
Received October 13, 2021, accepted November 16, 2021, date of publication December 23, 2021, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3137991

Programmable Session Layer MULTI-Connectivity
SEPPO HÄTÖNEN , ASHWIN RAO , AND SASU TARKOMA , (Senior Member, IEEE)
Department of Computer Science, University of Helsinki, 00014 Helsinki, Finland

Corresponding author: Seppo Hätönen (seppo.hatonen@helsinki.fi)

This work was supported in part by the Academy of Finland IDEA-MILL under Grant 334934, and in part by
the Business Finland 5G FORCE Project.

ABSTRACT Our devices can use a wide range of communication technologies such as multiple cellular
technologies (4G/5G), WiFi, and also Ethernet. At the same time, applications have a choice of a wide range
of transport protocols such as QUIC and TCP that can be fine-tuned and optimized according to their needs.
However, in spite of these advances, offering seamless multiconnectivity to applications continues to be a
hard problem. The key factors that continue to be a roadblock towards achieving seamless multiconnectivity
include a) applications cannot specify the communication technologies to be used by their flows, and b) the
traditional definition of a connection endpoint was not designed to support mobile nodes. In this paper we
discuss the key challenges that make this problem hard. We also present MULTI, a session layer approach
that can be leveraged to address some of the key sub-problems of this problem. For instance, we observe that
MULTI incurred a small overhead (less than 5% decrease in throughput) when using TCP compared to the
native asyncio python library.

INDEX TERMS Multiconnectivity, programmable, session layer, asyncio, QUIC, TCP.

I. INTRODUCTION
Our mobile devices, including laptops and smart phones,
can use multiple different communication technologies and
multiple transport protocols. However, utilizing these tech-
nologies and protocols to their full potential continues to
be difficult and off-the-shelf mobile devices still continue to
use a single communication technology for data transfer. For
instance, Android devices give WiFi a higher priority than
cellular due to different reasons such as monetary, bandwidth
or latency [1].

Some of the key reasons that stop us from efficiently
utilizing these technologies and protocols are as follows.
1. Applications cannot easily specify the communication

technology that should be used for its flows.Different applica-
tions have different requirements for their connectivity. Some
may require bandwidth, while some require low latency.
Devices typically allow using only a single communication
technology for data transfer, and the applications have almost
no ability to specify their preferred choice of communication
technology. For instance, our smart phones typically give
WiFi a higher priority than cellular [1]. On Linux devices, the

The associate editor coordinating the review of this manuscript and

approving it for publication was P. Venkata Krishna .

priority of communication interfaces is typically device-wide,
and applications require specific capabilities or superuser
privileges to specify application specific interface priori-
ties [2]. Similarly, versions of Android may allow restricting
applications to either mobile networks or WiFi through sys-
tem settings or through a firewall application [3], [4].
2. The traditional definition of a connection endpoint was

not designed to support mobile nodes. An UDP or a TCP
transport connection is defined as a five tuple – source
IP address, source transport port, destination IP address,
destination transport port, and transport protocol. These five
values are present in the packets using the connection, and the
four values other than the transport protocol may be modified
at different in-network functions in the path between the
source and the destination. Consider a packet originating
from a mobile device to a remote server. For example, net-
work address translators canmodify the source IP address and
the source port number while reverse proxies may modify the
destination IP address and port numbers [5], [6]. Clearly, the
definition of a transport connection is not truly end-to-end
because the same connection may be defined by a different
five tuple at the source and the destination [7], [8].

Over the years, there have been multiple different solutions
that have been proposed to address these issues (see §II).

5736 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7781-7607
https://orcid.org/0000-0001-9792-2199
https://orcid.org/0000-0003-4220-3650
https://orcid.org/0000-0001-8138-5878


S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

However, Internet ossification makes it difficult to use the
proposed protocols in the wild [9]. Regardless, what is com-
mon to all of them is that they either tackle a specific use case
or require special infrastructure and software. For instance,
the shortcomings of using the five tuple as a connection end-
point requires mechanisms that are agnostic to the changes
at underlying transport and network layer. [1], [10], [12].
QUIC and its extension MultiPath QUIC (MPQUIC) exem-
plify such a mechanism [1], [10], [12]. They are designed
from the beginning to be transport protocols over UDP that
are agnostic to the source address and port by using a Con-
nection ID inside the packets. The Connection ID allows the
QUIC server to associate packets with same Connection ID
to an established connection regardless of the source of the
packets. Similarly,Multipath TCP (MPTCP) [13] uses special
TCP headers to carry a Connection ID that allows end hosts
to combine packets with a different five tuple to the same
connection. Another example is Mosh [14], which addresses
this issue with its State Synchronizing Protocol (SSP);
SSP can be broadly categorized as a session layer protocol
that uses the services of transport layers.

In this article, we first discuss some of the key chal-
lenges that continue to make seamless multiconnectivity
hard. We then present an example of a programmable session
layer solution, MULTI, that is aimed at addressing some
key sub-problems of this problem. Among the key goals of
MULTI is the ability to allow applications to specify the
preference of protocols, and also suggest configurations for
the protocols. MULTI acts as a shim at the session layer that
also allows multiplexing and aggregating data over multiple
connections. Using multiple, potentially different transports
allows MULTI to achieve connectivity over different net-
works with different policies. As establishing connectivity
and multiplexing data over connections is performed at the
session layer, MULTI can be deployed rapidly and allows
fast deployment of new features, including more advanced
schedulers that determine how, for example, link aggregation
is handled.

Our key contributions are as follows.
1) Our solution, MULTI, attempts to work around Internet

ossification and provides an umbrella which incorpo-
rates past approaches. MULTI combines the best of
previous works in multiconnectivity and builds on their
insights.

2) We detail the characteristics of MULTI which allows
applications to simultaneously use multiple transport
protocols and interfaces with different characteristics.
Specifically, MULTI allows applications to request
connections with certain characteristics including con-
figurations for the transport and Internet protocol, the
interfaces and interface configurations, etc., and this in
turn enables MULTI to multiplex data over multiple
transport layer connections.

3) We provide an open source proof-of-concept imple-
mentation of MULTI for evaluation purposes.
We believe that our prototype of MULTI can be easily

extended to include features such as custom schedulers
for multiplexing data over multiple connections and
also supporting new transport protocols.

MULTI builds on the insights of Mobile IP [15], QUIC,
and MPTCP. We believe that it is the next step in the series
of works that have been aimed at offering mobility and mul-
ticonnectivity. Specifically, Mobile IP allows the interfaces
and the networks to change, but the IP address assigned
to the device stays fixed. Using QUIC allows applications
running on mobile devices to remain connected when the
used IP address and interface changes by using a Connec-
tion ID, while MPTCP allows applications to multiplex data
streams over multiple interfaces. In contrast, MULTI allows
applications to multiplex data stream over multiple transport
protocols, each of which can use different IP addresses and
interfaces.

We implement MULTI using state-of-the-art asyncio prim-
itives of Python [16], and the asyncio QUIC library [17].
We show that it can support more than one transport protocol,
and more than one link layer technology. We also show that it
can achieve a throughput and latency that is comparable to the
protocol implementations it uses. For instance, we observe
that MULTI incurred a small overhead (less than 5% decrease
in throughput) compared to the base line asyncio when
using TCP.

II. BACKGROUND
There have been many different multiconnectivity solutions
developed over the years. These solutions operate in different
levels of the network stack, such as network, transport, and
application layers. Some of the solutions also operate in mul-
tiple layers, as they may use capabilities of a layer above or
below the actual layer where they operate. The solutions can
also be roughly divided into those that do multihoming [15],
multipath [12], [13], and those which do both to various
degrees [18].

In this section, we briefly describe several of the solutions
and categorize them based on their characteristics. We also
discuss why multiconnectivity is still hard in the current
Internet.

A. NETWORK LAYER AND BELOW
In this section, we go through several multiconnectivitymeth-
ods that belong to the network layer. These solutions operate
under the transport layer and aim to provide either multihom-
ing or multipathing. The Table 1 shows the main differences
of network layer protocols discussed below.

1) HIP
Host Identity Protocol (HIP) is a technology that separates
the endpoint identifier and locator roles of an IP address, and
creating a new name space that allows mobility and multi-
homing [19], [21]. HIP is implemented as a layer between the
transport layer and the IP layer, creating a new Host Identity
Layer between them. For identifying hosts, HIP uses cryp-
tographic Host Identity Tags, which are exchanged between

VOLUME 10, 2022 5737



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

TABLE 1. Characteristics of different multihoming or multipath network layer protocols. Each column highlights the main differences of each protocol.
For example, HIP requires both endpoints to support HIP, while support for Mobile IP and SDN Mobility is only required at the mobile endpoint.

hosts and rendezvous server. Every time a host moves into a
new location, i.e. its IP address changes, the host updates the
rendezvous server of its new IP address.

When two hosts need to communicate with each other, they
first contact the rendezvous server through for example the
DNS system. The server responds with the current location
of the destination host, allowing hosts to communicate.

While HIP allows mobility and multihoming, there are
drawbacks. First, both hosts need to support HIP in their oper-
ating system. Second, there need to be special rendezvous
servers in the Internet with static locations. These require
resources to run, and are susceptible to attacks.

2) MOBILE IP
Mobile IP is another way to allow multihoming and mobil-
ity [15]. In Mobile IP, each host has its own Home Net-
work. Withing the Home Network, the host has a permanent
IP address. When the host is away from the home network,
it receives a so-called Care-of Address from the foreign net-
work it is attached to at that time. The host then registers
the Care-of Address with a Home Agent inside the Home
Network. This allows the Home Agent to tunnel traffic to
the host’s permanent address to the host’s current Care-of
Address, and allows applications to remain unchanged.

