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ABSTRACT Accurate detection of pulmonary nodules on chest computed tomography scans is crucial to
early diagnosis of lung cancer. To address the thorn problems on low detection sensitivity and high false-
positive rate caused by heterogeneity and morphological complexity of 3-D nodule features, a computer-
aided detection system is developed to increase the detection sensitivity and classification accuracy of
pulmonary nodules. The contributions include: (1) Nodule candidate detection: 3-D Residual U-Net model
is improved to detect candidate nodules, which constructs 3-D context-guided module to extract local
and global nodule features by setting the dilated convolution with different dilation rates. Furthermore,
channel attention mechanism is used to dynamically adjust the channel features, which enhances the
generalization and expression ability of the detection-network to effectively learn 3-D spatial context
features. (2) False-positive reduction: multi-branch classification network is designed for multi-task learning.
Image reconstruction task is performed to retain more microscopic nodules information from convolutional
neural network (CNN) hierarchy. Moreover, each branch deals with the feature map at corresponding depth
layers, and then all branches’ feature maps are combined together to perform nodule classification task.
Numerous experimental results show that the proposed system is perfectly qualified for pulmonary nodules
detection on Lung Nodules Analysis 2016 dataset, which achieves detection sensitivity up to 94.0% and

competition performance metric (CPM) score up to 0.959.

INDEX TERMS 3-D context-guided attention module, multi-task learning, multi-branch classification,

convolutional neural network, pulmonary nodule detection.

I. INTRODUCTION

According to the statistics, among the mortality rate of
all cancers is 19.5% [1], [2], the incidence of lung can-
cer accounts for 66.67% with the 18% of five-year sur-
vival rate [3]. Computed Tomography (CT) images with
high resolution and rapid acquisition are widely used in
pulmonary nodules detection, so as to realize early screen-
ing and intelligent diagnosis of lung cancer. With the rapid
increase of disease screening requirements and the avail-
ability of CT images under the background of intelligent
medical technology, radiologists are facing great pressure
from massive image data processing. Hence, computer-aided
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detection (CAD) systems are applied to assist radiologists to
diagnose pulmonary nodules [4], [S]. It improves diagnostic
efficiency and accuracy by detecting suspicious nodules for
preliminary screening, while reducing missed diagnosis and
misdiagnosis of pulmonary nodules.

CAD system typically includes: (1) Nodule candidate
detection stage. Candidate nodules are detected from a large
number of CT images, all true positive nodules should be
included as much as possible, and many false-positive candi-
dates are generated in the process [6]-[8]. (2) False-positive
reduction stage [9]-[11]. Candidate nodules are classified
by distinguishing true positive nodules from false-positive
nodules. Fig. 1 shows some true positive and false-positive
nodules. Some nodules have large variations in shapes, size
and location, such as calcific nodules, isolated nodule, ground
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FIGURE 1. Examples of the nodules with various sizes, shapes, and locations in LUNA16 dataset. (a) True positive pulmonary nodules.

(b) False-positive pulmonary nodules.

glass opacity nodules, small nodule and juxta-pleural nodules
as shown in Fig.1(a). Some false- positive nodules are similar
in appearance to true positive nodules, which can easily be
mistaken for suspicious nodules.

