.

Finally, for a cockpit-deployable machine learning sys-
tem to support flight crew go-around decision, some results
regarding the hardware and software requirements, especially
for the speed of networks should be investigated. Although
such aspects have not been directly addressed in the main
corpus of the work, given the size (number of parameters)
and nature of the models (fully connected models), we do
not expect any hardware or software constraints with regards
to latency in the deployment in a cockpit environment. The
deployment of fully connected networks is already available
even for low resource microcontrollers [26] and the latency
in such cases [27], and with similar models as ours, is below
50 ms o 1 s, which are our main sampling rates. Hence,
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FIGURE 9. Point clouds of MaxG against regression error for the different variable types.

deployment software and latency are not considered as strong
impediments for the future deployment in a cockpit.

VI. CONCLUSION
The following conclusions can be extracted from the analysis
carried out in this paper.

The analysis of automation factors (autopilot, flight direc-
tor and auto-thrust) suggests that these factors do not have any
influence on the probability of a HL event and, thus, it might
not be necessary to incorporate them into models.

Experiments for the optimization of architectures show
that the configurations that achieve higher sensitivity are the
ones with the lowest number of neurons. As reported in the
literature [23] increasing the number of layers and neurons
does not improve the performance of neither classifiers nor
regressors.

Models using only Physical variables achieve an average
recall of 94% with a specificity of 86% and outperform state-
of-the-art LSTM methods. This brings confidence into the
model for early prediction of HL in a cockpit deployable
system. Regarding capability for go-around recommendation
before DH, even if we perform better than existing methods,
there is a significant drop in recall and specificity due to the
dynamic nature of a landing approach and factors influencing
HL close to TD.

Comparing classifiers and regression approaches, exper-
iments show that a low MSE error in estimation of maxG
does not guarantee accurate HL predictions. Experiments
for assessing the capability of models for early detection of
HL show that classifiers are able to accurately predict HL
before DH. This is not the case of regressors, which predict
maxG more accurately if data close to TD is considered into
the model. The study suggests that classifiers are a better
approach for early prediction of hard landing.

Neural networks performance could be increased if they
were used to extract deep learning features from continuous
signals by using one dimensional convolutional networks
and different architectures for a better combination of the
three categories of variables. Also, models should incorporate
additional parameters such as aircraft mass and centre of
gravity positionwhich are known to impact vehicle dynamics.

Finally, there are some issues that have not been covered in
this work, that remain as future work, and should be further
developed. Among such cases, stand out the robustness of
the classifier (regressor) to unseen cases and its behavior
under a drifting data environment. In a safety demanding
environment as aviation, it surely be needed to investigate
such issues andwe expect to do in further works. In the future,
such a system could be expanded to also include Air Traffic
Management in which the information is shared with the Air
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Traffic Controller in order to anticipate the likely scenario and
optimize runway use.
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