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ABSTRACT Frequent itemset mining (FIM) is a crucial tool for identifying hidden patterns in information.
FP-Growth is an FIM algorithm used to find associations. When the data size increases, the execution of FIM
algorithms on a singlemachine suffers from computational problems, such asmemory and time consumption.
For these reasons, parallel and distributed processing on platforms such as Spark is essential. The parallel
frequent pattern (PFP) is the implementation of FP-Growth in Spark. The main problem with PFP is that it
does not consider the load balancing between cluster units. This research proposes an enhanced balanced
parallel frequent pattern ‘‘EBPFP’’ algorithm to enhance and balance the PFP. The proposed algorithm
(EBPFP) proposes two ideas. First, a strategy for load balancing between groups is proposed to ensure that
the items are evenly divided between the nodes, and the cluster resources are used more effectively. Second,
the improved conditional pattern base (ICPB) method aims to remove infrequent items from the conditional
pattern base before constructing local FP-Trees. The experimental results show that the proposed EBPFP
algorithm outperforms PFP, and the difference in running time between EBPFP and PFP was 21.56% and
39.72%, respectively.

INDEX TERMS Big data, data mining, association rule analysis, frequent pattern growth algorithm, spark,
load balancing.

I. INTRODUCTION
Association rule mining (ARM) is a popular method for
determining relationships that can be hidden or implicit in
large datasets. The first step in the association rule mining
process and the essential stage is frequent itemset mining
(FIM), which aims to discover frequent itemsets [1]. One of
the most popular itemset mining algorithms is the Apriori
algorithm [2]. Apriori is an iterative algorithm that starts
the first iteration by generating frequent items that satisfy
the minimum support requirement. In the second iteration, it
generates candidate frequent 2-itemsets from the 1-itemsets
generated from the previous level. Apriori continues joining
k-frequent itemsets to generate k+1 itemsets and k+1 item-
sets to generate k + 2 itemsets till it generates all frequent
itemsets. Apriori suffers from two problems: Each iteration
generates a large number of candidate frequent item sets and
requires a scan of the database, which is inefficient when the
data size increases.

To overcome these shortcomings, frequent pattern
growth (FP) growth was proposed [3]. Unlike the Apriori
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algorithm, FP-Growth does not generate candidate fre-
quent item sets, and it only scans the database twice. The
FP-Growth algorithm is more efficient than the Apriori algo-
rithm [3]. FP-Growth aims to compress the dataset using
tree data called FP-Tree, a structure that represents data in a
compact form. First, it scans the database to discover frequent
items and sorts them in a list called Frequent List (F-List).
Second, it performs a second scanning of the database to
construct an FP-Tree using F-List. Next, the FP-Growth
algorithm uses FP-Tree to build a conditional pattern base
and a conditional FP-tree for each frequent items to generate
frequent itemsets. When it comes to processing large-scale
data, such as most FIM algorithms, the FP-Growth algo-
rithm encounters the problem of high memory consumption
and is time-consuming owing to the limitation of hardware
resources on a single machine [3]. This makes it necessary
to use big data processing frameworks that are designed
to process large-scale datasets in a parallel and distributed
manner, such as the MapReduce and Spark frameworks.

MapReduce is an efficient distributed execution-processing
framework. It decomposes the complete process into two
major tasks: a map task and a reduction task [4]. It uses
the Hadoop Distributed File System (HDFS) to store a large
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dataset and the results of the map and reduce operations.
However, MapReduce is not the best choice for algorithms
that require intensive iterative processing owing to heavy
disk input and output (I/O) overhead [5]. Spark is a parallel
processing framework for big-data solutions [6]. This is based
on an in-memory parallel processing model to overcome
the disk I/O problem. Therefore, Spark is 100× faster than
MapReduce and is more suitable for iterative algorithms [7].

