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ABSTRACT Let G be an additive group of order v. A k-element subset D of G is called a (v, k, λ, t)-almost
difference set if the expressions g− h, for g and h in D, represent t of the non-identity elements in G exactly
λ times and every other non-identity element λ+ 1 times. Almost difference sets are highly sought after as
they can be used to produce functions with optimal nonlinearity, cyclic codes, and sequences with three-level
autocorrelation. A set of positive integers A is called a Golomb ruler if the difference between two distinct
elements of A are different. In this paper, we use Singer type Golomb rulers to construct new families of
almost difference sets. Additionally, we constructed 2-adesigns from these almost difference sets.

INDEX TERMS Almost difference set, difference set, Golomb ruler, t-adesigns.

I. INTRODUCTION
Difference sets are a well-known class of mathematical
objects used in the construction of designs and other com-
binatorial structures. A k-subset D in an additive group G
of order v is called a (v, k, λ) difference set DS (in G) if
δD(x) = λ for every nonzero element of G, where δD(x) is
the difference function defined by

δD(x) := |(D+ x) ∩ D|

and D+ x = {d + x : d ∈ D}.

The difference function counts the number of represen-
tations of x in the form di − dj with di, dj ∈ D, that is,
δD(x) = |{(di, dj) ∈ D× D : di − dj = x}|.
Many groups do not have DSs for any parameters k and λ,

but do have structures that are very close to DSs, which
motivates the following definition.

A k-element subset D in an additive group G of order v is
said to be a (v, k, λ, t)-almost difference set ADS (in G) if
δD(x) takes on the value λ altogether t times and λ + 1 alto-
gether v− t − 1 times as x ranges over G \ {0}. This is,

δD(x) = |(D+ x) ∩ D| = λ or λ+ 1,

for each x ∈ G \ {0}.
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Note that almost difference sets are a generalization of
difference sets (when t = 0 or t = v− 1). Moreover, for
an almost difference set D with parameters (v, k, λ, t), its
complement G \ D is also an almost difference set with
parameters (v, v − k, v − 2k + λ, t). An almost difference
set D is called abelian or cyclic if the group G is abelian or
cyclic, respectively. Almost all difference sets are interesting
combinatorial objects that have several applications in many
engineering areas. In coding theory, they can be employed,
to construct cyclic codes [13]. Additionally, in cryptography,
they can be used to construct functions with optimal nonlin-
earity [8], [11]. Finally, for CDMA communications, some
cyclic almost difference sets yield sequences with optimal
autocorrelation [1], [15], [16].

Different definitions of an almost difference set were
independently developed by Davis and Ding in the early
1990s [9], [11], [12]. Let G be an additive group of order
mn and N a subgroup of G of order n. A k-subset D in G is
called a (mn, n, k, λ1, λ2) divisible difference set DDS (in G)
provided that the difference function δD(x) defined above
takes on the value λ1 for each nonzero x ∈ N and takes on
the value λ2 for each nonzero x ∈ G \ N . That is, for each
x ∈ G \ {0},

δD(x) =

{
λ1, for x ∈ N ,

λ2, for x ∈ G \ N .
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If λ1 = 0, D is called a relative difference set RDS,
and N is called the forbidden subgroup. Davis [9] called a
divisible difference set an almost difference set in the case
where |λ1 − λ2| = 1. Davis defined this special class of
almost difference sets due to its relationship with symmetric
difference sets. Another kind of almost difference sets were
defined by Ding [11], [12] for the study of cryptographic
functions with optimal nonlinearity. He considered the cur-
rent definition when t = v−1

2 .
Number theoretic constraints can be applied to show that

some groups cannot contain ADSs with certain parame-
ters [32]. One example is that (v− 1)λ+ t = k(k − 1) must
hold for any ADS. Other criteria can be discovered by exam-
ining the quotient groups of the original group. Despite
the effectiveness of these techniques, no general existence
criterion is known to determine exactly which groups con-
tain ADSs [7]. Many known construction methods exist for
almost difference sets [1], [3], [14], [16]–[18], [32]. These
constructions come from: difference sets, cyclotomic classes
of finite fields, support of some functions, binary sequences
with three-level autocorrelation, or larger product group. For
a good survey of almost difference sets, the reader is referred
to [24].

