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ABSTRACT Accurate demarcation of anatomical landmarks in 3D medical imaging is a safety-critical and
challenging task. State-of-the-art approaches formulate landmark localization either as a classification or as
a regression problem. In this study, feature classification is performed as a verification step in a cascaded
Hough regression networks (HRNs) for hippocampus localization in the structured magnetic resonance
images of the brain. Global and local features of the landmarks are learned with coarse prediction and
fine-tuning convolutional neural networks for coarse-to-fine localization. Siamese network was trained to
learn a deep metric for verifying the roughly estimated locations. Feature verification with the Siamese
network drops the outlier predictions and increase the robustness in prediction. Three-view patches(TVPs)
with a size of 64×64×3 are fed for rough estimation while the TVP sizes for Siamese-based verification and
Hough regression network (HRN)-based fine-grained estimations are 32×32×3 and 16×16×3, respectively.
The experiment was performed on the Gwangju Alzheimer’s and Related Dementia’s (GARD) cohort data
set. The proposed approach demonstrated better performance with the errors of 1.70±0.50 millimeters(mm)
and 1.66±0.49mm for localizing the left and right hippocampi in the GARDdata set. In Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data set, the observed errors were 1.79 ± 0.83 mm and 1.55 ± 0.61 mm
for localizing left and right hippocampus, respectively. Our results are comparable to those obtained by the
state-of-the-art methods.

INDEX TERMS Landmark-localization, hippocampus, Hough CNN, Siamese network.

I. INTRODUCTION
Hippocampus is a key structure in the brain and its role
in the learning and memory function has been intensively
studied in the neuroscience field [1]. Hippocampus is also
an important anatomical region in Alzheimer’s disease (AD)
etiology [2]–[6]. Among all of the cerebral regions, the
hippocampus is one of the first affected regions in atro-
phy [7], [8]. Studies have shown that a significant number
of patients with hippocampal atrophy developed Alzheimer’s
disease [9]. Visual and texture features ofMagnetic resonance
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image (MRI) derived from the hippocampus have contributed
significantly for AD diagnosis [10]. Many MRI studies [4],
[11], [12] for AD suggested the computation of the shape and
volume features from bilateral hippocampi for estimating the
degree of atrophy of the hippocampus, which can be used as
a diagnostic marker for AD. Other neurological studies [13]
also found a 15%-30% percent volume reduction in the mild
dementia stage of AD and the reduction of 10%-15% in the
amnestic variant of mild cognitive impairment (MCI) [14].

Variation in hippocampal function, anatomy, and degen-
eration has been implicated in other neurological disorders
such as schizophrenia and depression [15]. Changes in the
morphology of the hippocampus are some of the symptoms
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TABLE 1. GARD Data set for Hippocampus Localization.

of these diseases. Therefore, the examination of this structure
has consistently been of significant interest, particularly in
the context of neuroimaging investigations.

Accurate location of the hippocampus is a basis require-
ment for automated image analysis of the region, and a
significant effort has been devoted to this task by various
researchers [16]–[18]. Accurate demarcation of this land-
mark is often important for further diagnosis by machine
learning techniques. The landmarks usually provide i) use-
ful features from the region of interest for machine learn-
ing ii) initial information for registration and segmentation
and, iii) guidance for navigation and retrieval throughout
the image data. Automatic hippocampus localization meth-
ods are available to avoid manual annotations which is
cumbersome, labor-intensive, and requires domain exper-
tise. Moreover, inter-observer differences and inter-subject
variations for the same observer are present in manual
annotations.

Automatic localization of the hippocampus in anMRI scan
is not a trivial problem, and becomes even more challeng-
ing with increasing severity of anatomical atrophy. Machine
learning-based studies for localization mainly focus on learn-
ing a mapping function that utilizes the MRI or image fea-
tures to find landmark positions [19]–[29]. The localization
problem is formulated either as a classification problem or
as a regression task. Classification models [30]–[32] extract
patches from a voxel and classify it as a landmark or not.
However, these approaches are prone to the dataset imbalance
problem. The lack of positive samples in the dataset often
results in a biased classifier.