The current parallel implementation of FP-Growth in the
Spark framework is parallel FP-growth (PFP) [8]. PFP can
achieve good parallelization by eliminating the computa-
tional dependencies between parallel tasks. However, it does
not consider load balancing between the working nodes [9].
The node load is determined by the work that the node needs
to complete its task. Load imbalance in PFP means that some
nodes havemore work assigned to them than others, requiring
more time, which increases the overall time of algorithm
execution.

In this paper, we propose an enhanced balanced parallel
frequent pattern (EBPFP), which uses two methods. First,
a load-balancing strategy is used to evenly group the items
over the groups to achieve efficient utilization of the cluster
nodes. Second, an improved conditional pattern base (ICPB)
is a method for removing infrequent items while building
the conditional pattern base before constructing conditional
FP-Trees. To validate the efficiency of EBPFP, it is compared
with two established parallel FP-Growth algorithms, the PFP
algorithm [8] and the balanced parallel FP-growth (BPFP)
algorithm [9]. The results showed that EBPFP outperformed
both algorithms in terms of time consumption and scalability.

The rest of the paper is organized as follows. An overview
of the related work is presented in Section II. Section III
presents the proposed EBPFP algorithm. Subsequently, The
experiments and results are presented in Section IV. Finally,
Section V provides concluding remarks.

II. RELATED WORK
This section presents attempts by researchers to parallelize
the FP-Growth algorithm and overcome the shortcomings
of the parallelization process and the improvements of the
parallel FP-Growth algorithm over the years.

[10] introduced a multiple local frequent pattern
tree (MLFPT) that executes FP-Growth on symmetric mul-
tiprocessors that share the same memory. The algorithm
constructs multiple local FP-trees for each processor. Hence,
local FP-Trees are accessed from all processors at the growth
step. However, MLFPT encounters scalability issues related
to large-scale datasets that require large amounts of memory.
Meanwhile, [11] proposed parallel FP-growth for a cluster.
It overcame the problem of memory size bottlenecks from
that MLFPT suffered from. However, it suffers from a high
communication cost between the cluster nodes.

[12] implemented FP-Growth under the new architecture
features of modern processors, which introduced the concept
of cache prefetching, where FP-Tree is implemented using
a cache-conscious structure that improves the performance

of growth operations. The algorithm uses a multithreading
approach, in which the threads can reuse the cache. On the
other hand, [13] presented a parallel FP-growth algorithm
for a cluster that uses the master–slave approach. It uses a
compressed data structure to avoid the drawbacks of [11]
by achieving lower communication costs and improving the
cache memory performance and I/O utilization [12]. In this
algorithm, each node can extend its structure beyond mem-
ory limitations by supporting 64-bit architecture leveraging.
It scales well over hundreds of nodes. However, it lacks fault-
tolerance capability.

[8] implemented a parallel frequent pattern (PFP), which is
a parallel implementation of FP-Growth based on theMapRe-
duce framework, to achievemore effective parallelization and
higher scalability to thousands of computers. It groups items
over a set of groups by calculating the size of each group by
dividing the total number of items by the number of groups.
Next, each group’s share was consecutively taken from the
list of items. For each group, group-dependent transactions
were grouped to generate a group-dependent dataset. Unlike
in [13], PFP supports the fault recovery feature to lower
the probability of a node crash during the execution of the
task. Unfortunately, the PFP grouping strategy does not cre-
ate groups with the same load weight, which is inefficient
for the overall runtime of PFP.Moreover, [9] introduced the
balanced parallel frequent pattern algorithm (BPFP), which
adds a load-balancing feature to the PFP algorithm. TheBPFP
algorithm groups the items over the groups using a queue,
which is better than the grouping strategy of PFP, but it still
makes a large difference between the first and last groups.

[14] proposed an improved parallel frequent pattern algo-
rithm FPM. When the dataset is composed of a large number
of small files, HDFS consumes a large amount of memory.
The IPFP strategy integrates small files to lower heavy I/O
overhead as a pre-step for the PFP algorithm.In addition, [15]
introduced an improved balanced parallel frequent pattern
algorithm (IBPFP), which provides a load-balancing strategy
for PFPs. They also proposed a cutting method that aims
to reduce the size of local FP-trees by merging their paths.
Therefore, the IBPFP improved the performance of the PFP
algorithm.