A Golomb ruler is a set of integers A = {a1, a2, . . . , am}
with a1 < a2 < · · · < am, in which for each positive integer d
there exists at most one solution of the equation d = ai − aj,
where i > j, its number of elements is called order and the
largest distance between two elements of the ruler is called
length, denoted `(A), so

`(A) = maxA−minA = am − a1.

An example of a Golomb ruler A with order m = 13 and
length `(A) = 176 is the set

A = {0, 1, 3, 24, 41, 52, 57, 66, 70, 96, 102, 149, 164, 176}.

According to [5], the Golomb rulers were first discovered
byW.C. Babcock in 1950 when he investigated the intermod-
ulation distortion. However, Golomb rulers derive their name
from Professor Solomon W. Golomb, one of their greatest
pioneers.

These sets are important for their applications in differ-
ent fields, such as communications, fault-tolerant distributed
computing, and coding theory, see [2], [19], [21], [22], [27].
They have also been used to study combinatorial problems
such as sum product estimates, solvability of some equations,
see [6], [31], or in the field of extremal graph theory to study
the number ex(n,C4), see [10], [29], [30].

The concept of the Golomb ruler is invariant under linear
applications; if A = {a1, a2, . . . , am} is a Golomb ruler, then
the set

x · A+ y := {xa1 + y, x a2 + y, . . . , x am + y},

is a Golomb ruler, for all x, y ∈ Z, with x 6= 0. Thus, it is
possible to assume that the minimum value is a1 = 0 and the
length is am.

The fundamental problem in the study of theGolomb rulers
is to find the shortest rulers for a certain number of marks;
equivalently investigate the following function:

G(m) := min{`(A) : A is a Golomb ruler, |A| = m}.

A Golomb ruler of order m is optimal if it has the short-
est possible length. For example, {0, 4, 20, 30, 57, 59, 62, 76,
100, 111, 123, 136, 144, 145, 151} is an optimal Golomb
ruler with length 151 and G(15) = 151. Currently, there
are also optimal Golomb rulers where 2 ≤ m ≤ 27
marks [8], [14] and there is an ongoing search for an optimal
28-marks rule. For more on Golomb rulers, their generaliza-
tions, and applications, see [25], [26], and the references in
them.

In this paper, we use Singer type Golomb rulers (which
are difference sets with λ = 1, or almost difference set with
λ = 0 and t = 0) to construct new families of almost
difference sets. These constructions are new, as far as we are
aware of. The first construction yields (N/3, q, 2, 2(q − 1))-
ADSs in cyclic groups of order N/3, where N = q2 +
q + 1 and q ≡ 1 mod 3 is a prime power greater than 4.
This construction uses homomorphic projection. The second
construction is obtained by adding a new element to the
Golomb ruler and yields (q2 + q + 1, q + 2, 1, (q − 2)
(q+1))-ADSs in cyclic groups of order q2+q+1 for all prime
power q. The third construction is obtained by removing an
element of the Golomb ruler and yields (q2+q+1, q, 0, 2q)-
ADSs in cyclic groups of order q2 + q + 1 for all prime
power q. The latest constructions follow the idea proposed
in [1].

Another contribution of this paper is related to t-adesign,
which was defined in [14]. LetD = (P,B, I) be an incidence
structure with v ≥ 1 points and b ≥ 1 blocks, where every
block has size k . If every subset of t points of P is incident
with either λ or λ+1 blocks of B, thenD is called a t-(v, k, λ)
adesign, or simply t-adesign. A t-adesign is symmetric
if v = b. The set {D + g : g ∈ G} of translates
of D, denoted by Dev(D), is called the development of D.
The following lemma was established in [23] and pro-
vides a relationship between almost difference set and
t-adesign.
Lemma 1: Let D be a (v, k, λ) almost difference set in

an abelian group G. Then, (G,Dev(D)) is a 2-(v, k, λ)
adesign.

Using the above lemma and the almost difference sets
constructed in this paper, we give constructions of 2-adesigns.

The remainder of this paper is organized as follows.
In Section 2, we construct (N/3, q, 2, 2(q− 1)) almost differ-
ence sets in groups of order N/3, where N = q2 + q+ 1 and
q ≡ 1 mod 3 is a prime power greater than 4. Moreover,
we construct (q2 + q + 1, q + 2, 1, (q − 2)(q + 1)) and
(q2+q+1, q, 0, 2q) almost difference sets in groups of order
q2 + q + 1 for all prime power q. In Section 3, we present
constructions of 2-adesigns. Finally, Section 4 concludes the
paper.
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II. ALMOST DIFFERENCE SETS VIA SINGER TYPE
GOLOMB RULERS
In this section, we describe three new constructions of almost
difference sets from Singer type Golomb rulers. These con-
structions can generate infinitely many almost difference sets
in Zn for appropriate values of n. First, we present the formal
definition of a Golomb ruler.
Definition 1: Let G be an additive abelian group, and A be

a subset of G. A is a Golomb ruler in G if
δA(x) ≤ 1 for x 6= 0.