State-of-the-art regression-based approaches for localizing
anatomical landmarks in 3D medical imaging are trained
with both random forest and deep learning methods [33].
Using a regression-based approach implemented in an ran-
dom forest framework, Pauly et al. [34], Glocker et al. [27],
Criminisi et al. [35], and Menze et al. [25] proposed to learn
the relative positions between the organs of interest and all
of the anatomy available in the training data solely with the
arbitrary scale Haar-like appearance features, i.e., the size of
the appearance features and their distance from the training
voxels. In a test image, the position of organs of interest is
then obtained from the recognized anatomy, implemented by
accumulating the relative positions of each voxel of the image
to the organ of interest. Other regression-based methods have
the same framework by developing a model to predict the
3D position (or displacement) from a local voxel to a target
voxel by learning the non-linear relationship between these
two voxel features [21], [23], [25], [27], [35]–[44].

Recently, prediction of landmarks locations directly
from image inputs rather than formulating the task as a
classification problem has become more popular [31]. This
may be due to the significant improvements in accuracy
obtained by regression models in comparison to the classi-
fication models. Regression-based models suggest exploiting
predictions at different distances from the target landmark.
This approach makes it possible to use any local patch for
estimating a potential landmark position from given local
image patches. Some methods consider global information
along with local correlations. For all of these regression-
based approaches, it was shown that by learning only from
appearance information extracted from training data, the
obtained results are robust in the presence of locally sim-
ilar structures. However, due to variations in the relative
positions of the anatomy used for robust prediction of land-
marks, a trade-off between accuracy and robustness still
exists.

A common property of all methods that use an explicit
model of a geometric configuration is that after generat-
ing local predictions, appearance information is never used
further in the regularization stage. The proposed approach
closely follows the two-stage Hough convolutional neural
network [44], [45] that considers both local and global
features [44]. However, in the previous methods, the global
predictions are not verified and it is not known whether
the model provides the correct landmark offsets. In our
approach, we have addressed the outlier predictions in global
estimations with a Siamese-network [46], [47] based veri-
fication network, which provides more robust localization
performance.

The rest of the paper is organized as follows: in section II,
we discuss the data set used for the experiment. In section III,
we present the methodology and section IV discusses on the
experimental setup, ground truth preparation and the training
procedure. Section V discusses the results and section VI
concludes the article.

TABLE 2. ADNI Dataset for Hippocampi localization.

II. DATA SET
Wehave performed experiments on the GwangjuAlzheimer’s
and Related Dementia’s(GARD) Cohort data set [48]–[50].
For comparing our findings with state-of-the-art meth-
ods, we have utilized Alzheimer’s Disease Neuroimaging
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Initiative (ADNI) dataset. We briefly describe the data sets
in Table 1 and Table 2.

A. GARD DATASET
There are 326 MRI scans in the GARD data set acquired
from 326 Korean participants at Chosun University Hospital
and other Korean hospitals. The study protocol was approved
by the Institutional Review Board of Chosun University Hos-
pital, Korea (CHOSUN 2013-12-018-070). All volunteers
or authorized guardians for cognitively impaired individuals
gave written informed consent prior to participation.

The ages of the subjects vary from 49 years to 87 years
with an average age of 72.02 years and with standard devi-
ation of 6.06 years. More than 88% of the subjects are over
65 years old. The education level ranged between illiterate
to highly educated. The lowest education level was set to
0 while the highest of the same was set to 22. The mean
education score was measured as 8.46 with a standard devi-
ation of 5.42. There are four clinical categories in the data
set: dementia due to Alzheimer’s disease (ADD), amnestic
MCI (aMCI), non-amnestic MCI(naMCI), and normal con-
trol (CN). The number of male and female participants was
balanced with 162 and 164 male and female participants. The
male/female ratio balance was maintained for all categories
except for aMCI which is made up of 20 male subjects and
only 10 female subjects. A total of 81, 30, 9 and 206 scans
are found in the ADD, aMCI, naMCI and CN categories,
respectively.

After the acquisition, the scans were improved non-
parametric nonuniform intensity normalization i.e., N4 nor-
malized, skull striped, and segmented into 6 tissue types and
Desikan–killiany–tourville labeling protocol was applied to
label 101 regions of interests.