[16] implemented the (FiDoop-DP: Data Partitioning in
Frequent Itemset Mining on Hadoop Clusters) algorithm
that aims to balance parallel FP growth by using the
Voronoi-based model in partitioning data across reducers and
preventing the duplication of transactions. However, it suffers
from a preprocessing overhead. Furthermore, [17] proposed a
parallel improved FP-growth algorithm called the IFPS. The
IFPS aims to compress large-scale datasets using a matrix
to reduce traffic between nodes and optimize the perfor-
mance. The IFPS algorithm outperforms the PFP algorithm.
IFPS focused on improving the memory performance of the
FP-Growth algorithm on Spark but did not consider loading
balancing between the groups. [18] The proposed HBPFP
algorithm introduces a heuristic-based load-balancing strat-
egy for the PFP algorithm. The grouping strategy of the
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HBPFP was better than those of the PFP and BPFP algo-
rithms. However, it does not consider improving the FP
growth mining process.

Moreover, when moving to the second phase of the
FP-Growth algorithm, which is association rule mining for
the generated frequent patterns. [19] proposed a multitask
association rule miner (MTARM) algorithm that tends to
overcome the problem of standard ARM algorithms in dis-
covering the rules using a multitask approach by ignoring
the interrelationships among multiple tasks. MTARM has
two phases. First, highly frequent rules were discovered for
each task. Second, it combines the local rules from each
task using a majority-voting mechanism. [20] proposed a
distributed frequent pattern mining (DFP) method that aims
to improve the execution time of FP-Growth by reducing the
data transmission cost between the nodes in the parallel and
distributed processing frameworks, high memory cost, and
redundant execution time owing to unadaptable nodes. DFP
provides a set of algorithms for providing data and workloads
in a fast and scalable manner, as well as a data structure
for storing items with their counts to reduce network data
transmission.

In summary, some of the aforementioned algorithms have
attempted to improve the performance of the FP-Growth
algorithm. Some have attempted to overcome the shortcom-
ings related to the parallelization of the FP-Growth algorithm,
such as load imbalance between the working nodes. Thus,
this study proposes an enhanced balanced parallel frequent
pattern algorithm (EBPFP) to improve the FP-Growth mining
step and introduces a load-balancing strategy to overcome the
parallelization shortcoming.

III. PROPOSED EBPFP ALGORITHM
The proposed Enhanced Balanced Parallel Frequent Pattern
algorithm (EBPFP) puts forward two methods. The first is
the EBPFP load balancing strategy. Second, an improved
conditional pattern base is used. To validate the efficiency
of EBPFP, it is compared with two established parallel
FP-growth algorithms: the PFP algorithm [8] and balanced
parallel FP-growth (BPFP) [9]. This section is divided into
three parts. Section III.A proposes a detailed load-balancing
strategy for the EBPFP algorithm. In Section III. B, the ICPB
method is presented. The overall outline of the EBPFP algo-
rithm is presented in Section III.C.

A. EBPFP LOAD BALANCING STRATEGY
This section demonstrates the grouping strategies of the PFP,
BPFP, and EBPFP algorithms, and outlines the differences
between them. These three algorithms are the first steps of the
FP-growth algorithm. The first step of FP-Growth is scanning
the dataset to find frequent items whose support is equal to or
greater than the minimum support. They are then ordered in
a list called the Frequent List (F-List) in descending order.
For example, the transactional dataset in Table 1 contains
ten transactions, and the minimum support is three. After

TABLE 1. Example transaction dataset.

TABLE 2. Frequent list - Frequent items load weights.

performing the first step, the F-List was generated, as shown
in Table 2.