As with other systems, Mobile IP does have its drawbacks.
Main drawback is the need for the Home Network, which
needs hosting resources. Since traffic is relayed through the
Home Network, it also causes extra latency, and depending
how Home Network is connected to the Internet, possible
bandwidth caps.

3) SDN-BASED MULTIHOMING
On-device virtual switches managed by Software-Defined
Network (SDN) controllers can also be used to offer multi-
connectivity. Meghna [20] is one such example for network-
driven multihoming. Meghna uses an SDN switch on the host
device that is connected through different interfaces to an
SDN capable network. The host switch, or more precisely
the traffic managed by the host switch, is controlled by a
network SDN controller. The host switch bridges all network
interfaces together, and exposes a single interface to the appli-
cations. The traffic is then forwarded to the network using the
interface selected by the controller.

The limitation of this approach is that it requires a home
network. If the device is roaming away from the network, the
Meghna establishes a VPN connection to the home network,
and the traffic is first forwarded to the home network and

then beyond. This causes overheads as the traffic has to take
a longer non-optimal route. On the other hand, the Meghna
allows the applications to retain the same IP address inde-
pendent to their physical network location, while the main
drawback is the requirement of the home network.

B. TRANSPORT LAYER
In this section, we discuss several transport layer technolo-
gies. What sets them apart from the lower network layer is
that they aim to provide their capabilities over either extend-
ing existing transport protocols such as TCP with multicon-
nectivity features, or provide new transports that have been
designed with multiconnectivity in mind. The differences
between the discussed protocols are shown in Table 2 for
reference, and the details are discussed below.

1) MULTIPATH TCP
Multipath TCP (MPTCP) [13] extends the regular TCP pro-
tocol. It was developed to add multipath support to TCP,
i.e, allow the simultaneous usage of all available network
addresses for a TCP flow by creating sub-flows over the
addresses. MPTCP can aggregate all available links for band-
width, perform seamless migration, and choose a lowest
latency link for interactive usage.

MPTCP is implemented by special TCP options.
An MPTCP host announces that it supports MPTCP on
opening a TCP connection. If the destination is also MPTCP
capable, they negotiate the connection, announce their other
addresses, and initiate sub-flow establishment over other
addresses. If a sub-flow becomes invalid, for example due
to roaming between networks, the host announces that the
particular subflow is invalid and should be removed.

Allowing MPTCP to use all possible interfaces increases
the available bandwidth, but can incur extra monetary costs
over cellular links. In addition, using simple path managers
can allow the traffic to also traverse networks that are unde-
sirable due to various reasons such as security. However,
MPTCP supports more advanced path managers that can be
used to achieve desired interface usage based on existing
policies or user input.

2) QUIC
QUIC [1], [10], [23] is a transport protocol built over UDP to
facilitate better performance for HTTPS. QUIC is designed
to multiplex multiple data streams into a single QUIC con-
nection as many web pages contain multiple small elements,
and opening a new connection for each of them is expensive.

5738 VOLUME 10, 2022



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

TABLE 2. Characteristics of different multihoming and multipath protocols. Each column highlights different aspects of the protocols and where they
differ.

Unlike TCP and MPTCP, QUIC is implemented in
userspace, and this allows easier deployment as it does not
requiremodifications to theOS kernel. QUIC supportsmobil-
ity by including a Connection ID in the QUIC headers.
This Connection ID allows QUIC to resume connections that
would otherwise be broken on IP address and port changes,
for example due to switching from WiFi to cellular network.

Although QUIC is designed for HTTPS, applications can
use it as a transport protocol to exchange other data streams.

3) MPQUIC
Even though regular QUIC is not dependent on the classical
5-tuple describing connections due to the Connection ID,
QUIC does not support multipath connections. Currently,
there is a proposal to extend QUIC with multi-patch capa-
bilities known as Multipath QUIC (MPQUIC) [12].

MPQUIC is an extension to QUIC. Its operations are sim-
ilar to MPTCP. When a QUIC connection is established, the
peers of the connection exchange their IP addresses, and
check if they can exchange flows between themselves over
the new connections. Similarly to MPTCP, MPQUIC can
tolerate a loss of connections, and use the rest of the flows
as before.

4) STREAM CONTROL TRANSMISSION PROTOCOL
Stream Control Transmission Protocol (SCTP) is a pro-
tocol designed for reliably transferring messages between
endpoints over UDP [22]. Unlike TCP, SCTP transfers mes-
sages instead of constant stream of data over UDP. The mes-
sages are encapsulated in chunks that are transferred inside
SCTP packets.

SCTP provides congestion control and supports multihom-
ing. Both endpoints of a SCTP connection can have multiple
IP addresses, and connectivity between them is probed during
the connection establishment. If any of the available connec-
tions fail, the rest of the connections can still be used.

While the SCTPwas published in 2000, it has been plagued
by the lack of support in middleboxes and lack of awareness.
As such, while SCTP would provide many of the features
desired in multiconnectivity, it cannot be relied as the only
option.

C. APPLICATION LAYER
Here we discuss two approaches for multiconnectivity in
the application layer. Namely, these methods do not rely
on underlying layers, but embed relevant information in the
application data to allow hosts to move.

1) MOSH
Mobile Shell (MOSH) [14] is a remote terminal application
that can handle roaming between networks. It serves as an
example of a session layer approach to offer multiconnec-
tivity. MOSH is primarily aimed at addressing the problems
of SSH, including no roaming and sleep. These problems
largely stem from the way SSH connects to the server and
transfers data. The connection is tied to the 5 tuple describing
the connection, and the data is transferred as a continuous data
stream, i.e. all bytes need to be transferred and shown in order.

MOSH does not transfer data in a stream, instead it syn-
chronizes objects. Consequently, a MOSH user sees the latest
visible terminal data instead of having to go through all the
backlog of the terminal.

MOSH operates over UDP that allows datagrams to be sent
over a UDP socket regardless of the current IP address. Like
QUIC, MOSH also uses connection identifiers embedded
in the UDP datagrams with its State Synchronizing Proto-
col (SSP). This allow MOSH server to associate datagrams
from different clients to specific sessions, allowing MOSH to
achieve roaming support. SSP can be broadly categorized as
a session layer protocol that uses the services of transport lay-
ers. However, asMOSH is only a remote terminal application,
MOSH cannot be used as a transport protocol.

2) BUFFERING
Another way to handle multiconnectivity is buffering data.
This approach is applicable to streaming video or similar
from the network, where there is no realtime component
to data, i.e. the stream is predetermined and does not have
changing elements [24]. In this approach, the video streaming
application uses cookies or similar to carry the Connection ID
and buffers the received data before showing it to the user.
If the network connectivity changes, the application still has
buffered video to show while it tries to reconnect to the
service. At best, the user does not even realize the network has
changed as long as the reconnect happens before the buffered
video runs out.

This approach is not applicable to any use cases, where
the content changes or there is any realtime component, such
as gaming in the extreme case or even browsing web pages.
In these cases, the user expects to receive the data as fast as
possible with minimal buffering.

D. TAPS
Earlier examples of multiconnectivity protocols discussed
above are single technologies that solve multiconnectivity

VOLUME 10, 2022 5739



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

in their own niche. However, they are not able to provide
a holistic approach to multiconnectivity. The Internet Engi-
neering Task Force (IETF) Transport Services (TAPS) work-
ing group (WG) is working on defining an architecture for
exposing a Transport Services API to the application devel-
opers [25]. The goal of the Transport Services API is to allow
application developers easier access to transport protocol
services such as multiple IP addresses, multipathing, and
providing multiple application streams.

Traditionally the socket API provides access to different
transport protocols such as TCP and UDP. However, different
protocols have different methods for accessing them and are
not used consistently. In some cases, conceptually similar
protocols, for example TCP and Transmission Layer Security
(TLS) that both provide reliable data streaming services, use
different calls to access the send and receive services of the
protocols. Similarly, different protocols use different termi-
nologies for the same concepts such as connection, flow, and
messages. These create a burden for application developers
to learn the differences of each transport protocols, including
the calls to be used and the terminology. This has caused a
stagnation on what protocols are actively used in the Internet,
namely TCP and UDP.

The TAPS WG has also identified a set of services that
different transport protocols offer, including services that
can be handled automatically by the operating system, and
services that require interaction from the applications. This
identification has allowed TAPS to specify a minimal set of
required services that the Transport Services API needs to
provide to the application.

The Transport Services API defines the mechanism for
applications to create network connections and perform data
transfer. TheAPI is an asynchronous, event driven system that
uses messages to transfer data. Each call is designed to be
asynchronous, i.e. the calls do not block the application.

E. NEAT
NEAT is a framework for platform and protocol indepen-
dent transport API [26]. It is a userspace framework that
allows application developers to use different transport pro-
tocols with minimal interaction from the application side.
The NEAT also allows applications to specify different
options and requests to the operating system on what trans-
ports should be used and how they should be configured.
As such, NEAT can be considered a prototype implementa-
tion of TAPS.

The NEAT framework consists of the NEAT user module,
which includes the NEATAPI that applications use to request
a connection. The NEAT module’s policy manager and other
components handle gathering candidate connections based on
policies and cached information.

The NEAT framework performs Happy Eyeballs connec-
tion candidate gathering for each available or requested proto-
col [27]. For example, if the transport policies advocate SCTP
or TCP, the NEAT performs connectivity checks to determine
what IP address (IPv4 or IPv6) and which protocols work.

This allows NEAT to discard non-working protocols and
cache working protocols for future use.