B. ADNI DATASET
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
was collected from adni.loni.usc.edu. The ADNI was
launched in 2003 as a public-private partnership with the
primary goal of measuring the progression of mild cogni-
tive impairment and early Alzheimer’s disease from different
modality of data. From the ADNI data set, we have consid-
ered ’ADNI1: Complete 3Yr 3T’ data. There are 60 sub-
jects and 351 MRIs. The average age of the participants
was 75.87 years with a standard deviation of 7.078 ranges
from 55 years to 90 years of age. There are three categories
of the scans ADD, MCI, and CN containing 20, 18, and
22 subjects, respectively. The participants are imbalanced in
terms of gender. CN category has 7 males and 15 females
participants with an average age (± standard deviation) of
77.57 (± 4.04) years. The age range is 70 years to 88 years.
There are 51 scans from male participants, while the number
for the opposite gender is 78. There are 18 participants with
MCI among which 14 are males and 4 are females with an
average age of 74.655(± 8.00) ranging from 55 to 90 years.
The number of scans from male and female participants are
111 and 34, respectively. Among 20 ADD subjects, 7 are

males and 13 are females. The age ranges from 57 to 90 years
with an average of 75.32(±8.47) years. The number of scans
from male and female participants is 32 and 45, respec-
tively. Details on these imaging protocols are available at
http://adni.loni.usc.edu/methods/documents/mriprotocols/.

The raw data for MRI scans were in NiFTI format in the
ADNI database. The images were MPR, grad warped, B1
non-uniformity corrected, and non-parametric nonuniform
intensity normalized i.e.,. N3 Normalized and scaled. For our
experiment, 3D scans were preprocessed to obtain training
and testing 2D patches which will be described in the follow-
ing section.

III. METHODS
The framework of our method is depicted in Fig. 1. First,
we learn the deep metric for the ground truth landmark.
We train a deep Siamese network to learn the hippocampus
features. We have generated three-view patches (TVPs) from
the vicinity of a hippocampus location (see Fig. 2.)

Then, we train a coarse prediction network (CPN) to
roughly learn the displacement of the hippocampi from a
spherical reference frame. At last, two fine-tuning networks
for the left and right hippocampi are trained and tested to
learn the displacement of the landmark from reference voxels
of the rough estimation of CPN. Local features are consid-
ered for verification and fine-tuning. The rough estimation is
fine-tuned by deploying another HRN that uses the local fea-
tures of the landmarks. For feature verification on the rough
estimation, we train a Siamese network. In the following
subsection, we will discuss the modules in detail.

A. COARSE PREDICTION NETWORK
CPN learns global features to roughly estimate the offset
of the landmark. To predict initial estimates of the offsets
from the center of TVPs, this network takes three view slices
with the size of 64×64×3 from a spherical surface centered
at the middle of the MRI under study. First, we start with
the architecture and settings of [51]. Then, we have tweak
the network by trial and error. Our CPN network consists of
eight convolution layers. Amax pooling layers is present after
every two convolution layers. The batch normalization layer
was included after every maxpooling layer (before the second
convolution to the Flatten layer). The Flatten layer is followed
by two dense layers. The first dense layer is followed by
a dropout of 0.25. Batch normalization [52], [52]–[54] and
dropout layers limits the likelihood of over-fitting.

B. FINE TUNING NETWORK
The FTN consists of five convolution layers, twomax pooling
layers and three batch normalization layers. The flatten layer
follows two dense layers. The first dense layer is followed by
a dropout of 0.25. The input to this network are TVPs of size
16×16×3. A cube of size 8×8×8was assumed to be centered
on the manually annotated voxel locations, and training TVP
samples for FTN were generated from random offsets. This
network predicts fine-tuned estimates of the offsets from the
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FIGURE 1. Hippocampi Localization using Hough Regression Network(HRN) and Deep Metric Learning. Patch Generation
module generates three-view patches(TVPs) for coarse prediction network(CPN), fine tuning network(FTN) and Siamese
verification network(SVN). CPN roughly estimates the hippocampi locations while FTN fine tunes the rough estimations that
are verified with SVN.

center of TVPs. The TVPs used in this level considers local
correlation between the landmark location and its neighbor-
ing voxels. The models learn the geometric correlation with
its neighboring structures. The activation function used in this
network follows the same pattern as CPN.