If G = ZN , then A is called a modular Golomb ruler.
From the definition, it is easy to verify that a modular

Golomb ruler is a (v, k, 0, t) almost difference set.
If A is a subset of the additive group G and n ∈ N, then

A mod n := {a mod n : a ∈ A};

A	 A := {a− b : a, b ∈ A, a 6= b};

A− x := {a− x : a ∈ A};

x − A := {x − a : a ∈ A}.

The following construction of modular Golomb ruler is
due to Singer [28]. He was not working on number theory
but on finite projective geometry when he found this con-
struction. Currently this construction can be described as
follows [4], [20].
Proposition 1: Let q be a prime power, θ be a primitive

element of the finite field Fq3 , α ∈ Fq3 be an element with
cubic minimal polynomial over Fq, and S = {logθ (α + u) :
u ∈ Fq}. Then

S0 = S mod (q2 + q+ 1) ∪ {0},
is a Golomb ruler in Zq2+q+1, with q+1 elements. Moreover,
S0 	 S0 = Zq2+q+1 \ {0}.
Remark 1: S0 is a (q2 + q+ 1, q+ 1, 1) difference set.
Example 1: Let q = 7. If θ is a root of the primitive

polynomial x3 + 4x2 + 4x + 4 over F7 and α = θ . Then

A = {θ + u : u ∈ Fq}
= {θ, θ + 1, θ + 2, θ + 3, θ + 4, θ + 5, θ + 6},

= {θ1, θ274, θ199, θ225, θ329, θ67, θ78}.

Taking the discrete logarithm of A in base θ yields the set

S = logθ A = {logθ (θ + u) : u ∈ Fq},
= {1, 274, 199, 225, 329, 67, 78}.

Reducing the elements of S modulo 57 gives the set

{1, 46, 28, 54, 44, 6, 21}.

Adding 0 to the above set and ordering its elements yields the
Golomb ruler {0, 1, 6, 21, 28, 44, 46, 54} in Z57.
Remark 2: The easiest way to work with these examples is

to use a computer.

A. CONSTRUCTION 1
The following theorem shows how to construct an almost
difference set from a Singer type Golomb ruler using homo-
morphic projection.

Theorem 1: For all prime power, q ≡ 1 mod 3 greater
than 4, there is a ( q

2
+q+1
3 , q, 2, 2(q− 1))-ADS.

Proof: According to Singer’s construction, for every
prime power q, there is a Golomb ruler S0 in Zq2+q+1, with
q+ 1 elements, particularly for q ≡ 1 mod 3.
Let ϕ : Zq2+q+1 → Z q2+q+1

3
be the homomorphism

defined by

ϕ(a) ≡ a mod
(
q2 + q+ 1

3

)
,

and D = ϕ(S0).
Note that, |D| = q; indeed, as q2+q+1

3 ∈ Zq2+q+1 \ {0} =
S0	S0 (see Remark 1), then there are two different elements
a and b in S0 such that a − b ≡ q2+q+1

3 mod (q2 + q + 1),

hence, a ≡ b mod ( q
2
+q+1
3 ), that is, ϕ(a) = ϕ(b). Note that

there is no other pair of elements c, d ∈ S0 such that c ≡ d
mod ( q

2
+q+1
3 ), because this contradicts the fact that S0 is a

Golomb ruler. Therefore, |D| = q.
Let S0 = {s1, s2, . . . , sq+1} with s1 ≡ s2 mod q2+q+1

3 ,
and let D = {d1, d2, . . . , dq}, where d1 = φ(s1) = φ(s2) and
di−1 = ϕ(si), for 3 ≤ i ≤ q+ 1.
Note that for each x ∈ Z q2+q+1

3
\ {0}, there are two distinct

elements x1 = x + q2+q+1
3 and x2 = x + 2

(
q2+q+1

3

)
in

Zq2+q+1 for which

ϕ(x) = ϕ(x1) = ϕ(x2). (1)

On the other hand, by (Remark 1) there are unique elements
si, sj, sk , sl, st and sr in S0 such that

x = si − sj, x1 = sk − sl, and x2 = st − sr ,

so, by (1)

ϕ(x) = ϕ(si)− ϕ(sj) = ϕ(sk )− ϕ(sl) = ϕ(st )− ϕ(sr ),

this is,

ϕ(x) = di − dj = dk − dl = dt − dr .