The NEAT framework provides the best transport solution
based on the request the application makes to NEAT, the
policies defined by the system and its administrators, and the
transports the network offers. This allows NEAT to provide
the best single transport solution to the application.

The goals of TAPS and NEAT are very similar to the goals
ofMULTI which are discussed in §III-A. Themain difference
between NEAT and MULTI is that NEAT aims to provide
the best single transport solution such as MPTCP or QUIC,
MULTI aims to provide multiple transports that can be used
simultaneously.

F. WHY IS MULTICONNECTIVITY STILL HARD?
Solutions described in this section try to solve multiconnec-
tivity in different ways at different layers. Some of them do
it at the network layer, some at session, at the application,
or mixing them. Unfortunately, each of them have their own
niches and requirements from the hosts, servers, networks,
and middleboxes.

1) FIVE TUPLE CONNECTION ENDPOINTS DO NOT
SUPPORT MOBILITY
The transport and network protocols used today were primar-
ily designed to offer connectivity to devices that were either
placed in static locations or did not move from one network
to another. The end-to-end principle [28] is also largely vio-
lated with the introduction of load balancers, network address
translators (NAT), and in-network middleboxes that modify
the packet headers and payloads [9]. As a consequence, the
five-tuple definition of a connection endpoint is no longer
valid in a large number of networks.

2) MIDDLEBOXES MAKE IT DIFFICULT
Middleboxes and firewalls also ossify the protocols used
because they tend to drop packets from protocols that are not
well-known. For instance, firewalls blocking UDP datagrams
make it difficult to introduce new UDP-based protocols or
provide extensions to existing UDP-based protocols such as
QUIC [1], [10], [12].

Stateful middleboxes that maintain the state of the connec-
tion also hinder multiconnectivity. When a device changes its
location, the 5-tuple becomes obsolete, and causes the con-
nection to break unless the middlebox can somehow tie the
old and the new location together. Furthermore, encrypting
the payloads of the packets aggravates this problem.

3) DEVICES MAKE MULTICONNECTIVITY HARD
Another thing that makes the multiconnectivity hard are the
devices themselves. The internal routing of the devices are
driven by predefined rules such as an Ethernet interface will
have higher priority than a WiFi which in turn has a higher
priority than a cellular interface, even though the application
could reach the destination using any of them. These rules do
not take into account the current network state. For example,

5740 VOLUME 10, 2022



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

the WiFi interface of the device could be connected to a
network with very slow uplink, while the cellular network
could have a much faster uplink. A user (or application)
cannot easily specify what communication interfaces to use,
apart from manually turning an interface off and forcing the
device to use other interfaces.

One approach to perform system-level traffic steering is
to set routing table rules. However, these are system-wide
changes and are hard to do per application basis, and they
can break connectivity completely by accident. Furthermore,
applications require super-user privileges to perform these
changes.

To summarise, currently there is no single solution that
would solve the issues of multiconnectivity. Each solution
handles a specific use case or area, requiring specific infras-
tructure and software support.

III. OUR SOLUTION: MULTI
We design MULTI to complement the end-to-end principle
of system design, in which applications draw a modular
boundary around the communication subsystem and define
an interface between it and the rest of the application [28].
In the previous section, we highlighted that TAPS and NEAT
exemplify the design of such an interface. In this section
we detail how MULTI builds on the insights of TAPS and
NEAT to multiplex data over multiple transport layer connec-
tions, potentially using different protocols simultaneously.
MULTI enables application developers to support and also
adapt to the protocols in the link layer, network layer, and
transport layer that are available on the networks to which
devices using MULTI are connected. Specifically, MULTI
acts as an umbrella for different solutions that have been
developed over the years and it enables applications to make
requests and provide hints and intents on its expectations and
demands.

In §III-A, we discuss our goals, followed by architecture
design in §III-B. Finally, in §III-C we discuss our implemen-
tation details of the proof-of-concept version of MULTI.

A. GOALS
MULTI is designed to achieve the following goals.

1) END-TO-END EXCHANGE OF DATA STREAMS
Our aim is to allow applications to exchange streams of data
where the order in which the data arrives matters; currently
we do not focus on datagrams where data can arrive out of
order. We envision MULTI to be used by an end-user device
for exchanging streams of data with a remote host.We believe
that if our solution can support exchange of streams data,
it can easily be modified to support datagrams and also short
messages. Currently, we limit MULTI to transport protocols
that have native support for exchanging data streams. For
instance,MULTI can useUDP-based transport protocols such
as QUIC that have native support for exchanging streams of
data, but it cannot use UDP directly.

2) SUPPORT DIFFERENT TRANSPORT, NETWORK, AND
LINK-LAYER PROTOCOLS
We aim to offer applications the flexibility to choose from
a wide range of transport, network, and link-layer protocols.
We assume that devices that use MULTI will be able to avail
themselves of the services of different networks, each of
which supports a different set of network and transport proto-
cols. Inspired by TAPS and NEAT, our goal is to enable appli-
cations to use the best protocols for each situation depending
on the requirements, the current policies, and the capabilities
of the networks available for the data exchange.

3) SIMULTANEOUSLY USE MULTIPLE TRANSPORT
PROTOCOLS
Simultaneously using multiple different transport protocols
allows MULTI to achieve connectivity over multiple het-
erogeneous networks. Networks use middleboxes [29], and
Honda et al. [9] highlight their impact on the ossification of
the Internet. As a consequence, the set of transport protocols
supported by the networks to which a device may connect
cannot be known a priori. For instance, some networks may
restrict or disallow usage of protocols such as MPTCP due to
its special TCP headers or have policies against UDP flows
that in turn affect QUIC. Unlike TAPS and NEAT which
attempt to identify which transport protocols may be sup-
ported by the networks, and select one of the supported trans-
port protocols, we believe that applications can benefit with
the ability to multiplex data streams over multiple transport
layer connections. Using multiple different protocols over the
networks allows MULTI to achieve connectivity when a sin-
gle protocol could fail.We believe that the idea of aggregating
across multiple transport protocols makes MULTI a novel
approach to offer seamless multiconnectivity.

4) ALLOW APPLICATIONS TO a) SPECIFY THE PREFERENCE
OF PROTOCOLS, AND b) SUGGEST CONFIGURATIONS FOR
THE PROTOCOLS
Along with allowing applications to be agnostic to the under-
lying protocols, we also aim to support a fine-grained control
of the protocols. This is essential to ensure that flexibility
does not come at a cost of reduced control over the underlying
protocols used. Preference of protocols is vital because some
protocols may be optimal for the application, but at the same
time applications would prefer to fall back to alternative
protocols if the optimal ones are not supported by the net-
works. For instance, an application might prefer QUIC over
TCP when both MultiPath QUIC and MultiPath TCP are not
supported by the networks.

5) SEAMLESSLY REACT TO NETWORK CHANGES
One of our aims is to support seamless multiconnectiv-
ity. In modern networks, devices regularly move between
different networks, usually between WiFi and mobile net-
works. When the devices roam between these networks, the
IP addresses of the network interfaces change or the

VOLUME 10, 2022 5741



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

connectivity is broken. To allow MULTI to seamlessly react
to these changes, MULTI needs to be able to detect network
changes, and either automatically switch to available connec-
tions or resume connection when network connectivity has
been re-established.

6) USERSPACE IMPLEMENTATION
Inspired by QUIC, MULTI is designed to be implemented
in the user space. Furthermore, unlike TAPS and NEAT,
we assume that MULTI will be supported by both endpoints.
We make this choice because userspace implementations
allow for faster deployment.

In the rest of this section we detail our approach to achieve
these goals.

B. ARCHITECTURE
As shown in Figure 1, MULTI allows applications to
exchange bi-directional data streams. It takes as input a
bi-directional stream of data, and multiplexes it over mul-
tiple transport, network, and link layer protocols. MULTI
bundles multiple solutions such as QUIC and MPTCP under
one roof because it is aimed to harness the strengths of
previous attempts to offer seamless multiconnectivity. It is
also designed to be implemented in user space to allow easy
deployment.

FIGURE 1. Example MULTI Session. Processes can use MULTI to exchange
bi-directional data streams. MULTI multiplexes the data over multiple
bi-directional transport connections.

In the following paragraphs we detail how MULTI allows
applications to multiplex data stream over multiple transport
protocols.

1) SESSION LAYER ENDPOINTS
MULTI requires both the source and destination of a data
stream to support it. It is implemented above the transport
layer of the protocol stack, specifically at the session layer.
A MULTI session is uniquely identified by an application
using a Session ID. This Session ID can be either specified
by the application or generated at run time during the session
initiation.

2) INITIATING A SESSION
A host (initiator) can initiate a MULTI session by opening a
transport layer connection with a remote host. After the trans-
port layer connection is established, the initiator provides the
Session ID to uniquely identify a MULTI session. Once a
session is created, MULTI uses this Session ID when opening

TABLE 3. Fields in the MULTI header for each MULTI segment.

subsequent transport layer connections that correspond to
this session. After a session is initiated, the two endpoints
exchange data using MULTI segments.

3) MULTI SEGMENTS
As shown in Figure 1, MULTI segments are encapsulated
within the payload of the transport-layer protocols. Conse-
quently, the MULTI segments may be encrypted when using
transport protocols such as QUIC that encrypt the payload.

Each MULTI segment includes a header whose fields
are presented in Table 3. We would like to point out that
these fields were chosen only to demonstrate the benefits of
multiplexing transport-layer connections, and have not been
optimized to improve MULTI’s performance. Furthermore,
because MULTI is implemented in userspace, we envision
that these fields can be updated, modified, and optimized
by the applications that use MULTI. To allow potentially
different versions of MULTI to be able to establish connec-
tions, we include a version field in the header. This field
allows newer version of MULTI to be compatible with older
versions of MULTI. Although having a version in the header
can expose some vulnerability for instance in the TLS [30],
it can be mitigated by negotiating the suitable non-vulnerable
versions.