The overall load required to mine each item is determined
by the number of recursions executed by building the condi-
tional FP-tree for the item. Therefore, the position of the item
in F-List determines the depth of the corresponding condi-
tional FP tree [9]. Accordingly, the load estimation equation
is as follows:.

Li = Log(P i) (1)

where Li is the load of item i and Pi is the position of the item
in F-List. According to Equation 1, The load weights of the
items according to Equation 1 are listed in Table 2.

1) GROUPING STRATEGY OF PARALLEL FP-GROWTH (PFP)
PFP groups the items in a straightforward way as follows:

Step1: It specifies the number of groups, which is usually
set manually by the user or based on the cluster’s total number
of nodes.

Step2: It specifies The number of items in each group was
specified by dividing the number of F-List items (marked as
K ) by the total number of groups (marked as G).

Step3: It takes the first n items from F-List and places them
in the first group. Next, we take the second n items, put them
in the second group, and repeat this step until all F-List items
are grouped.
where n = K /G if the result of division is an integer or the
next largest integer if the result is not an integer.
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TABLE 3. PFP Groups items with loading weights.

TABLE 4. BPFP Groups items with loading weights.

For example, in Table 2, there are 15 frequent items, and
the group number is three. Each group consisted of five items.
Table 3 presents the three groups with associated items and
item loads from Table 2. The load of the group equals the sum
of the loads on the items.

Table 3 shows that there is a significant difference between
the load of the group and how the PFP grouping strategy is
unbalanced.

2) GROUPING STRATEGY OF BALANCED PARALLEL
FP-GROWTH (BPFP)
To improve load balancing, the BPFP groups the items over
the groups using the priority queue strategy, as follows:

Step1: From F-List, one item was placed in each group.
Next, the load of each group that has been initialized with the
load weight of the first item is calculated.

Step2: Add the following item from F-List to the group
with the minimum load:

Step3: Recalculate the group’s load where the new item
has been added, and then repeat steps 2 and 3 until all F-List
items are grouped.

From Table 4, it can be observed that the BPFP strategy
is much more effective than the PFP strategy. However, there
was a recognizable difference in the loads between the first
and last groups.

3) GROUPING STRATEGY OF ENHANCED BALANCED
PARALLEL FP-GROWTH (EBPFP)
For comparison, the number of groups is three groups, as in
the previous algorithms. The EBPFP grouping strategy is
explained in the following steps.

Step1: Take the first G items from F-List and add them
to the G groups, one item per group. where, G denotes the
number of groups.

Step 2: Calculate The load for each group was calculated
and sorted in descending order.

TABLE 5. EBPFP Groups items after iteration 1.

TABLE 6. EBPFP Groups items after iteration 2.

TABLE 7. EBPFP Groups items after iteration 3.

Step3: Take the following G items from the F-List and
place them into the sorted groups correspondingly. This
means that the first item of the current G items whose load
weight is minimum will be added to the group with the
maximum load.

Step4: Repeat step 2 and step 3 till all items are grouped.
The following example explains the EBPFP load balancing

strategy iteration by iteration. Tables 5–9 outline the items of
the group with the corresponding total load for each iteration.

Iteration 1: The first three items of F-List were placed into
three groups.

Iteration 2: The order of groups based on descending
sorting is G3, G2, andG1. Therefore, the next three itemswere
placed in the groups in this order.

Iteration 3: The order of groups remains the same. There-
fore, the next three items are placed in the same order.
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TABLE 8. EBPFP Groups items after iteration 4.

TABLE 9. EBPFP Groups items after iteration 5.

TABLE 10. Comparison of the load of the groups between EBPFP, BPFP,
and PFP.

Iteration 4: The order of the loads is the same. Thus, the
items were grouped in the same order.