C. SIAMESE VERIFICATION NETWORK
For verifying the course location estimation from CPN,
a Siamese model was trained and tested prior to deployment
of the FTN to get final location. Siamese network learns the
deep metric to differentiate hippocampal features and non-
hippocampal features. A 2D CNN, consist of four convolu-
tion layer with two max pooling layers, was considered for
the Siamese twin network. The feature map is 64 in length.
The twin network learned a function that transform the input
TVPs into a target space such that the Euclidean distance in
the target space approximate the semantic distance between
the TVPs. The learning processminimizes the contrastive loss
function that ensures that the similarity metric is small for a
pair of hippocampus-TVPs and large for a non-hippocampal
region TVP inclusion. The CNN represents the locally dis-
tinguishing features of the hippocampus. In each channel
of the twin, there are four convolution layers and one fully
connected layer. There is a batch normalization layer after
each convolution layer. The last layer of the twin-CNN is the
Euclidean distance between the feature embedding of the two
different networks.

We used leaky Relu (f (x) = max(αx, x)) as the activation
function for all of the convolution layers with α = 0.3. In the
first fully connected layer, we used tanh as the activation.
In the last layer, we used leaky Relu with α = 0.9.
The input to the network is a pair of TVPs (Ti,Tj) and

a label yij. (Ti,Tj) are passed to the CNNs and each CNN
work as a mapping function. The pair of TVPs yield feature

FIGURE 2. An example of (a) ground-truth locations of hippocampus and
(b) non-hippocampi in an MRI (viewed on the sagittal plane).

representation by F(Ti) and F(Tj). The cost module which
is the Euclidean distance operator generates the distance
ŷ between F(Ti) and F(Tj). At, training time the pairs of
TVPs (Ti,Tj) are generated as specified in section IV-B4.
At test time, the coarse predicted TVPs were compared with
the TVPs stored in database constructed by the procedure
mentioned in [55].

We used contrastive loss function for training the deep
metric learning (DML) network. The loss function is defined
in equation (1).

L(y, ŷ) = yŷ2 + (1− y)[max(λ− ŷ, 0)]2 (1)

Here, y is the actual distance (0 or 1) and ŷ is the predicted
distance between the input pairs. λ = 2 is used as a distance
margin constraint. The constraint defines a radius in the target
space around the Euclidean distance. Unlikely pairs have a
contribution in the loss if their distance is within the defined
margin.

IV. EXPERIMENTAL SETUP
A. PLATFORM
The entire experiment was performed with a Python 3.7 envi-
ronment. We used the TensorFlow GPU 1.12. Keras was used
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FIGURE 3. Ground truth preparation for (a) a coarse prediction network (CPN) and (b) fine tuning network (FTN). Here,
r (rx , ry , rz ) is the reference voxels and (hx , hy , hz ) is manual annotations for hippocampus locations. (ox , oy , oz ) is an
offset calculated by equation (4).

FIGURE 4. Training and validation loss of (a) Coarse Prediction Network (b) Fine-Tuning Network (c) Feature Verification
Network.

as the backend. The operating system was Windows 10. The
verification network and fine-tuning model was trained on an
‘‘Intel(R) Xeon (R) Silver 4114 @ 2.20 GHz, 10 cores and
20 logical processors with a 32 GB RAM’’ machine. The
GPU was NVIDIA Quadro P4000. The rest of the experi-
ments were performed on Intel(R) Xeon (R) CPU E5-1607
v4 @ 3.10 GHz with a 32 GB RAM machine. The GPU
was NVIDIA Quadro M4000. ITK-SNAP [56] was used for
viewing and navigating throw the neuroimaging informatics
technology initiative (NIFTI) images.