As ϕ(s1) = ϕ(s2) = d1 then for 3 ≤ j ≤ q+1, the 4(q−1)
pairwise distinct elements

s1 − sj, s2 − sj, sj − s1, sj − s2

satisfy that

ϕ(s1)− ϕ(sj) = ϕ(s2)− ϕ(sj) = d1 − dj, and

ϕ(sj)− ϕ(s1) = ϕ(sj)− ϕ(s2) = dj − d1,

therefore, there are 2(q− 1) distinct elements of Z q2+q+1
3

that

have two different representations as differences of elements
in D. The other q2−5q+4

2 elements of Z q2+q+1
3

can be written

in three different ways as differences of elements in D. Thus,
D is a ( q

2
+q+1
3 , q, 2, 2(q− 1))-ADS. �

Example 2: The set S = {0, 1, 6, 21, 28, 44, 46, 54} is
a Singer type Golomb ruler in Z57. Reducing the elements
of S modulo 57/3 = 19 gives the set {0, 1, 2, 6, 8, 9, 16},
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which is a (19, 7, 2, 12) almost difference set in Z19
by Theorem 1.
Example 3: The setS = {0, 1, 3, 24, 41, 52, 57, 66, 70, 96,

102, 149, 164, 176} is a Singer type Golomb ruler in Z183.
Reducing the elements of S modulo 183/3 = 61 gives the
set {0, 1, 3, 5, 9, 24, 27, 35, 41, 42, 52, 54, 57}, which is a
(61, 13, 2, 24) almost difference set in Z61 by Theorem 1.

B. CONSTRUCTION 2
The following proposition shows how to construct an almost
difference from a difference set by adding an element.
Proposition 2: Let D be a (v, v−14 ,

v−5
16 ) difference set in G,

and let d ∈ G \ D. If 2d cannot be written as the sum of two
distinct elements of D, then D ∪ {d} is a (v, v+34 ,

v−5
16 ,

v−1
2 )

almost difference set in G, see [1].
Using the same idea of Proposition 2, we obtain the fol-

lowing result.
Theorem 2: Let D be a (v, k, λ) difference set in G. If
1) g ∈ G \ D;
2) (g− D) ∩ (D− g) = ∅,
then D∪{g} is a (v, k+ 1, λ, v− 1− 2k) almost difference

set in G.
Proof: Let D = {d1, d2, . . . , dk}. If (g−D)∩ (D−g) =

∅, then 2g cannot be written as a sum of two distinct elements
of D; therefore

g− d1, g− d2, . . . , g− dk
d1 − g, d2 − g, . . . , dk − g

are 2k pairwise distinct elements. Because D is a (v, k, λ)
difference set, D ∪ {g} is a (v, k + 1, λ, v − 1 − 2k) almost
difference set. �
Corollary 1: There is a (q2+q+1, q+2, 1, (q−2)(q+1))-

ADS in Zq2+q+1, for all prime power q.
Proof: According to Singer’s construction, for every

prime power q, there is a Golomb ruler S0 in Zq2+q+1.
In particular, S0 is a (q2 + q + 1, q + 1, 1)-DS. Then, the
result follows applying Theorem 2 with a suitable element in
Zq2+q+1 \ S0. �
Example 4: The set D = {0, 1, 4, 6} is a Singer type

Golomb ruler in Z13. Since
1) 8 ∈ Z13 \ D;
2) 8− D = {2, 4, 7, 8};
3) D− 8 = {5, 6, 9, 11};
4) (8− D) ∩ (D− 8) = ∅.

Then, D ∪ {8} = {0, 1, 4, 6, 8}, is a (13, 5, 1, 4) almost
difference set in Z13 by Theorem 2.
Example 5: The set D = {0, 1, 11, 19, 26, 28} is a Singer

type Golomb ruler in Z31. Since
1) 17 ∈ Z31 \ D;
2) 17− D = {6, 16, 17, 20, 22, 29};
3) D− 17 = {2, 9, 11, 14, 15, 25};
4) (17− D) ∩ (D− 17) = ∅.