A key field in the header is the Session ID. As previ-
ously mentioned, the same Session ID is used across the
transport-layer connections of a given session.

MULTI segments can either be control plane seg-
ments, or contain the data. Control plane segments include
keep-alive messages and a special segment to explicitly close
the session by closing all the open transport-layer connections
of that session. The data plane segments include segments
that encapsulate the data, and the acknowledgments to iden-
tify that the segment was successfully received.

4) MULTI CONTROL PLANE
Before opening a MULTI session, the application needs to
provide the configuration that MULTI can use for trans-
porting the data to the remote host. We provide an exam-
ple configuration in Figure 2. The design is motivated by

5742 VOLUME 10, 2022



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

FIGURE 2. Example MULTI Configuration. Applications can specify the
priority for the protocols along with the configuration for each protocol.

URLSession [31], and it is designed to be verbose enough
to meet our goals.

The first entry is the configuration_priority,
i.e., the suggested order for the transport-layer connections.
Each connection is defined by a triple: the transport-layer
protocol, the IP-layer protocol, and the interfaces that can
be used for the connection. Applications using MULTI can
use the connection priority to explicitly specify their pre-
ferred preference of the protocols from the protocol stack.
In the example shown in Figure 2, the first entry for
connection_priority specifies that MULTI can use
MPTCP, and this MPTCP connection can use IPv6 and the
Ethernet and WiFi interfaces; this allows the application to
specify that it is optimized for MPTCP, but it might prefer
QUIC over TCP when MultiPath TCP is not supported by
the network. MULTI opens connections similar to Happy
Eyeballs (HE) [27]. In HE,multiple connection establishment
attempts are launched simultaneously over available transport
interfaces and protocols; when a connection is available,
it is given to the application while the rest of the finished
connections are cached for future use.

Similar to HE, the suggested order for connections, along
with the fields for multi_config allows MULTI to deter-
mine how the connections are created and used. For instance,
the connect field of multi_config shows that the con-
nections are configured to be opened sequentially.

Connections can be opened sequentially or in parallel.
Opening a connection in parallel is useful for minimising
latency before the first data byte is transferred. As soon as the
first connection is open, MULTI can use that for data transfer,
and when the rest of the connection establishment attempts
finish, they are added to the list of usable connections. When
there are more than one connection open, MULTI can start
using them as specified in the configuration.

In contrast, sequential trying to open connections can
increase the latency before the first data byte is transferred,
but can have other benefits. The main benefit of sequential
opening is restricting the load induced to both the device
and the destination system. As connection establishment
attempts arrive sequentially, the destination system is capable

of handling more unrelated connection attempts simultane-
ously. For the host, the sequential opening may even allow
better power management, as network interfaces are woken
up only when needed, and not all simultaneously. The main
cause of latency when opening the connections sequentially
are failed connection attempts. If a connection establishment
fails, detecting it can induce extra time before moving to the
next connection on the list.

The scheduler field of multi_config specifies how
the data is multiplexed all the open connections. In the exam-
ple presented, the application specifies that it would like
MULTI to use the Round Robin scheduler to distribute the
load evenly across the opened connections. The scheduler
operates in user space and this opens avenues for creation of
application specific schedulers. For instance, applications can
specify lowest latency to indicate that the transport connec-
tion with the lowest latency is to be selected, or it can specify
that the applications can use the top n connections that have
the lowest latency, or they can select the top n connections
with the best throughput. Furthermore, along with opening
the connections sequentially or in parallel, MULTI can be
easily modified to support staggered connection attempts.

However, MULTI is restricted to what the network can
offer. For example, if an application requires low latency
connection, MULTI can only offer what the available net-
works can provide. In this case, MULTI can be extended
to use the connection with the lowest latency and share the
measured latency across all connections with the application.
The application can then decide whether to continue with the
available latency or terminate the session.

The subsequent fields in the configuration allow the appli-
cation to specify how the MULTI layer should set up and use
the connections. This allows MULTI to configure the trans-
port, network, and link-layer protocols. In the example shown
in Figure 2, MPTCP is configured to use the Round Robin
scheduler, QUIC is configured to have an idle timeout of
5 seconds, the nagle algorithm is disabled for TCP, and TCP’s
idle timeout is increased to 10 seconds. Furthermore, the SSL
certificates to be used by QUIC and TCP are also specified.
Along with configuring the transport protocols, MULTI can
also request the host operating system to configure the link
layer protocols. In this example, MULTI can request the host
OS to disable the WiFi power savings.

5) MULTI DATA PLANE
After providing the configuration, the application can open a
MULTI session to a remote host. On opening a session, the
application is provided with two handles: one for transmitting
data, and the other for receiving data.

As shown in Figure 1, MULTI buffers the data sent by the
application in the session layer. In this layer, MULTI uses
the specified scheduler to multiplex the data transfer over the
opened connections.MULTI also splits the data into segments
and adds the MULTI header to each segment. As shown in
Table 3, the header includes the sequence number for ordering
the data. Note that MULTI relies on the underlying transport

VOLUME 10, 2022 5743



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

protocols to perform the congestion control, and ensuring the
reliable transfer of the segments. Similar to data transmission,
data received over these connections is ordered according to
the sequence number and buffered till the application reads
from the buffers.

All fields of the MULTI control plane segments and data
plane segments including the MULTI headers are encapsu-
lated in the payloads of the transport protocol segments. This
implies that these payloads may be encrypted if the transport
protocol encrypts its payload. For instance, MULTI segments
including the MULTI headers encapsulated in QUIC pay-
loads are encrypted. We discuss the implications of encrypt-
ing the MULTI header in §V.

C. IMPLEMENTATION
We implement our MULTI prototype in python, and we have
made our code and the scripts used for evaluating its perfor-
mance publicly available. Our prototype currently supports
TCP and QUIC as the transport-layer protocols, and is also
designed to supportMPTCP.We use the native asyncio imple-
mentation for TCP, and the aioquic library for QUIC [17].
We use the asyncio libraries because they are designed to
allow developers to build networking applications such as
web-servers.

MULTI requires the ability to a) simultaneously open and
use multiple transport layer connections, and b) explicitly
provide socket options that reflect the requirements specified
by the user. The default asyncio library for TCP and UDP
offers these capabilities, however, they are currently not avail-
able for the aioquic library. We therefore added these features
to the aioquic library in the following manner. First, we made
the aioquic client awaitable. This enables the MULTI library
to simultaneously open multiple connections and use them
concurrently. Second, the current version of aioquic does
not allow setting socket options. In its default state, aioquic
uses the OS routing to send UDP datagrams over any of the
available interfaces. We therefore modified the aioquic to
allow binding a socket to a specific interface to restrict the
UDP datagrams to that interface. Note that by doing so we
have violated the sans-I/O design principle [32] governing the
design of the asyncio protocol libraries for TCP and QUIC.
The sans-I/Omandates that the library code does not perform
network I/O, however we violate it because we want MULTI
to offer the flexibility to specify the interfaces to be used.
In order to offer this flexibility, MULTI must bind the sockets
it uses to the interfaces specified in its configuration.

From the application point of view, when a session has
been created, MULTI exposes a stream reader and stream
writer to the application. The application can use these han-
dles as it would use normal sockets to send and receive
data. Under the hood, MULTI multiplexes the sending and
receiving of data over the available transport connections.

IV. EVALUATION
In this section we present the results of experiments to eval-
uate our MULTI prototype.

FIGURE 3. Testbed. Our testbed contains our laptop that has an Ethernet,
a WiFi, and a 5G connection to our test server.

TABLE 4. Testbed components.

A. GOALS
The goal of our evaluation is to showcase both the strengths
andweaknesses of theMULTI approach. Specifically, we aim
to identify avenues to improve MULTI and highlight some of
the factors that continue to make seamless connectivity hard,
including overheads caused by a session layer approach and
the effect of the packet scheduler when multiplexing multiple
connections.

In our evaluation, we first focus on the throughput when
transferring large amounts of data (256 MB), the duration to
transfer a small amount of data (25 kB), and the time to open
a MULTI session. We then show how MULTI behaves when
the test devicemoves between networks, either aggregating or
switching active connections. For this test, the client device
initiates a download over a cellular connection and then joins
aWiFi network. The details of our methodology for the above
tests are presented in §IV-C.

B. EVALUATION TESTBED
For our evaluation, we use our testbed presented in Figure 3,
and the hardware and software detailed in Table 4. Our client
laptop can exchange data with our server viaWiFi (802.11ac),
a 1 Gbps Ethernet link, and an 5G mobile phone using USB
tethering. Note that all the Ethernet links, including the link
between theWiFi Access Point (AP) and our server, can oper-
ate at a bit rate of at least 1 Gbps. All link layer technologies,
namely Ethernet, WiFi, and 5G, can use both IPv4 and IPv6
to reach the server. However, while the server can reach the
laptop over all three technologies using IPv6, the server can
reach the laptop only through WiFi and Ethernet when using
IPv4. This is due to two levels of NAT between the laptop and
the server over the 5G link: the ISP has IPv4 NAT between
the phone and the Internet, and the USB tethering at the
phone adds another NAT. Due to this, our baseline iperf tests

5744 VOLUME 10, 2022



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

(described in §IV-C) are only run over IPv6 from server to the
laptop.