B. GROUND TRUTH PREPARATION FOR PATCH-BASED
MODEL LEARNING
Each skull stripped NIfTI formatted MRI scan was intensity
normalized so that the mean intensity is zero and the unit
standard deviation. The intensities are normalized for each
MRI individually. After intensity normalization, the offset
between the reference voxel and the hippocampus voxel is
calculated and used as ground truth.We trained three different
network. Therefore, the reference location and TVPs (in type
and size) are different for each network.

1) MANUAL ANNOTATION
The hippocampus locations for both left and right hippocampi
were manually annotated by an expert. Though hippocampus
covers volumes of voxels, the expert considered the location
that is useful to physicians in localizing the hippocampuswith
or without image guided technologies. The annotations were
performed in two independent runs. If the difference between

the annotations is greater than two voxels, the opinion of
another expert was obtained and the two closest locations
were averaged. We have denoted each hippocampus location
as (hx , hy, hz) for both right and left hippocampus. The net-
works for left and right hippocampus were trained separately
with respective training sets.

2) GROUND TRUTH FOR COARSE PREDICTION NETWORK
The reference locations for CPN were generated from a
sphere with a radius of 8cm centered at the middle voxel
of the structured MRI (provides static anatomical informa-
tion). The procedure for generating the reference is illustrated
in figure 3a. Let (rx , ry, rz) be the reference locations ran-
domly sampled from a sphere. Three different patches of size
64× 64 centered at (rx , ry), (ry, rz), (rx , rz) in axial, sagittal
and coronal views, respectively, were generated and formed a
TVP and are denoted as TVPr . For MRI, I , the corresponding
patch of size α × β at the reference voxel r(rx , ry, rz) is
defined by:

view1 = I [rx , ry −
α

2
: ry +

α

2
, rz −

β

2
: rz +

β

2
]

view2 = I [rx −
α

2
: rx +

α

2
, ry, rz −

β

2
: rz +

β

2
]

view3 = I [rx −
α

2
: rx +

α

2
, ry −

β

2
: ry +

β

2
, rz] (2)

Then, the TVP denoted as T at (rx , ry, rz) is formed by

T = [view1 view2 view2] (3)
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TABLE 3. Localization error(in millimeter) in test set of GARD and ADNI data set.

The offset to this reference voxel from manually annotated
hippocampus location is denoted as (ox , oy, oz), calculated
below.

(ox , oy, oz) = (hx − rx , hy − ry, hz − rz) (4)

The ground truth of CPN dataset is (ox , oy, oz), the offset to
the hippocampus from reference point. The input feature to
this CNN is corresponding TVP T at the reference point.
We generated 64 TVPs from each MRI, and the training,
validation, and testing set are separated by the patient ID.

3) GROUND TRUTH FOR FINE TUNING NETWORK
We have considered a cube of the size of 8× 8× 8 centered
at (hx , hy, hz) of the target hippocampus position. Uniform
random distribution is used to sample the reference locations
from the cube. The reference position generation methods are
shown in Fig. 3b.

The ground truth for the target hippocampus, (ox , oy, oz)
is obtained using eq. (4) with new reference positions sam-
pled from closer 8 × 8 × 8 cube. Then, we generate TVPs
from the reference location and produce the corresponding
data sample {T , (ox , oy, oz)}. The size of the TVPs is set to
16 × 16 × 3. The three view patch, T , is used to predict the
correct offset (ox , oy, oz) to the target hippocampus position.

4) GROUND TRUTH FOR SIAMESE VERIFICATION NETWORK
For metric learning, we generated 64 positive TVPs and
64 negative TVPs from eachMRI. The positive samples were
randomly produced from the 8 × 8 × 8 cube centered at the
manually labeled hippocampi locations. The negative sam-
ples are produced from non-hippocampi regions of the brain.
To generate the negative samples, we followed the same
sampling approach for coarse reference positions generation.
We prepared the pairs of TVP samples {(Ti,Tj), y}. If both
patches, Ti and Tj, are from the same region, then the label
is 1. If they belong to different regions, then the label is 0.
In all metric training samples, at least one of TVPs are from
hippocampus region. 32 positives and 32 negatives pairs were
generated from MRIs for training.