Iteration 5: The order of the groups is different during this
iteration. G2 exhibited the maximum load. Since the first of
the next three items will be put in G2, the second item will be
put in G3, and the last item will be placed in G1.
The loads in the PFP, BPFP, and EBPFP groups are listed

in Table 10.
From Table 10, the EBPFP load-balancing strategy outper-

forms PFP andBPFP and ismore effective in terms of runtime
performance and cluster resource utilization. The pseudocode
for the EBPFP load-balancing strategy is presented in Algo-
rithm 1. The time complexity of Algorithm 1 is O(n× log(g)),
where n is the number of items and g is the number of groups.

B. IMPROVED CONDITIONAL PATTERN BASE METHOD
(ICPB)
The ICPB method is an improvement over the original
FP-growth algorithm. Therefore, this section provides an
example of an FP-Growth algorithm. Next, the proposed
ICPB method was demonstrated.

1) FP-GROWTH ALGORITHM
To explain the ICPBmethod, it is necessary to understand the
overflow of the FP-Growth algorithm and how it constructs
conditional FP-trees. The FP-Growth algorithm process has
two main phases: construction of FP-Tree and mining of
FP-Tree for FPs. To construct the FP-Tree, database scan-
ning is required to build the F-List, which contains frequent
items in a decreasing order. Next, the transactions in the
dataset are reordered according to the order of the items
in F-List, and infrequent items are pruned. The algorithm
then transforms each sorted transaction into a tree path by
sequentially inserting its items into path nodes. The order
of the items is crucial in building the FP-Tree because if
the transactions share the same prefix, because the existing

Algorithm 1 EBPFP Load Balancing Strategy
Input 1: Hash map that maps items to their load weights (itemsLoadsMap)
Input 2: List of group Ids (gList)
Output: Hash map that maps group id to member items (groupItemsMap)
1: var groupsTotalLoadWeights = new LinkedHashMap<String,
Double>();
2: var groupItemsMap = new LinkedHashMap<String,List<String�();
3: var i = 1;
4: while (i <= gList.size())
5: begin
6: groupsTotalLoadWeights.put(gList.get(i), 0.0);
7: groupItemsMap.put(gList.get(i), new LinkedList<>());
8: i++;
9: end
10: var Items = new LinkedList<String>(itemsLoadsMap.keySet());
11: var ItemsWeights = new
LinkedList<Double>(itemsLoadsMap.values());
12: i = 1;
13: while (i <= Items.size())
14: begin
15: for (Map.Entry<String, Double> entry:
groupsTotalLoadWeights.entrySet())
16: begin
17: if (i > Items.size())
18: beign
19: break;
20: end
21: entry.setValue(entry.getValue() + ItemsWeights.get(i));
22: List<String> groupItems = groupItemsMap.get(entry.getKey());
23: groupItems.add(Items.get(i));
24: i++;
25: end
26: var groupsList = new LinkedList<Map.Entry<String,
Double�(groupsTotalLoadWeights.entrySet());
27: Collections.sort(groupsList, new Comparator<Map.Entry<String,
Double�()
28: begin
29: public int compare(Map.Entry<String, Double> g1,
Map.Entry<String, Double> g2)
30: begin
31: return g2.getValuecompareTo(g1.getValue());
32: end
33: end
34: groupsTotalLoadWeights=groupList;
35: end

item node count is incremented if the transactions share the
same prefix. Otherwise, a new node is created for item.While
building the FP-Tree, the header table is created to have the
frequent items in F-List with their node links that connect the
nodes of the same item in the FP-Tree. This section provides
an example of FP-Growth using the dataset in Table 1, and
the frequencies of the items are presented in Table 2. The
minimum support for our example was four.

Using the minimum support, the frequent items in Table 2,
whose frequencies meet the minimum support requirement,
are sorted and presented in Table 11, and the infrequent items
are pruned. Based on Table 11, the transactions are reordered,
and infrequent items are removed, as shown in Table 12.
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FIGURE 1. FP-Tree for the transactions in Table 12.

TABLE 11. Ordered frequent items (F-list).

Ordered transactions are used to build an FP-tree. The FP-tree
is shown in Fig.1.