The average round trip time (RTT) between the server
and client over 5G, Ethernet and WiFi was 46 ms, 0.250 ms
and 1.8 ms respectively. These RTT measurements were con-
ducted using ping. Furthermore, we use a dedicated manage-
ment network (not shown in the figure) to facilitate remote
management, and also for all other background traffic travers-
ing our laptop and server.

C. TEST DESCRIPTIONS
To evaluate our MULTI prototype, we first use three different
test scenarios to establish the baseline performance of our
testbed and also the performance of MULTI. Then, we use
three tests to evaluate the current performance of our MULTI
prototype, followed by two tests to demonstrate how MULTI
handles roaming between networks.

In each test, the laptop is acting as client that connects to
the test server. In each of the figures, the values shown in
Rx (receiving) and Tx (transmitting) are from the laptop’s
point of view.

1) BASELINE PERFORMANCE
Wemeasure the baseline performance for our testbed with the
following three tests.
1. iPerf.We use iPerf to measure the achievable throughput

when using our Ethernet and WiFi links for transferring
data over TCP and UDP over IPv6. iPerf currently does not
support QUIC, so we use UDP to give a rough estimate on
the throughput that can be achieved when using UDP based
transport protocols such as QUIC.
2. Base. For this test, we measure a) the time required to

open a connection, b) the throughput for transferring 256MB
of data, and c) the total duration to transfer 25 kB of data,
including the time to open the connections, when using the
asyncio python libraries for TCP and QUIC. We run the
tests over all links using TCP and QUIC over IPv6 in both
directions.
3. Multi. We repeat the previous test using MULTI to

quantify the bandwidth overheads incurred when it is used.
Similar to the previous test, we configure MULTI to use only
one transport-layer protocol (TCP or QUIC), IPv6, and one
link layer interface.

2) MULTI PERFORMANCE
We consider MULTI with three connections; specifically,
we open a transport-layer connection on each interface.
As with the baseline performance, we measure a) the time to
open a connection, b) the duration to transfer 25 kB of data,
and c) the throughput when transferring 256 MB of data.

a: TIME TO OPEN A CONNECTION
A key component of MULTI is the module that allows it to
open multiple connections for the data transfer. However, the
time taken to open each of the connections can vary signifi-
cantly due to link characteristics and also the configuration

settings. For instance, MULTI can currently be configured
to (i) open all connections sequentially and begin the data
transfer after all the connections are open, or (ii) try to open
all connections in parallel, and begin the data transfer after
one of them is successfully opened. For this test, we consider
option (i), i.e., sequential opening, because it is representative
of the worst case scenario; the baseline measurements for
MULTI are representative of option (ii), i.e., parallel opening.

b: DURATION TO TRANSFER 25 kB
Multipath protocols such as MPTCP can be inefficient when
transferring small amounts of data as the time to open mul-
tiple connections can be larger than the time to transfer the
data [33]. In this test, we emulate this scenario. Specifically,
we perform the data transfer after all the connections have
been established, and we use the Round Robin scheduler to
distribute data evenly across the links. We use segment sizes
of 16 kB, and allow the MULTI segments to be fragmented
by the transport-layer protocols. For instance, the default
aioquic implementation fragments eachMULTI segment into
segments of 1280 bytes.

c: THROUGHPUT WHEN TRANSFERRING 256 MB
In this test, we evaluate the performance of MULTI when
using the Round Robin scheduler to distribute the load across
the two communication links. Although the Round Robin
scheduler is not the most efficient scheduler to maximize the
throughput, we use it to showcase the multiplexing capabili-
ties of MULTI.

3) MOVING BETWEEN NETWORKS
One of themain goals ofMULTI is to supportmobility. In pre-
vious tests, the networks the test laptop has been connected
to have been static. However, when devices move between
networks, the active connections are affected, and can cause
degraded service.

Here, we emulate the laptop moving from one network
to another, i.e. either switching between active interfaces
or aggregating multiple interfaces when they become avail-
able. Aggregating multiple connections over multiple net-
work interfaces should increase the total bandwidth available
to MULTI.

Switching between networks can either cause total connec-
tion loss, or packet loss and momentary drops in bandwidth.
We emulate network switching with make-before-break, i.e.
the new connection has been established before the old con-
nection is lost. In our tests, the network switch is triggered
manually after 15 seconds. This emulates the case when the
user has configured MULTI to use WiFi when available and
cellular as a backup when WiFi is not available.

In real networks, the changes in networks happen when
the devices move from one place to an another, and network
changes can be very abrupt. Our current MULTI prototype
does not yet listen to the network events, however, it has
hooks that can be extended to support the switching between
active connections.

VOLUME 10, 2022 5745



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

FIGURE 4. iPerf. Baseline link capabilities for Rx and Tx.

For each test we report the values measured at our client
laptop. Furthermore, we measure the values observed when
the client is transmitting the data to the server (Tx), and when
it is receiving the data from the server (Rx). Notable here is
the cellular connection, whose bandwidth depends on if the
laptop is sending or receiving because sending data over the
cellular connection we used is slower than receiving data over
the same connection.

D. RESULTS
1) BASELINE PERFORMANCE
We present the results of our baseline measurements
in Figure 4 and Figure 5.

In Figure 4, we observe that iPerf can reach roughly
940 Mbps over Ethernet in both directions, and 200 Mbps
over WiFi. Over 5G links, iPerf can reach 190 Mbps down-
load and 35 Mbps upload in our testbed. The asymmetry
between download and upload is due to cellular network
technologies. These results provide us with the maximum
achievable throughput without overheads caused by MULTI
or other protocols in our testbed.

In Figure 5(a) we observe that the time to establish a
connection is smaller when using Ethernet compared toWiFi,
and the most time by a large margin is when using 5G.
We believe that this is because of the larger RTTs for WiFi
and 5G, and also due to radio characteristics of the wireless
links that can cause the first packet to incur a larger latency
than the subsequent packets [34]. Furthermore, when using
the base asyncio library we observe that the time to open a
TCP connection (2.09 ms over Ethernet, 5.57 ms over WiFi,)
is smaller than that for a QUIC connection (31.53 ms over
Ethernet, 34.32 ms over WiFi, and 50.2 ms over 5G) because
QUIC also performs a TLS handshake during connection
establishment.

In Figure 5(b), we observe the MULTI and the baseline
TCP and QUIC libraries require similar amount of time to
transmit 25 kB; the only notable difference is when MULTI
receives data over QUIC. This is most likely a consequence
of the fragmentation caused by the MULTI segment header.
The additional bytes required by theMULTI header increases
the number of IP packets, which in turn increases the number
of asynchronous events and calls to the SSL libraries in the
QUIC implementation. This increase in events coupled with
the slower laptop CPU results in the additional time.

In Figure 5(c), we observe that using the asyn-
cio libraries (Base) results in a significant decrease in
the throughput compared to iPerf, and this decrease is

significantly large for QUIC; for instance, we were able to
achieve only 844 Mbps Tx (10.2% decrease) and 724 Mbps
Rx (22.9% decrease) when using TCP over Ethernet, and
48 Mbps Tx (94.8% decrease) and 78 Mbps Rx (91.7%
decrease) when using QUIC over Ethernet. We also observe
a similar decrease in throughput for WiFi and 5G. We believe
that the difference in the Tx and Rx throughput is because
of slower laptop CPU coupled with the increased CPU load
incurred when reading data at the client; a write results in
writing to an asyncio stream buffer, while a read results in
asyncio events for reading the requested amount of data from
the socket buffers. We also observe that MULTI incurred a
small overhead (less than 5% decrease in throughput) when
using TCP for Ethernet and WiFi when compared to the base
line asyncio, but it incurred a high overhead (up to 20%
decrease in throughput) when using QUIC over Ethernet and
WiFi. When using 5G, we observe that the performance of
MULTI degrades considerably when receiving data over TCP.
This is primarily due to the increased number of asyncio
events created by MULTI to process the incoming TCP seg-
ments and longer latency over the 5G link (46ms compared to
less than 2 ms over WiFi or Ethernet). For WiFi and Ethernet,
the network latency is small enough for the asyncio event
loop to batch the events together, however this batching does
not happen because of the delays and the variance in the
delays in the 5G network we used. We are currently exploring
approaches to address this shortcoming.

2) MULTI: THREE CONNECTIONS USED TO DEMONSTRATE
ITS MULTIPLEXING CAPABILITIES
In this test, we measure the performance of MULTI using
three different link-layer transports, namely Ethernet, WiFi,
and 5G. We use these tests to demonstrate the multiplexing
capabilities of MULTI and present its performance when
using multiple available link-layer and transport-layer pro-
tocols. We expect to see poor performance because of the
inherent weakness of the basic Round Robin scheduler with
highly asymmetric links.

In Figure 6(a) we observe that the time to open three con-
nections (for combinations of TCP and QUIC) is longer than
the time observed to open a single connection in Figure 5(a).
The time to open three connections is the smallest when all
the connections use TCP because QUIC requires the TLS
handshakes; we plan to investigate the impact of using TLS
over TCP in our future work.

In Figure 6(b) we observe that using multiple links
increases the duration to transfer 25 kB of data. This is inline
with other works that have compared the effect of multipath
protocols for small and large file transfers [12], [33]. Further-
more, sending the data is faster than receiving because of the
slower laptop CPU coupled with the WiFi and 5G savings.