C. DATA SET SEPARATION
We have used TVPs as the data unit for training and valida-
tion. For testing an MRI, we have considered the predictions
of the models for the TVPs of given MRI. First, training
and testing were performed on the GARD data set. Then,
instances of the models were utilized for the purposes of
training and testing on ADNI data. We have separated the
MRIs based on the subject IDs so that there are no MRIs

with the same subject ID in neither of the two sets. We used
60% of the subjects for training and validation and 40% for
testing. We have taken the precaution to uniformly distribute
the subjects of different gender, age and category among all
of the sets for better generalization.

D. TRAINING
1) SIAMESE FEATURE VERIFICATION NETWORK
The SVN network’s weights were initialized with Xavier
initialization while the biases were initialized with normal
distribution with mean and variance 0.01 and 0.01. λ was
set to 2. λ set the lower bound of the dissimilarity between
the hippocampus and non-hippocampus locations of samples
with different labels.

The weight was optimized with the Adam optimizer [57].
The initial learning rate was set to 0.001 with the exponential
decay rate of 0.1. The mini-batch size was 32. The training
phase was run for 100 epochs. The training performance is
illustrated in figure 4c. The details of the process of TVP
generation at training and test time is described in [55].

2) TRAINING OF HOUGH REGRESSION NETWORKS
The training and validation performances of CPN and FTN
are shown in 4a and 4b of figure 4. The CPN and FTNmodels
were trained for 250 epochs. Mean squared error (as given by
equation ( 5)) was used as the loss function.

mse =

∑batchsize
i=1 (ôi − oi)2

batchsize
(5)

Here, batchsize = 32 is the number of the input-output pairs
in a batch and ôi and oi are the tuples representing predicted
and ground-truth offsets, respectively.

The CPN network receives a TVP and a pair of offsets to
left and right hippocampus for training. The CPN yields a
pair of offsets for respective hippocampus. The FTN network
is trained for each left and right hippocampus. It receives a
TVP and outputs an offset for the left or right hippocampus
location.

For both networks, the Xavier initializer [58] was used
for the weight and bias initialization. Weight was optimized
by the Adam optimizer [57] with an initial learning rate of
0.01. We have used five-fold cross validation in training the
networks.

V. RESULTS AND DISCUSSION
Training and validation were performed on TVPs. The test
was performed on MRI. The predictions of TVPs gener-
ated from the designated reference frame were averaged for
obtaining the final prediction. We have used 132 MRIs from
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FIGURE 5. Error cumulative density function (CDF) for (a) coarse prediction network (CPN), (b) CPN+verification network(VN), (c) CPN+fine tuning
network(FTN) and (d) CPN+VN+FTN.

TABLE 4. Comparison of the Proposed Method with state-of-the-arts.

FIGURE 6. Error improvement with SVN; MRI 1503195 from the GARD
data set is taken as an example(not drawn in scale). Error in the CPN
predictions was 13.39 mm due to considering the predictions from all of
the reference inputs. SVN verifies the features of the locations whether it
matches with hippocampus features. If the match is not found, it drops
the reference voxel and computes the location with remaining
predictions. CPN+SVN provides an error of 5.52 mm;.

GARD and 141 MRIs from ADNI for the purpose of test-
ing. After the model was trained, the evaluation was carried
out on the testing data set and the quantitative results were
computed.

A. EVALUATION
To evaluate the models, we adopted the Euclidean distance
between the location of manual annotation and predicted
location. The output of the networks are the predicted offset
ô. Let the reference location of the TVP under consideration
be r . Adding the reference location to the offsets provides the
hippocampus location.

The actual offset can be found from equation (4). If the
actual offset is oj, we can obtain the localization error from
the difference between oj and predicted offset ôj. The error
for each jth MRI, Ej, can be computed from the Euclidean
distance between the actual location of hippocampus and
the predicted location averaged from numerous reference
point and respective predicted offset ôj. The total test error
is computed by averaging over all the test set MRI errors.