FP-Tree andminimum support are the inputs for the second
phase of the algorithm. To discover the frequent patterns,
FP-Growth starts to pass over the items in the header table
upward from the bottom to the top, and for each item, it tra-
verses its nodes in the FP-Tree using the node links in the
header table. For each node, the algorithm stores the prefix
path of the node containing the items in the path from the
item node to the root node of the tree. The prefix paths of a

specific item are called its conditional pattern bases. Next,
FP-Growth uses the conditional pattern base to build the
conditional FP-Tree using the same approach used in building
the FP-Tree. From the conditional FP-tree,.

algorithm generates frequent patterns that co-occur with
a current item. The same process is repeated for all items
in the header table until all frequent patterns are generated.
Table 13 presents the conditional pattern base for frequent
items.

As ’59’ is the most frequent item, it has no prefix path
in all transactions. Therefore, there is no conditional pattern
base for item ’59’. All frequent patterns for item ’59’’ were
generated in the previous items.

2) PROPOSED ICPB METHOD
The conditional pattern base for any item in FP-Growth is a
set of patterns that co-occurs with this item. These patterns
may contain some infrequent items. These items are ignored
after transforming the conditional pattern base into a condi-
tional FP-tree. The improved conditional pattern base (ICPB)
method aims to improve the construction of a conditional
pattern base by removing infrequent items from the patterns
before building the conditional FP-Tree, which reduces the
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TABLE 12. Ordered transactions based on frequent items in Table 11.

TABLE 13. Conditional pattern base for the FP-Tree in Fig.1.

size of the conditional FP-Tree and the number of recursions
required to mine the tree.

To remove infrequent items from the conditional pattern
base, the ICPB method uses a table called a pattern item table
that tracks the items in the paths and their count. For each
item node, the algorithm traverses the path from the item node
to the root node to compose its prefix path. While visiting
the node, the algorithm checks the pattern item table and
increments the count of the item in the table by one, and if
the item is found. Otherwise, it inserts the item into the table
with a count of 1. After building the conditional pattern base
for the item, the items in the pattern item table that do not
meet the minimum support, considered infrequent items, are
removed. Next, the patterns in the conditional pattern base are
filtered using a pattern item table. This process was repeated
for each item.

To observe the difference between the original method and
the ICPB method, the conditional pattern base for item ’60,
which is the last item in the F-List, will be discussed. Fig.2
illustrates the conditional FP-Tree for item ’60’ in the original
FP-Growth method, and Table 14 presents the pattern item
table for the item. While composing the conditional pattern
base for the item, we found that the item that co-occurs
with it is ’48’’ three times. Considering a minimum support
of 4, there were no items that were considered to be frequent
with item ’60’. Therefore, all items were removed from the
pattern item table and filtered from the conditional pattern
base. Accordingly, there is no need to construct a conditional

TABLE 14. Patterns items for item ’60’ before and after filtration.

FIGURE 2. Conditional FP-Tree for item ’60’ using FP-Growth method.

FP-Tree for the item because in the ICPB method, the con-
ditional FP-Tree is constructed only for frequent items in the
conditional pattern base.

From Table 15 and Fig.2, it is evident that removing infre-
quent items from the conditional pattern base reduces the size
of the conditional FP-tree, thereby reducing the number of
recursions required to mine it. Algorithm 2 presents the ICPB
method. The time complexity of Algorithm 2 is O(n∗m),
where n is the size of the conditional pattern base (the number
of transactions containing the examined item) and m is the
length of the longest transaction in the conditional pattern
base.

C. EBPFP OUTLINE ON SPARK FRAMEWORK
The EBPFP is implemented in the Spark framework in the
following steps. Fig.3 presents an overview of the workflow
of the algorithm.

Step 1 (Sharding): Spark is based on resilient distributed
datasets (RDDs) to execute parallel tasks. Therefore, the
original database was divided into partitions and stored in
different nodes of the cluster. These partitions are known as
shards.