Figure 6(c) highlights the benefits and shortcomings of a
Round Robin scheduler: it can alleviate the load on the slower
links, but the achieved throughput is significantly smaller
compared to when using only the link with the best perfor-
mance. Note that our testbed is biased towards the 1 Gbps

5746 VOLUME 10, 2022



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

FIGURE 5. Baseline results. MULTI results represent its bandwidth overheads when using only a single transport layer connection. Figures (a),
(b) and (c) respectively present the time to open a connection, the duration to transfer 25 kB of data, and the throughput to transfer 256 MB data
when using the base asyncio library (left), and MULTI (right). Error bars represent the standard deviation across 10 iterations.

FIGURE 6. MULTI performance with three connections. These results represent MULTI’s multiplexing capabilities when using the Round Robin scheduler
after waiting for all transport connections to be established. Figures (a), (b) and (c) respectively present the time to open a connection, the duration to
transfer 25 kB of data, and the throughput to transfer 256 MB data. MULTI’s Round Robin scheduler distributes the load across the connections. Error
bars represent the standard deviation across 10 iterations. The color denotes the transport protocol (TCP = T, QUIC = Q) used by Ethernet, WiFi, and 5G.

Ethernet. For instance, the performance for T, T, T, i.e. all
TCP, is best as expected, although due to the nature of Round
Robin scheduler the speed is not as good as with a single
TCP over Ethernet connection. However, the throughput is
roughly twice as fast as the TCP over WiFi or 5G, showing
the benefit of aggregation. MULTI’s scheduler can be tuned
to account for the costs of using each link, and the desired
performance. For instance, if the faster link is expensive,
MULTI can be tuned to minimize the cost while achieving
the desired throughput.

3) MOVING BETWEEN NETWORKS
In Figure 7(a) and Figure 7(b), we present the results of
MULTI aggregating bandwidth with a 5G and WiFi network
when downloading data from the Internet. In these tests,
MULTI first uses cellular network to establish a connection
and start transferring data. At 15 seconds, the WiFi network
becomes available, and MULTI aggregates both interfaces
for additional bandwidth. In the optimal case, MULTI should
reach similar speeds as in Figure 5(c), i.e. if we aggregate
TCP over WiFi and cellular, the best download speed MULTI
should reach is around 350 to 400 Mbps. However, we do
not achieve these speeds because our prototype is currently
single-threaded, and there are overheads in handling multiple
streams simultaneously in single threaded applications.

In Figure 7(a) we show MULTI transferring data over
TCP. In the beginning, MULTI reaches a bandwidth of
around 100 Mbps over 5G. At the 15 seconds mark, MULTI

aggregates the WiFi network to the existing connection.
After aggregation, MULTI gains additional bandwidth and
reaches the maximum bandwidth of 340 Mbps. This band-
width decreases to roughly 300 Mbps after a short time,
most likely due to full receiving buffers at the client lap-
top. We also observe some abnormal throughput in WiFi
connection. We believe that this could be due to various
factors including a) buffers filling in our AP or the test laptop,
or b) background traffic in our networks, and c) background
activities in our laptop.

In Figure 7(b) we show results when MULTI only uses
QUIC to transfer data. At the 15 seconds mark, we add
another QUIC connection and start aggregating the connec-
tions. HereMULTI reaches its peak performance of 75Mbps.
We also observe a small drop in 5G bandwidth during the
experiment. We believe this caused by the interaction of two
independent QUIC connections, higher latency of tens of ms
over 5G, and the asyncio event loop of the Python.

In Figure 8, we show the performance of MULTI when
we use a mix of TCP and QUIC connections over 5G and
WiFi. In Figure 8(a), we use TCP over 5G and QUIC over
WiFi. When we aggregate QUIC over WiFi to TCP over
5G, we observe a drop in the throughput over our 5G link.
While QUIC over WiFi reaches similar throughput as in
Figure 7(b), the throughput of TCP over 5G drops to 50Mbps.
As above, we believe this drop to be due to the client handling
the QUIC stream and the difference in bitrate and latency
between the 5G and the WiFi connections. These lead to

VOLUME 10, 2022 5747



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

FIGURE 7. MULTI performance when aggregating connections with TCP. Figures (a) and (b) respectively present how MULTI behaves when moving from
5G network to the range of a WiFi network, either using TCP or QUIC for both connections. In Figure 7(a), after MULTI aggregates 5G and WiFi, it almost
doubles available bandwidth. In Figure 7(b), MULTI gains additional bandwidth after aggregation with QUIC. However, QUIC’s congestion window
increase is slower over 5G due to longer latency. Similarly, QUIC over 5G loses bandwidth possibly due to heterogeneous links and MULTI
implementation.

FIGURE 8. MULTI performance when aggregating connections using TCP and QUIC simultaneously. Figures (a) and (b) respectively show how MULTI
behaves when using either TCP over WiFi and QUIC over 5G or vice versa. In Figure 8(a), after MULTI aggregates TCP over 5G and QUIC over WiFi, while
MULTI increases overall bandwidth, we observe a drop in TCP over 5G, most likely due to queuing at client. In Figure 8(b), MULTI gains additional
bandwidth after aggregation. Variance in WiFi is most likely due to buffering at AP or at the client.

FIGURE 9. MULTI behaviour when switching between networks. Figures (a) and (b) present how MULTI behaves when switching between 5G and WiFi
network. A switch is triggered every 15 seconds. In Figure 9(a), we show the behavior when both connections use TCP. In Figure 9(b), we show behavior
with QUIC. Here, we see how QUIC’s congestion window increase over 5G takes longer than over WiFi.

the client receiving more MULTI segments encapsulated in
QUIC frames over WiFi, which take longer to process than
plain MULTI segments over TCP.

Similarly, Figure 8(b) shows the case where we initiate the
connection with QUIC over 5G and aggregate it with TCP
over WiFi. As earlier, QUIC over 5G rises to a bandwidth
of around 30 Mbps. However, when the TCP over WiFi is
added, we again observe the drop in QUIC over 5G due to the
above-mentioned reasons. The WiFi throughput of the WiFi
connection also becomes unstable at around 23 seconds, most
likely due to the behaviors previously mentioned.

In Figure 9, we show how MULTI behaves when we
manually switch between transport links. Here we use make-
before-break when switching the transports, i.e. the connec-
tion over the other link is established before the other link is
broken.

In Figure 9(a), we show how MULTI behaves when we
switch TCP over 5G toWiFi and vice versa. MULTI achieves
the same performance as before when single interface is used.
Notable here is the TCP windows size adjustment. In the

beginning, the TCPwindow size slowly increases to reach the
maximum bandwidth over 5G. However, when we perform
the switch back to 5G fromWiFi, the window size converges
much more rapidly.

Figure 9(b) presents the results of a similar experiment with
both transports using QUIC. Here MULTI reaches the speeds
as above using single transports. When the switch between
networks happens, we see overlap between connections due
to buffers not being empty. As we use make-before-break in
our testbed, this allows MULTI to empty buffers instead of
losing data.

The results in Figure 7, Figure 8, and Figure 9 demonstrate
how MULTI can be used when devices switch between net-
works. A caveat of our evaluation is that a make before break
used in our evaluation may not be possible without the help of
the network. However, when moving into the WiFi range and
switching to it from 5G, make-before-break should always be
possible as long as the 5G (or slower) coverage is available.
When moving from WiFi to 5G, the WiFi connection loss
can be more abrupt, however, if MULTI uses hooks to the

5748 VOLUME 10, 2022



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

underlying network interfaces, MULTI could detect impend-
ing connection loss from WiFi signal strength and trigger the
switch automatically.

V. DISCUSSION AND FUTURE WORK
Our evaluation shows that MULTI can offer programmable
multiconnectivity over multiple interfaces and transports.
Although our current prototype highlights the strengths of
MULTI’s architecture, it also shows the weaknesses of the
prototype. There are many avenues to optimize its perfor-
mance; for instance, we were unable to use uvloop [35]
because it currently does not support binding UDP sockets
to specific interfaces.

Currently our solution’s network view is local to the
devices on which MULTI is running. We envision a larger
system, where different network controllers are available
with which MULTI can exchange information to assess the
available capacities of the networks. By working together
with these controllers, and adding new capabilities toMULTI,
we envision that programmable multiconnectivity can be
achieved.

A. COUPLED CONGESTION CONTROL
Transport protocols such as TCP and QUIC implement their
own congestion control mechanisms. These mechanisms
work on single connection basis, i.e. each connection has its
own view of congestion. However, when multipath transport
protocols such as MPTCP are used, there is a need for cou-
pled congestion control mechanisms as each path will have
different congestion characteristics [36].

The current version of MULTI does not support coupled
congestion control. However, coupled congestion control can
be implemented in user space, as demonstrated by Multipath
QUIC (MPQUIC). Specifically, MPQUIC uses Opportunistic
Linked Increase Algorithm (OLIA), which we are planning to
implement to allow MULTI to handle congestion better [37].
However, some of the challenges we envision include the
impact of having a congestion control algorithm in user space
when using transport protocols such as TCP whose conges-
tion control algorithms are implemented in the OS kernel.

B. NETWORKING APIs
MULTI exposes two handles: one for reading data that arrives
from the network, and the other for sending data to the remote
peer. Internally MULTI uses the socket file descriptions via
the asyncio python library. MULTI’s API are inspired by
URLSession [31] and the APIs recommended by the IETF
TAPs architecture [25]. Specifically, MULTI’s API comple-
ments these efforts that are aimed at hiding the semantics of
the socket API from the application developers. We acknowl-
edge that the current APIs in our prototype are not compre-
hensive because they were primarily designed to implement
our prototype of MULTI.

C. END-TO-END SUPPORT
Our current MULTI prototype requires both endpoints to
support MULTI. Currently, the application developer has to

have the knowledge that the destination is also using MULTI.
In the future, we envision MULTI to be able to determine
if the destination is either MULTI-capable or not through
methods similar to TAPS, MPTCP, and Happy Eyeballs. This
will allow MULTI to be properly agnostic to the underlying
networks.