Due to different appearance, type, malignancy, size, inter-
nal structure and location of pulmonary nodules, it is a great
challenge to design a CAD system involving different lev-
els to efficiently detect candidate nodules. Zhang et al. [6]
detected candidate nodules by using multi-scale Laplacian of
Gaussian (LoG) filters and densely dilated 3-D deep convolu-
tional neural network (DCNN) to classify candidate nodules,
but it contained more false-positive nodules in the nodule
candidate detection. Zhu et al. [7] used 3-D Faster R-CNN
and dual-path network (DPN) to improve pulmonary nodule
detection, but the network was complex and the average false-
positive rate was high. Gong et al. [8] combined residual and
squeeze-and-excitation (SE) module to improve the detection
effect. However, the convolution kernel has fixed 3*3*3 size,
which only extract the features with fixed receptive field
and single feature information. Aim to these thorn prob-
lems, the fixed 3*3*3 convolution kernel was replaced by the
dilated convolution combination with different dilation rates,
which reduced the complexity of DPN and extracted rich
spatial context features with different dimensions and recep-
tive fields, and the key feature information was preserved
well. Furthermore, considering that the extracted features
have redundant interference and the key features are not
significant, the channel attention mechanism is used for adap-
tive adjustment to further suppress redundant information
and enhance the key features. And then more representative
nodal features containing rich context information can be
obtained.
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Zhai et al. [9] designed a multi-task classification network
using nine 2D views to reduce false positives for pulmonary
nodules. However, the 3-D spatial contextual feature had
not been fully utilized in CT images. Dou et al. [10] used
three 3-D input branches with different sizes and receptive
fields to separately train and fused them for false positives
reduction, resulting in too many network parameters, which is
not conducive to network convergence. Hence, Zuo et al. [11]
used single-branch feature layers with different depths and
different receptive fields to reduce false positives. It reduced
the number of parameters. However, it did not optimize the
feature extraction network, and may lack the microscopic
features of the nodules. Aim to these thorn problems, 3-D
CNN is used to fully extract the spatial context features
of nodules. Combining CT image reconstruction task and
nodule classification task, a multi-task learning method was
designed to fully learn the microscopic features of image
spatial context. Moreover, the number of parameters is greatly
reduced because the different depths of the single branch
network are utilized.

To sum up, an efficient 3-D computer-aided system is
designed to extract the representative pulmonary nodules
features for detection. The main contributions are summa-
rized as follows: (1) In order to fully extract the abundant
three-dimensional spatial features of pulmonary nodules,
3-D context-guided module (3-D CGM) containing low-
dimensional and high-dimensional local information and
spatial context information is designed in the detection
model based on 3-D Residual U-Net. (2) Channel atten-
tion mechanism is applied to further enhance the channel
correlation between the feature maps for the representative
features extraction. (3) Multi-branch classification network
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of multi-task learning is designed to classify candidate
nodules, and the microscopic feature information of shared
feature network is adjusted through image reconstruction
task. (4) The feature maps with different depths and levels
in shared feature network are applied for feature fusion to
improve the recognition effect.

In the following, related work and our method are
described in Section II and SectionIIl, respectively.
Section IV reports the experimental results. Some key
issues are discussed in Section V. Conclusions are drawn
in Section VI.

Il. RELATED WORK

Lots of research works are devoted to developing an effec-
tive and robust classified method for detecting lung nodules.
They are generally divided into traditional machine learning
method and deep learning method (two-dimensional (2D) or
three-dimensional (3-D) CNNs).

The traditional CAD methods mainly apply machine
learning algorithm to manually design contour features,
shape features and texture features of pulmonary nodules,
and then input them into the classifier for classification.
Lassen et al. [12] used the region growing method to detect
the candidate nodules, and selected the regional growth points
of the initial seeds by artificial labeling. However, some
nodules are indistinguishable from the surrounding tissues
because of the variety of nodule types. Zhang et al. [13]
proposed a method based on rule and Support Vector Machine
(SVM). The shape features of Region of Interest (ROI) were
firstly calculated, and then vessels were removed using a
rule-based method. Next, grayscale and texture features in
chest CT scans were calculated. Finally, the shape, grayscale
and texture features were input to SVM classifier for nodule
candidate detection. Gong et al. [14] designed a candidate
nodule detection algorithm based on 3-D tensor filtering and
local feature analysis. Contour correction is performed by
3-D horizontal segmentation method, and then a random
forest classifier and 19 image features are used to reduce
false positives. Farahani et al. [15] proposed an algorithm
to integrate three classifiers including multi-layer perceptron,
k-nearest neighbor and SVM. Firstly, the whole lung was seg-
mented from CT image, and the shape features such as round-
ness, ellipticity and eccentricity were calculated, which were
input into three classifiers for lung diagnosis. Arulmurugan
and Anandakumar [16] performed computer-aided diagno-
sis of pulmonary nodules based on wavelet features and
artificial neural network classifiers. Javaid et al. [17] first
broke the connection between nodule candidates and vessels
or thorax, and then used the k-means algorithm to cluster
the nodule candidates, and finally extracted visual features,
including the weighted centroid distance and mean inten-
sity difference, to train an SVM classifier with the RBF
kernel. These methods achieved relatively good results in
the early detection of lung nodules, and provide an idea for
subsequent computer-aided diagnosis. Research shows that
traditional pulmonary nodules detection involves in a number
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of complex preconditioning operations. Moreover, manual
feature extraction often requires some medical background.
Hence, these hand-crafted features are affected by limited
representation capability and are insufficient to deal with the
large variations of lung nodules.