Step 2 (Parallel counting): In this step, the algorithm
counts the frequencies of items in the dataset. It generates a
list of key-value pairs, where the key is the item and the value
is the item count. Next, it sorts the items in descending order
and removes infrequent ones. This step results in an F-List.

Step 3 (EBPFP grouping):The items in F-List are divided
into N groups using the grouping strategy of the proposed

292 VOLUME 10, 2022



A. Essam et al.: Towards Enhancing Performance of Parallel FP-Growth on Spark

TABLE 15. Comparison of FP-Growth original method and ICPB method.

TABLE 16. Characteristics of the datasets.

algorithm. (N is determined by cluster cores). The list of
groups is called the G-List.

Step 4 (Group-oriented datasets): According to G-List,
each transaction is mapped into a set of groups containing the
items in this transaction. The result of this step was a set of
group-dependent transaction datasets.

Step 5 (Parallel-enhanced FP-Growth): For each group-
dependent transaction dataset, the enhanced version of the
FP-Growth algorithm is executed, and local frequent patterns
are generated in parallel. Enhanced FP-Growth is the original
FP-Growth algorithm with an improved conditional pattern
base (ICPB) method.

Step 6 (Aggregating): The final step is to aggregate the
local FPs generated from the previous step to generate the
final global FPs.

Finally, this section proposes the EBPFP algorithm in
detail using these two methods. The experiments and results
of the algorithm are explained and discussed in Section IV.

IV. EXPERIMENTS AND RESULTS
The performance of EBPFP was evaluated by comparing
it with the Spark PFP algorithm in the machine learning
library (MLlib) [22] and balanced PFP (BPFP) [9] in terms
of runtime performance and scalability. MLlib [21] is a spark
machine learning library that includes PFP algorithm imple-
mentation [8]. For runtime performance, the three algorithms
were executed on the Kosarak dataset [24] and Accidents
dataset [25]. For scalability, the algorithms were executed on
a WebDocs dataset [23]. Section IV.A illustrates the charac-
teristics of the datasets used in the experiments. Section IV.B
presents the results and discussion of the runtime perfor-
mance, and Section IV.C presents the results and discussion
of the scalability.

A. DATASETS
The characteristics of the datasets are presented in Table 16.

B. RUNTIME PERFORMANCE
The algorithms were executed and run on the Amazon Web
Services (AWS) elastic map reduce (EMR) cluster. The clus-
ter consisted of five nodes of type m5.xlarge. This type

Algorithm 2 ICPB Method
Input 1: Item conditional patterns list (cpList)
Input 2: Minimum support (minSup)
Output: Item Improved conditional patterns list (icpList)
1: var i = 0;
2: var icpList = new List<List<String�();
3: var cpListSize=cpList.size();
4: var patternItemsArray= new List<String>();
5: var newPatternItemsArray=new List<String>();
6: var patternsItemsTable = new HashMap<String, integer>;
7: while (i< cpListSize )
8: begin
9: patternItemsArray = cpList.get(i);
10: Foreach (item in patternItemsArray)
11: begin
12: if (patternsItemsTable.contains(item))
13: begin
14: patternItemsTable.put(item,patternsItemsTable.getValue(item)+ 1);
15: end
16: else
17: begin
18: patternItemsTable.put(item, 1);
19: end
20: end
21: i++;
22: end
23: i=0;
24: while (i< cpList.size())
25: begin
26: patternItemsArray = cpList.get(i);
27: Foreach (item in patternItemsArray)
28: begin
29: if (patternsItemsTable.getValue(item)>=minSup)
30: begin
31: newPatternItemsArray.push(item);
32: end
33: end
34: icpList.push( newPatternItemsArray );
35: newPatternItemsArray.clear();
36: end

of system is suitable for general-purpose applications. One
node was considered the master node, and the other four
were slaves. Each node had four CPU cores and 16 GB
of RAM. The experiments were performed with the default
EMR SPARK cluster driver (master) and executer memory
settings. MPFP, BPFP, and EBPFP were executed on the
Kosarak and accident datasets for different minimum support
values.