Similarly, the work on pluginizing QUIC is relevant to
MULTI [38]. Pluginized QUIC allows endpoints to exchange
protocol plugins per connection basis, thus extending features
that either endpoint supports. Protocol plugins would allow
MULTI to use new userspace protocols that are not available
when the application is created.

D. MIDDLEBOXES
Different multiconnectivity protocols have issues with mid-
dleboxes because many middlebox implementations do not
behave well with protocols they do not support [9], [12], [38].
As such, a single multiconnectivity protocol may not be able
to use all available networks. For example, if a device is con-
nected to two networks, one of which supports MPTCP and
one that does not understandMPTCPTCP options, it discards
the MPTCP packets. In this instance, MPTCP is restricted
to only single path, while MULTI can use both networks
as MULTI can use more than one protocol simultaneously.
At the same time encrypted communications makes travers-
ing middleboxes even more difficult, as we discuss below.

E. ENCRYPTED COMMUNICATIONS
Encrypted communications have become the norm. For
example, QUIC has been designed to use encryption from its
inception. QUIC encrypts most of the packet payload while
leaving enough of the headers unencrypted for middleboxes
to detect QUIC protocol [10].

The goal of the MULTI is similar, encrypt the data of
the flows when requested. However, this causes MULTI to
encrypt data twice when using underlying protocols that
encrypt data like QUIC. This is problematic when dealing
with load balancers, as the balancers see QUIC packets which
contain encrypted MULTI frames. This can cause different
flows of MULTI to reach different servers. This requires
MULTI to decide which connection to use based on requested
connection priorities and marking the connection to the other
server as invalid. While not fatal for MULTI, this is not
optimal and requires further study.

F. HEAD-OF-LINE BLOCKING
Head-of-Line blocking is an issue when dealing with network
connections that stream buffered data over heterogeneous
networks. In MULTI, we can employ similar methods like
MPQUIC to avoid the Head-of-Line blocking [12]. MPQUIC
uses the same packet scheduler as MPTCP uses in the Linux
kernel with few modifications. These include different meth-
ods such as specific WINDOW_UPDATE frames to estimate
the latency and the bandwidth of different paths. It then uses
the results of these estimates to adjust its packet scheduler
to avoid Head-of-Line blocking. However, this approach will

VOLUME 10, 2022 5749



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

not work when using TCP as the transport for exchanging
streams, and MULTI can be configured to avoid using TCP
when used by applications that are sensitive to Head-of-Line
blocking.

G. COSTS OF SCHEDULING AND PAYLOAD INCREASES
Using multiple transports simultaneously carries its own
costs. As with any multipath protocols, scheduling traffic
over multiple paths inherently incurs additional latency. [12]
This latency can be mitigated with scheduler designs, where
more complex schedulers can take the differences of different
transport into account and optimize the scheduling decisions.

Similarly, using a session layer protocol increases the
packet sizes as the headers need to carry enough informa-
tion for endpoints to associate packets with the connections
they belong to. This is true for other multipath protocols
regardless of which network layer they operate. For example,
the MPTCP carries Connection IDs and other information as
TCP options [13]. Like with the scheduler design, the headers
can be designed to only carry as much information as is
required for the protocol to operate. To achieve this, QUIC
uses different sets of headers for connection establishment
and data transfer [10].

H. CAVEATS OF THE MULTI
Our MULTI prototype that we used in our evaluation is
not perfect. Instead, its main purpose is to highlight both
the problems of the current state of multiconnectivity and
the insights that can be gleaned from the proof-of-concept
implementation. As discussed in earlier chapters, none of the
existing multiconnectivity protocols and solutions work in
all scenarios. Some of them come close, for example QUIC
is already in use and its popularity is ever increasing, and
MPTCP has been deployed on some mobile phones. TAPS
and NEAT also show how systems can move from being
restricted to a single protocol to protocol agnostic system.

MULTI on the other hand tries to combine multiple proto-
cols into a unified connection over multiple interfaces. It is
not restricted by the protocols themselves, but is restricted
in other ways as discussed in this section. There are several
large issues with MULTI; namely congestion control and
HOL blocking.

Our MULTI prototype is based on asyncio which has
its own performance issues. Optimizations such as uvloop
address some of these issues, but they are not a complete
replacement for the native asyncio python libraries. For
instance, we could not use uvloop and bind UDP sockets. Our
prototype is therefore a proof of concept and is not designed
to optimize the I/O throughput.

VI. CONCLUDING REMARKS
Multiconnectivity, be it either multihoming or multipath, has
been studied for decades [18]. In this paper, we discuss solu-
tions that operate on different layers of the network stack and
highlight some key issues applications may face when using
them. For example, MPTCP is a good replacement for TCP,

FIGURE 10. Baseline results (MULTI results are representative for best
case). Figure (a) presents the throughput when using iPerf. Figures (b),
(c) and (d) respectively present the time to open a connection, the
throughput to transfer 256 MB data, and the duration to transfer 25 kB
of data when using the base asyncio library (left), and MULTI (right).
Error bars represent the standard deviation across 10 iterations.

but its deployment is hindered by the Internet ossification and
middleboxes.

Existing solutions do not offer applications and users the
control over the set of chosen communication interfaces.
Insights from the seminal work of Bahl et al. [39] and the
recent works on TAPS motivate us to believe that this level
of control will be vital and useful in the next generation
networks and end-user applications.

We therefore created our solution, MULTI, that allows
applications to specify their requirements and can be
extended to request the network to fulfill them. It is agnostic
to the underlying network and transport protocols. It draws
from QUIC and MOSH on how to handle the connectivity
and roaming in the session layer, i.e. closing a link will not
break a connection as long as there is an alternative route.

5750 VOLUME 10, 2022



S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

FIGURE 11. MULTI performance with two connections (representative for worst-case by using the Round Robin scheduler after waiting for all
transport connections to be established). Figure (a) presents the throughput when transferring 256 MB, while Figure (b) presents the
duration to transfer 25 kB of data. In both cases, MULTI used the Round Robin scheduler to distribute the load across the connections. Error
bars represent the standard deviation across 10 iterations.

While MULTI can currently exchange a single data stream
inside multiple connections, we plan to extend it to multiplex
multiple streams.

We also envision a system where networks can provide
information to MULTI. For example, MULTI could use
MAMS [40] to negotiate the required QoS/QoE with the
networks when selecting the set of communication interfaces
and protocols to use.

Although our prototype highlights the strengths of
MULTI’s architecture, there are many avenues to optimize its
performance; for instance, we were unable to use uvloop [35]
to replace the default Python event loop as it currently does
not support binding UDP sockets to specific interfaces. This
shows in poor performance when using QUIC.

Although our MULTI prototype is not optimized, it still
highlights the gains that can be achieved with programmable
multiconnectivity.

APPENDIX A
ARTIFACTS
The MULTI prototype and results are available at: https://
version.helsinki.fi/multiconnectivity/multiconnscratch

APPENDIX B
RESULTS WHEN USING IPv4
In this section, we present some of our experimental results
for highlighting that MULTI is agnostic to underlying IP
protocol. These results use the same test environment as
results presented in §IV with a few differences. As such,
there are only two available transport interfaces forMULTI to
choose from because the experiments were conducted using
IPv4. The test environment does not include a 5G connection
because of the double NAT issue discussed in §IV.

In Figure 10, we observe that iPerf and MULTI can reach
similar speeds and bandwidths with IPv4 as presented in
Figure 4 over IPv6.

Figure 11 shows the results of MULTI using two connec-
tions over different combinations of interfaces and protocols.

In Figure 11(a) we present the time to open both the con-
nections. The connection establishment time is the smallest
when both the connections use TCP, and the worst when both

the connections use QUIC because of the TLS handshakes
performed by QUIC. As expected the time to open two TCP
connections is twice the amounts observed in Figure 10(b);
we observe a similar behavior for QUIC.

In Figure 11(b) we present the time to transfer 25 kB,
we observe that MULTI performs significantly better when
receiving data over two QUIC connections. However,
we believe this to be an artifact of our proof-of-concept and
not the real case.

In Figure 11(c), we show the benefits and shortcomings
of using the round-robin scheduler. While this scheduler can
be used to alleviate the load on the WiFi links, the achieved
throughput is significantly smaller compared to when using
only the link with the best performance (Ethernet link shown
for MULTI in Figure 10(c)). For instance, the performance
for Eth-TCP, WiFi-TCP is best as expected, although due to
the nature of Round Robin scheduler the speed is not as good
as with a single TCP over Ethernet connection. However, the
throughput is roughly twice as fast as the TCP over WiFi,
showing the benefit of aggregation.

REFERENCES
[1] Android Help—Connect to Wi-Fi Networks on Your Android Device.

Accessed: Mar. 26, 2021. [Online]. Available: https://support.
google.com/android/answer/9075847

[2] Capabilities—Overview of Linux Capabilities. Accessed:
Aug. 26, 2021. [Online]. Available: https://man7.org/linux/man-pages/
man7/capabilities.7.html

[3] Optimize Network Data Usage. Accessed: Apr. 17, 2021. [Online].
Available: https://developer.android.com/training/basics/network-ops/data
-saver

[4] NoRoot Firewall. Accessed: Apr. 17, 2021. [Online]. Available:
https://play.google.com/store/apps/details?id=app.greyshirts.firewall

[5] K. B. Egevang and P. Francis, The IP Network Address Translator
(NAT), document RFC 1631, May 1994. [Online]. Available: https://rfc-
editor.org/rfc/rfc1631.txt

[6] W. Reese, ‘‘Nginx: The high-performance web server and reverse proxy,’’
Linux J., vol. 2008, no. 173, p. 2, Sep. 2008.