Then, D∪{17} = {0, 1, 11, 17, 19, 26, 28}, is a (31, 7, 1, 18)
almost difference set in Z31 by Theorem 2.

Remark 3: Two elements cannot be added to S0 in
Theorem 2 to obtain a (q2 + q + 1, q + 3, 1, t) almost
difference set. Indeed, let x1 and x2 be two distinct elements
in Zq2+q+1 \ S0 and D = S0 ∪ {x1, x2}. As x1 6= x2, then
x1 − x2 ∈ S0 	 S0 (see Remark 1), so

y := x1 − s1 = x2 − s2

for some s1, s2 ∈ S0 (s1 6= s2). As y 6= 0, then y ∈
S0 	 S0. Therefore, y can be written in three different ways
as differences of elements in D.
Example 6: The set {0, 1, 11, 19, 26, 28} is a Golomb

ruler in Z31. By adding 9, and 24, we obtain the set D =
{0, 1, 9, 11, 19, 24, 26, 28}. Note that 9 and 24 cannot be
written as the sum of two distinct elements of D, but the
element 29 in Z31 can be written as 24 − 26 ≡ 9 −
11 ≡ 26 − 18. Other elements in Z31 can also be written
in three different ways as differences of elements in D; for
example 8.

C. CONSTRUCTION 3
The following proposition shows how to construct an almost
difference set from a difference set by removing an element.
Proposition 3: Let D be a (v, v+34 ,

n+3
16 ) difference set in G,

and let d ∈ D. If 2d cannot be written as the sum of two
distinct elements of D, then D \ {d} is a (v, v−14 ,

v−13
16 ,

v−1
2 )

almost difference set in G, see [1].
Using the same idea of Proposition 3, we obtain the fol-

lowing result.
Theorem 3: Let D be a (v, k, λ) difference set in G. If
1) d ∈ D;
2) (d − D) ∩ (D− d) = {0},
then D\{d} is a (v, k−1, λ−1, 2(k−1)) almost difference

set in G.
Proof: LetD = {d, d2, . . . , dk}. If (d − D) ∩ (D− d) = {0},

then 2d cannot be written as a sum of two distinct elements
of D; therefore

d − d2, d − d3, . . . , d − dk
d2 − d, d3 − d, . . . , dk − d

are 2(k−1) pairwise distinct elements. BecauseD is a (v, k, λ)
difference set, D \ {d} is a (v, k − 1, λ− 1, 2(k − 1)) almost
difference. �
Corollary 2: There is a (q2 + q + 1, q, 0, 2q)-ADS in

Zq2+q+1, for all prime power q.
Proof: According to Singer’s construction, for every

prime power q, there is a Golomb ruler S0 in Zq2+q+1.
In particular, S0 is a (q2 + q + 1, q + 1, 1)-DS. Then, the
result follows applying Theorem 3 with a suitable element in
Zq2+q+1 \ S0. �
Example 7: The set D = {0, 1, 11, 19, 26, 28} is a Singer

type Golomb ruler in Z31. Since
1) 26 ∈ D;
2) 26− D = {0, 7, 15, 25, 26, 29};
3) D− 26 = {0, 2, 5, 6, 16, 24};
4) (26− D) ∩ (D− 26) = {0}.

VOLUME 10, 2022 1135



D. F. Daza Urbano et al.: Almost Difference Sets From Singer Type Golomb Rulers

Then, D \ {26} = {0, 1, 11, 17, 19, 28}, is a (31, 6, 0, 10)
almost difference set in Z31 by Theorem 3.
Example 8: The set D = {0, 1, 3, 24, 41, 52, 57, 66, 70, 96,

102, 149, 164, 176} is a Singer type Golomb ruler in Z183.
Since

1) 70 ∈ D;
2) 70−D = {0, 4, 13, 18, 29, 46, 67, 69, 70, 77, 89, 104,

151, 157};
3) D− 70 = {0, 26, 32, 79, 94, 106, 113, 114, 116, 137,

154, 165, 170, 179};
4) (70− D) ∩ (D− 70) = {0}.
Then, D\{70} = {0, 1, 3, 24, 41, 52, 57, 66, 96, 102, 149,

164, 176}, is a (183, 12, 0, 26) almost difference set in Z183
by Theorem 3.
Remark 4: The process in Theorem 3 can be continued

recursively to obtain an almost difference set with parameters
(q2 + q+ 1, q+ 1− i, 0, 2(iq−

( i
2

)
)), where 1 ≤ i < q is the

number of elements that are removed.
Example 9: The set {0, 1, 6, 8, 18} is a Singer type

Golomb ruler in Z21. By removing 6, we obtain {0, 1, 8, 18},
which is a (21, 4, 0, 8)-ADS. By removing 1 of this set,
we obtain {0, 8, 18}, which is a (21, 3, 0, 14)-ADS. By remov-
ing 18 of the above set, we obtain {0, 8}, which is a
(21, 2, 0, 18)-ADS.