With the emergence of a large number of annotated
data from medical images and the rapid improvement
of computer computing ability, deep learning technology
has developed rapidly in medical lesion detection system.
Poongodi et al. [18] used RNN and CNN to diagnose the
coronavirus rapidly and accurately. Roth et al. [19] used deep
learning-based 2DCNN technology to detect lung nodules.
First, scale transformation, random translation and rotation
sampling are performed, and then ConvNet is used to extract
expression features to reduce false positives. It belongs to
the early application of combining 2D CNN with medi-
cal imaging. However, due to the limited performance of
ConvNet, the effect is not optimal. With the development
of pattern recognition and artificial intelligence, many 2D
CNN (Faster-RCNN) models have emerged. Ding et al. [20]
used 2D Faster R-CNN and VGG-16 to detect candi-
date nodules. Talha et al. [21] applied adaptive thresholding
technique (OTSU) and 2DCNN semantic segmentation to
accurately detect the lung nodule, and the selected optimal
features were applied to 9 classifiers. Xie et al. [22] designed
an enhanced 2D CNN architecture to reduce false positives,
and the sensitivity was 73.4% and 74.4% for 1/8 and 1/4 false
positives of per scan, respectively. Albahli ef al. [23] applied
GAN to generate synthetic data for training the data as the
amount of the data is limited. And then different 2DCNN
models were used to diagnose the cardiothoracic diseases.
Albahli er al. [24] provided a synthetic data augmentation
in three 2D CNNs (DenseNet121, InceptionResNetV2, and
ResNet152V?2) architectures for the detection of 14 chest-
related diseases. After training and validation, an average
ROC-AUC score of 0.80 was obtained. Setio et al. [25]
designed the input to include not only the axial, coronal,
and sagittal views of the lung nodules, but also six views of
diagonals.

Compared with traditional methods, the detection effect
of 2DCNN has been greatly improved. However, detecting
pulmonary nodules from volumetric CT scans is a 3-D object
detection problem in essence. Therefore, even if multiple 2D
CT slices are used, it is still difficult to make full use of
the 3-D spatial contextual information of pulmonary nod-
ules. Dou et al. [10] proposed a multi-level context-based
3-D CNN to detect pulmonary nodules, three 3-D CNN
with different receptive fields were constructed to obtain
multi-level contextual feature information, and then three
scales detection results were integrated together to improve
the classified results. Compared with the 2D methods, it con-
siders the three-dimensional spatial context characteristics of
medical images, and the result has been greatly improved.
It has great reference value in clinical and academic field,
and also provides a new idea for the follow-up researchers.
For example, Huang et al. [26] used a filter based on the
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local set model to generate candidate nodules, and classi-
fied them by 3-D CNN. Hamidian et al. [27] used a 3-D
fully convolutional network (FCN) to generate a score map
for nodule candidate identification, and employed another
3-D CNN for nodule and non-nodule discrimination. There-
fore, Cao et al. [28] proposed a three-dimensional convolu-
tional neural network based on a multi-branch set learning
algorithm for pulmonary nodule detection, three branching
structures based on VggNet, IResNet and DenseNet are con-
structed to correspond to three input sizes. In order to make
full use of 3-D spatial context feature information, 3-D CNN
was used in these branching structures to extract different
deep features of pulmonary nodules, and then three classifica-
tion results were integrated together to improve the detection
results. Pezeshk et al. [29] trained a three-dimensional fully
convolutional neural network for pulmonary nodule detec-
tion, and the detection sensitivity reached 80%. A compre-
hensive literature review of related works is seen in Table 1.