[7] J. Kempf and R. Austein, The Rise of the Middle and the Future
of End-to-End: Reflections on the Evolution of the Internet Architec-
ture, document RFC 3724, Mar. 2004. [Online]. Available: https://rfc-
editor.org/rfc/rfc3724.txt

[8] S. Guha and P. Francis, ‘‘An end-middle-end approach to connec-
tion establishment,’’ in Proc. Conf. Appl., Technol., Archit., Protocols
Comput. Commun., New York, NY, USA, 2007, pp. 193–204, doi:
10.1145/1282380.1282403.

VOLUME 10, 2022 5751

http://dx.doi.org/10.1145/1282380.1282403


S. Hätönen et al.: Programmable Session Layer MULTI-Connectivity

[9] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, ‘‘Is it still possible to extend TCP?’’ in Proc. IMC, 2011,
pp. 181–194.

[10] J. Iyengar and M. Thomson, Quic: A UDP-Based Multiplexed and
Secure Transport, document RFC 9000, Internet Requests for Comments,
May 2021.

[11] A. Langley, A. Riddoch, A. Wilk, and A. Vicente, ‘‘The QUIC transport
protocol: Design and internet-scale deployment,’’ in Proc. SIGCOMM,
New York, NY, USA, 2017, pp. 183–196, doi: 10.1145/3098822.3098842.

[12] Q. De Coninck and O. Bonaventure, ‘‘Multipath quic: Design
and evaluation,’’ in Proc. ACM CoNEXT, 2017, pp. 160–166, doi:
10.1145/3143361.3143370.

[13] C. Paasch and O. Bonaventure, ‘‘Multipath TCP,’’ Commun. ACM, vol. 2,
no. 4, pp. 51–57, 2014, doi: 10.1145/2578901.

[14] K. Winstein and H. Balakrishnan, ‘‘Mosh: An interactive remote shell for
mobile clients,’’ in Proc. USENIX, 2012, pp. 177–182.

[15] C. E. Perkins, ‘‘Mobile IP,’’ IEEECommun.Mag., vol. 35, no. 5, pp. 84–99,
May 1997.

[16] Asyncio—Asynchronous I/O. Accessed: Mar. 31, 2021. [Online].
Available: https://docs.python.org/3/library/asyncio.html

[17] Aioquic. Accessed: Mar. 31, 2021. [Online]. Available:
https://aioquic.readthedocs.io/en/latest/

[18] M. Li, A. Lukyanenko, Z. Ou, A. Ylä-Jääski, S. Tarkoma, M. Coudron,
and S. Secci, ‘‘Multipath transmission for the internet: A survey,’’ IEEE
Commun. Surveys Tuts., vol. 18, no. 4, pp. 2887–2925, 4th Quart., 2016.

[19] R. Moskowitz, T. Heer, P. Jokela, and T. Henderson, ‘‘Host Identity
Protocol Version 2 (HIPV2), document RFC 7401, Internet Requests
for Comments, Apr. 2015. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc7401.txt

[20] S. Hätönen, T. Huque, A. Rao, G. Jourjon, V. Gramoli, and S. Tarkoma,
‘‘An SDNperspective onmulti-connectivity and seamless flowmigration,’’
IEEE Netw. Lett., vol. 2, no. 1, pp. 19–22, Mar. 2019.

[21] P. Nikander, A. Gurtov, and T. R. Henderson, ‘‘Host identity protocol
(HIP): Connectivity, mobility, multi-homing, security, and privacy over
IPv4 and IPv6 networks,’’ IEEE Commun. Surveys Tuts., vol. 12, no. 2,
pp. 186–204, 2nd Quart., 2010.

[22] R. Stewart, Stream Control Transmission Protocol, document RFC
4960, Internet Requests for Comments, Sep. 2007. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4960.txt

[23] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, ‘‘Innovating transport
with QUIC: Design approaches and research challenges,’’ IEEE Internet
Comput., vol. 21, no. 2, pp. 72–76, Mar./Apr. 2017.

[24] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z.-L. Zhang, M. Varvello,
and M. Steiner, ‘‘Measurement study of netflix, hulu, and a tale of
three CDNs,’’ IEEE/ACM Trans. Netw., vol. 23, no. 6, pp. 1984–1997,
Dec. 2015.

[25] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, C. Perkins,
P. S. Tiesel, and C. A. Wood, An Architecture for Transport Ser-
vices, document Internet-Draft draft-ietf-taps-arch-10, Working Draft,
IETF Secretariat, Apr. 2021. [Online]. Available: https://www.ietf.
org/archive/id/draft-ietf-taps-arch-10.txt

[26] N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst,
K.-J. Grinnemo, D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tuxen,
and F. Weinrank, ‘‘NEAT: A platform and protocol-independent inter-
net transport API,’’ IEEE Commun. Mag., vol. 55, no. 6, pp. 46–54,
Oct. 2017.

[27] D. Schinazi and T. Pauly, Happy Eyeballs Version2: Better Connectivity
Using Concurrency, document RFC 8305, Internet Requests for Com-
ments, Dec. 2017.

[28] J. H. Saltzer, D. P. Reed, andD. D. Clark, ‘‘End-to-end arguments in system
design,’’ ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288, Nov. 1984.

[29] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, ‘‘Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[30] S. Lee, Y. Shin, and J. Hur, ‘‘Return of version downgrade attack in the era
of TLS 1.3,’’ in Proc. 16th Int. Conf. Emerg. Netw. EXperiments Technol.,
New York, NY, USA, 2020, pp. 157–168, doi: 10.1145/3386367.3431310.

[31] Apple. URLSession—Apple Developer Documentation.
Accessed: Aug. 26, 2020. [Online]. Available: https://developer.
apple.com/documentation/foundation/urlsession

[32] Sans I/O. Accessed: Mar. 31, 2021. [Online]. Available: https://sans-
io.readthedocs.io/

[33] P. Hurtig, S. Alfredsson, A. Brunstrom, K. Evensen, K.-J. Grinnemo,
A. F. Hansen, and T. Rozensztrauch, ‘‘A neat approach to mobile com-
munication,’’ in Proc. Workshop Mobility Evolving Internet Archit.,
New York, NY, USA, 2017, pp. 7–12, doi: 10.1145/3097620.3097622.

[34] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
‘‘A first look at traffic on smartphones,’’ in Proc. 10th Annu.
Conf. Internet Meas., New York, NY, USA, 2010, pp. 281–287, doi:
10.1145/1879141.1879176.

[35] Fast Implementation of Asyncio Event Loop on Top of Libuv. Accessed:
Mar. 26, 2021. [Online]. Available: https://pypi.org/project/uvloop/

[36] C. Raiciu, M. Handley, and D. Wischik, Coupled congestion con-
trol for multipath transport protocols, document RFC 6356, Internet
Requests for Comments, Oct. 2011. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc6356.txt. http://www.rfc-editor.org/rfc/rfc6356.txt

[37] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, ‘‘MPTCP is not
Pareto-optimal: Performance issues and a possible solution,’’ IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[38] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson,
A. Legay, O. Pereira, and O. Bonaventure, ‘‘Pluginizing quic,’’ in Proc.
ACM Special Interest Group Data Commun., New York, NY, USA, 2019,
pp. 59–74, doi: 10.1145/3341302.3342078.

[39] P. Bahl, A. Adya, J. Padhye, and A. Wolman, ‘‘Reconsidering wireless
systemswithmultiple radios,’’ACMComput. Commun. Rev., vol. 34, no. 5,
pp. 39–46, Jul. 2004.

[40] S. Kanugovi, F. Baboescu, J. Zhu, J. Mueller, and S. Seo, Multi-
Access Management Services (MAMS), document 8743, Internet
Requests for Comments, 2020. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc8743.txt

SEPPO HÄTÖNEN received the bachelor’s and
master’s degrees in computer science from the
University of Helsinki, where he is currently pur-
suing the Ph.D. degree in multi-connectivity.
His research interests include multi-connectivity,
programmable networks, and future networks
beyond 5G.

ASHWIN RAO received the Ph.D. degree from
the DIANA (formerly, Planete) Project Team, Inria
Sophia Antipolis, and the master’s degree from
the School of Information Technology, IIT Delhi.
He is currently a Docent (Adjunct Professor) with
the University of Helsinki. His research interests
include communication networks, distributed sys-
tems, privacy, building next generation distributed
systems, and performingmeasurements for getting
insights on the dynamics of communication net-

works with the objective of identifying performance and privacy issues.

SASU TARKOMA (Senior Member, IEEE) is cur-
rently a Professor of computer science with the
University of Helsinki and the Head of the Depart-
ment of Computer Science. He has authored four
textbooks. He has published over 200 scientific
articles. He holds nine granted U.S. patents. His
research interests include internet technology, dis-
tributed systems, data analytics, and mobile and
ubiquitous computing. He is a fellow of the IET
and EAI. His research has received several best

paper awards andmentions in conferences and publications, such as the IEEE
PerCom, the IEEE ICDCS, ACM CCR, and ACM OSR.

5752 VOLUME 10, 2022

http://dx.doi.org/10.1145/3098822.3098842
http://dx.doi.org/10.1145/3143361.3143370
http://dx.doi.org/10.1145/2578901
http://dx.doi.org/10.1145/3386367.3431310
http://dx.doi.org/10.1145/3097620.3097622
http://dx.doi.org/10.1145/1879141.1879176
http://dx.doi.org/10.1145/3341302.3342078