III. CONSTRUCTIONS OF SYMMETRIC 2-ADESIGNS
From Theorem 1, Theorem 2, and Lemma 1, we obtain
corollaries 3 and 4, respectively.
Corollary 3: For all prime power, q ≡ 1 mod 3 greater

than 4, there is a symmetric 2-
(
q2+q+1

3 , q, 2
)
adesign.

Example 10: The set D = {0, 1, 2, 6, 8, 9, 16} is a
(19, 7, 2, 12) almost difference set in Z19 (see Example 2).
By Lemma 1, we obtain a symmetric 2-(19, 7, 2) adesign with
the following blocks of size 7:

{0, 1, 2, 6, 8, 9, 16} {10, 11, 12, 16, 18, 0, 7}

{1, 2, 3, 7, 9, 10, 17} {11, 12, 13, 17, 0, 1, 8}

{2, 3, 4, 8, 10, 11, 18} {12, 13, 14, 18, 1, 2, 9}

{3, 4, 5, 9, 11, 12, 0} {13, 14, 15, 0, 2, 3, 10}

{4, 5, 6, 10, 12, 13, 1} {14, 15, 16, 1, 3, 4, 11}

{5, 6, 7, 11, 13, 14, 2} {15, 16, 17, 2, 4, 5, 12}

{6, 7, 8, 12, 14, 15, 3} {16, 17, 18, 3, 5, 6, 13}

{7, 8, 9, 13, 15, 16, 4} {17, 18, 0, 4, 6, 7, 14}

{8, 9, 10, 14, 16, 17, 5} {18, 0, 1, 5, 7, 8, 15}

{9, 10, 11, 15, 17, 18, 6}
Corollary 4: For all power prime q, there is a symmetric

2-(q2 + q+ 1, q+ 2, 1) adesign.
Example 11: The set D = {0, 1, 4, 6, 8} is a (13, 5, 1, 4)

almost difference set in Z13 (see Example 4). By Lemma 1,
we obtain a symmetric 2-(13, 5, 1) adesign with the following
blocks of size 5:

{0, 1, 4, 6, 8} {5, 6, 9, 11, 0} {10, 11, 1, 3, 5}

{1, 2, 5, 7, 9} {6, 7, 10, 12, 1} {11, 12, 2, 4, 6}

{2, 3, 6, 8, 10} {7, 8, 11, 0, 2} {12, 0, 3, 5, 7}

{3, 4, 7, 9, 11} {8, 9, 12, 1, 3}

{4, 5, 8, 10, 12} {9, 10, 0, 2, 4}

IV. CONCLUSION
In this paper, we prove that

1) for every prime power q ≡ 1 mod 3, there exists a
(N/3, q, 2, 2(q − 1)) almost difference set in ZN/3,
where N = q2 + q+ 1;

2) There exists a (q2 + q + 1, q + 2, 1, (q − 2)(q +
1)) almost difference set in Zq2+q+1, for all prime
power q.

3) There exists a (q2+q+1, q+1−i, 0, 2(iq−
( i
2

)
)) almost

difference inZq2+q+1, for all prime power q, and for all
1 ≤ i < q.

Additionally, we constructed 2-adesigns from these almost
difference sets.

On the other hand, there are some questions that can
be addressed in future work; we consider it interesting to
approach the following problems:
1) To study the structure, properties, and applications of

the almost difference sets constructed in this paper.
2) Let Zv be the residue class ring module v and t be a

divisor of v. Moreover, let S be a difference set in Zv,
ϕ : Zv→ Z v

t
be the homomorphism defined by

ϕ(a) ≡ a mod
(v
t

)
,

and D = ϕ(S). For which values of t do the set D form
an almost difference set?

3) Is there some infinite family of almost difference sets
with parameters (n, k, 2, t), and different from Theo-
rem 1? Is there some infinite family of almost differ-
ence sets with parameters (n, k, 1, t)?
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