B. LOCALIZATION ERROR
1) ERROR IN GARD DATASET
The error of the CPN network for localizing the left hip-
pocampus is 3.67 mm with a standard deviation of 1.81 in
the test data set. The error of the CPN network for the right
hippocampus is 3.63± 1.92 mm. The CPN+VN framework
shows a lower variance in the error in the test set. The
error is 3.13±0.46 mm for localizing the left hippocam-
pus. The errors are 3.04±0.52 mm for localizing the right
hippocampus.

The CPN+FTN model shows an error of 2.13±1.88 mm
for the left hippocampus localization. The errors for the right
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FIGURE 7. Error Variances in different setting. Boxplot of prediction errors of CPN, CPN+SVN, CPN+FTN and CPN+SVN+FTN for localizing the left
hippocampus from a) ADNI MRI (patient ID: 023_S_0926, MRI scan S20160) b) GARD MRI (ID:1503195); Total reference points for CPN is 64 for both the
MRIs. While processing S20160 VN drops 17 reference points for outlier predictions and final localization was carried out by FTN with 47 TVPs. For MRI
1503195 VN drops 29 reference points for outlier predictions and final localization was carried out by FTN with 35 TVPs.

FIGURE 8. Effects of patch size on CPN performance (observed on
TVP-based analysis).

hippocampus in the respective data set are 2.05±1.36 mm.
Thus, the use of local information in the FTN networks
boosted the accuracy. However, a large variance is still
present in the error. The reason for the high variation in
the error rate may be the contribution of the outliers pre-
dicted by CPN. These outliers were used as the reference
voxel to generate the input to FTN. Using SVN to fil-
ter the locations predicted by CPN reduces the outliers.
Applying FTN on the filtered predictions provides state-of-
the-art accuracy. The CPN+VN+FTN provides an error of
1.70±0.50 mm for localizing the left hippocampus while the
same is 1.66±0.49 mm for the right hippocampus. Table 3
reports the localization error of the models on the testing
set data.

2) ERROR IN ADNI DATASET
Table 3 reports the localization error of the models on the
testing set data. The error of the CPN network for localizing
the left hippocampus is 3.86 mm with a standard deviation of
1.71 mm in the ADNI data set. The error of the CPN network
for the right hippocampus is 3.95± 1.42 mm. The CPN+VN
framework shows a lower variance in the error as demon-
strated for GARD data. The error is 3.26±0.40 mm for local-
izing the left hippocampus, and 3.01±0.44 mm for localizing

the right hippocampus. The CPN+FTNmodel shows an error
of 2.17±1.76 mm for the left hippocampus localization and
2.27±1.37 mm for right hippocampus. The CPN+VN+FTN
provides an error of 1.79±0.83 mm for localizing the left
hippocampus. The error for right hippocampus localization
is 1.55±0.61 mm.

C. DISCUSSION
The high variance in the error was reduced by including
the SVN network to drop the outlier reference points which
contributed higher error in CPN. Rather than directly esti-
mating their locations, the model is trained to predict the
displacement of the hippocampus locations from given refer-
ence locations. The TVPs on the reference point provide the
global information for rough estimation. From CPN, coarse-
grained hippocampus locations are calculated. We verified
the feature of coarse-grained locations by SVN that makes the
model robust to the outliers predicted by CPN. The filtered
locations are used as the reference point for TVP generation
to be used in FTN. FTN fine-tuned the rough estimation
by providing more accurate local offsets. The final loca-
tions were calculated from these offsets. The method demon-
strates state-of-the-art accuracy on both the ADNI andGARD
data sets.

1) SVN REDUCES ERROR VARIANCE
SVN network provides robustness in localization and reduces
the error variances. An examination of Table 3 shows that the
errors for CPN andCPN+FTN have higher variances. CPN in
GARD and ADNI data have 1.71 mm and 1.81 mm standard
deviation in error for localizing the left hippocmapus. The
corresponding values are 1.42mm and 1.92mm for localizing
the right hippocampus for the same data sets. Using SVN
reduces the standard deviations to 0.40 mm and 0.46 mm for
localizing the left hippocampus in the ADNI and GARD data,
respectively. Localization of the right hippocampus shows
the standard deviations of 0.44 mm and 0.52 mm. The out-
liers of CPN also influence the CPN+FTN network. SVN
provides robust results with smaller variance. The boxplots
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FIGURE 9. Demonstration of qualitative localization results for different MRI categories in different settings. The average
case is considered for presentation. The rows from top to bottom indicate MRI instances of 17102706, 14060801, 17101603,
14062205 from the ADD, aMCI, naMCI and NC classes respectively. The columns from left to right indicate the CPN, CPN+VN
and CPN+VN+FTN models, respectively. The manual annotation for 17102706, 14060801, 17101603 and 14062205 are (83,
136, 86),(85, 144, 88),(81, 154, 84), and (87, 138, 81), respectively.