1) RUNTIME PERFORMANCE FOR KOSARAK DATASET
The algorithms were run for a range of minimum support
values from 0.2% to 1.1%. Table 17 lists the number of
generated frequent patterns for each minimum support value.
Fig.4 shows the average running times in seconds for the
algorithms using the thresholds. Each run was executed ten
times to obtain a valid result for the running times, and the
average was calculated.
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FIGURE 3. Architecture of EBPFP.

TABLE 17. Frequent patterns for each minimum support threshold for the
kosarak dataset.

As shown in Fig.4, for most thresholds, EBPFP performed
better than BPFP andMPFP. On average, EBPFPwas 21.56%
faster than MPFP, and 5.21% faster than BPFP.

2) RUNTIME PERFORMANCE FOR ACCIDENTS DATASET
From Table 18, it is obvious that the number of generated
frequent patterns in the accident dataset is much larger than
that in the Kosarak dataset. Therefore, the algorithms were
run on different ranges of minimum support thresholds from
1% to 10%. Fig.5 shows the average running time in minutes,
not in seconds, as in the previous dataset.

On average, EBPFP was 27.53% faster than MPFP, and
7.84% faster than BPFP. In the accident dataset, more time
was required to mine conditional FP-trees. Therefore, the
improvement percentage for EBPFP compared to BPFP and
MPFP is more significant.

C. SCALABILITY
The algorithms were executed and run on an AWS EMR
clusters. Cluster nodes are of type m5.xlarge, the driver
memory was 12 GB, and the executers’ memory was 10 GB
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TABLE 18. Frequent patterns for each minimum support threshold for
accidents dataset.

TABLE 19. Average running times of MPFP, BPFP and EBPFP algorithms
in minutes on different numbers of cluster nodes in the Webdocs dataset.

FIGURE 4. The running times of MPFP, BPFP and EBPFP algorithms in the
kosarak dataset.

for all experiments. Fig.6 shows the average running times
of the algorithms for different numbers of nodes ranging

FIGURE 5. The running times of MPFP, BPFP and EBPFP algorithms in
accidents dataset.

FIGURE 6. The running times of MPFP, BPFP and EBPFP algorithms in the
webdocs dataset on different number of cluster nodes.

from 5 to 15, and Table 19 specifies the values for Fig.6.
The experiments were run with a minimum support of 15%,
which was the most suitable number for running all experi-
ments without throwing memory exceptions. The number of
frequent patterns generated for this minimum support was
10388. The results show that when the number of nodesin-
creases, the number of groups increases, which is determined
by the number of cluster cores, and EBPFP shows better
results. On five nodes, EBPFP was 24.96% faster than MPFP
and 6.87% faster than BPFP, but on 15 nodes, EBPFP was
39.72% faster than MPFP and 15.74% faster than BPFP.
On average, EBPFP was 30.6% faster than MPFP, and 9.95%
faster than BPFP.
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V. CONCLUSION
In a parallel and distributed processing environment, espe-
cially when the data size increases, balancing the load among
the worker nodes becomes crucial and significantly affects
the overall process performance. In this paper, an enhanced
balanced parallel FP-growth algorithm is introduced, which
proposes a load-balancing strategy that aims to divide items
evenly across groups. Second, an enhanced method improves
the construction of the conditional pattern base by removing
infrequent items from the conditional patterns before build-
ing conditional FP-trees. Our results show that the EBPFP
balancing strategy balances the load among groups better
than the PFP and BPFP balancing strategies. The EBPFP
outperformed the MPFP and BPFP.

Moreover, FP-Growth in distributed processing environ-
ments, similar to most mining algorithms, requires a large
amount of data to be transmitted over the network. There-
fore, bandwidth limitation is one of the main problems for
FP-Growth, particularly in this era of big data. In the future,
we can further improve the EBPFP by minimizing data trans-
mission among the nodes, which will enhance the efficiency
of the algorithm and reduce the execution time.
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