in figure 7a and 7b summarizes the results, and with 95%
confidence that the true medians are different when using the
SVN.

Figure 7 depicts a case where the CPN prediction has a
large error due to the outliers. Taking input TVP from this
outlier-biased prediction influences the error in the predic-
tion of FTN. Subsequently, FTN also provides erroneous
offsets. Finally, obtaining an erroneous offset leads to larger
error in the final localization. The SVN drops the outliers in
coarse-grain prediction so that FTN obtains the input from

the known reference frame. If we deploy SVN for feature
verification, the outliers will be automatically dropped for
next processing. This improves the error rate and ensures
robustness. Some sample results are depicted in figure 9.

2) PATCH SIZE SELECTION
We have selected the patch size after several trials using
different squared patches sizes of 16, 32, 48, 64, 96, 112,
128 (64 is chosen). For FTN, we have examined the sizes
of 8, 16, and 32, and found that 16 was optimal. We found
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that the selected patch sizes provide a better feature for the
localization in our data-set, given the ADNI and GARDMRI
sizes. The details are provided in figure 8.

3) COMPARISON
Al and Yun [59] demonstrated an error of 2.79 ± 1.98 mm
in localizing vertebra-centers in spine MR volumes using
partial policy-based reinforcement learning (RL). For better
learning, they adopted the actor-critic direct policy search
method to learn the optimal agent-behavior. The partial
policy-based RL algorithm was proposed for faster behavior
learning.

Tiulpin et al. [60] and Maiya and Mathur [61] utilized the
Hourglass network for localizing anatomical landmarks. 79%
of the key points in knee X-ray images were located with an
error of 2.5 mm in [60]. Euclidean distance of 14.21 mm was
demonstrated in [61] for optic disk and fovea localization.

Zhang et al. [32] proposed to a deep convolutional neu-
ral network (CNN) to classify a head CT image in terms
of its content and to localize landmarks. They obtained
an average localization error of 3.45 mm for 7 landmarks
located around each inner ear. This is better than the results
achieved with earlier methods that we have proposed for the
same tasks.

Zon et al. [62] proposed a four-stage deep learning model
for localizing mitral valve points and right ventricular insert
points in MR scans. They utilized CNN for Cropping,
U-net for coarse grained location RNN for incorporating
temporal and spatial dynamics for landmark locations. The
final predictions were made based on the combination of
U-net and RNN. The method demonstrated the average
errors of 2.87 mm and 3.64 mm for the mitral valve points
and the right ventricular insert points, respectively. Even
though RNN in this approach demonstrated how to model
temporal or spatial dependencies in landmark localization,
Basher et al. [44] proposed a more accurate prediction with
ensemble of two-stage Hough CNN. The model proposed by
Basher et al. [44] did not consider the outliers predicted by
CPN and thus demonstrated a lack of robustness in our exper-
iment. We have proposed siamese verification to remove the
outlier predictions in the first step. Out method provides
robust accuracy. Table 4 presents the comparison of our
method to the state-of-the-art methods.

VI. CONCLUSION
Siamese network along with cascaded HRNs provides robust
localization performance. Our proposed pipeline demon-
strated an error of 1.70 ± 0.50 mm for localizing the left
hippocampus and an error of 1.66 ± 0.49 mm for localizing
the right hippocampus in GARD dataset. The errors in ADNI
dataset was 1.79 ± 0.83 and 1.55 ± 0.61 for localizing
left hippocampus and right hippocampus, respectively. The
results demonstrated a promising performance for anatomical
landmark localization, specifically cerebral landmark local-
ization in sMRI modality.
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