With the development of 3-D CNN technology, the appli-
cation of 3-D CNN to detect lung nodules can extract the
spatial context features of lung nodules. However, most of
the networks (ResNet, WideResNet, DenseNet, etc.) applied
in CADe schemes only improve networks performance by
changing spatial dimensions of networks. Therefore, some
redundant features of nodules will be extracted in the feature
information transmission, and some key microscopic features
will be lost. And some attention guided encoder-decoder
network does not consider the extraction of spatial context
features with multiple scales and different receptive fields.
It may be missed or misjudged in the detection and classifi-
cation. In this case, it leads to the lack of representativeness
of the extracted features, which affects the sensitivity of
pulmonary nodules detection.

In summary, related works have certain limitations in the
diagnosis of pulmonary nodules. Considering that 2D data
represents a slice of CT, while 3-D data is a combination of
multiple 2D slices with continuity. Even if multiple slices are
used for 2D data, there is no continuity between each slice,
and the spatial context characteristics are not fully utilized.
However, multiple slices of 3-D data have continuity and
spatial context information. By extracting the spatial context
features, the detection sensitivity can be improved. There-
fore, the 3-D CNN is optimized to extract the representative
features. Therefore, an efficient 3-D CAD system combined
3-D Residual U-net for context-guided attention module with
multi-branch network of multi-task learning is designed and
fully validated on LUNA16 dataset.

1IIl. PROPOSED CAD SYSTEM

The appearance of pulmonary nodules on chest CT scans is
often confused with blood vessels, lymph nodes, bronchus
and other pathological tissues, and the surrounding texture
environment is complex. The above factors lead to the huge
amount of CT image information, and manual judgment may
lead to the loss of important details. Hence, the overall frame-
work of 3-D pulmonary nodules CAD system is proposed in
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Fig. 2, which aims to fully extract feature information and
accurately detect pulmonary nodules.

The proposed 3-D pulmonary nodules CAD system is
demonstrated as follows:

Datasets Generation: In order to prevent other tissues
in CT images from interfering with the subsequent detec-
tion, it is necessary to pre-process the original lung CT
images and its masks to segment the lung parenchyma.
The pre-processing operation mainly includes normalization,
morphological operation and resampling with a new resolu-
tionof 1 x 1 x 1[6], [8]. The reason for resampling is that the
dataset comes from different equipment in different hospital,
and the voxel spacing, resolution and initial point coordinates
of each CT are different. In this case, the voxel spacing
information cannot be learned by CNN, which is not conduc-
tive the training. The resampling performed Bilinear Inter-
polation method, and the result is smoother. It is observed
that after resampling interpolation, the number of slices is
increased, and the image quality is not significantly affected.
(It is acceptable.) In addition, the annotation coordinates are
resampled with the same resolution, and the pre-processed
CT images are randomly cropped to a fixed size according to
the new coordinates to construct 3-D cubic patches.

Nodule Candidate Detection: Due to heterogeneity and
complex morphology of pulmonary nodules, it is difficult to
fully extract three-dimensional spatial features. Hence, a 3-D
Residual U-Net network is improved to detect candidate nod-
ules. The network takes 3-D Residual U-Net as its backbone,
and combines original residual, 3-D context-guided module
with different dilation rates and channel attention mechanism.
The nodule features extracted contains three-dimensional
spatial information with different receptive fields, and more
representative nodule features are extracted by suppressing
the useless channel features and enhancing the useful channel
features.

False-Positive Reduction: In order to reduce false positives
in pulmonary nodule detection, a multi-branch classification
network of multi-task learning is constructed. Here, nodule
features are extracted through the shared feature network, and
the detailed texture features of nodules are fine-tuned through
the image reconstruction network to achieve abundant feature
information. Then the multilevel nodule features with differ-
ent receptive filed sizes are loaded into multi-branch classifi-
cation network for feature fusion and nodule classification.

A. DETECTION NETWORK BASED ON 3-D RESIDUAL
U-NET ORIENTED CONTEXT-GUIDED ATTENTION

To improve the sensitivity, a detection network based on 3-D
Res-Unet oriented context-guided attention is designed.

1) NODULE CANDIDATE DETECTION FRAMEWORK

Considering that pulmonary nodule detection in volumetric
CT scans is a 3-D object detection problem, the 3-D Residual
U-Net detection network is improved to fully extract the
3-D spatial feature information. If the whole CT image is
input to the detection network, GPU memory cannot meet
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TABLE 1. Description of some related work and pros and cons of existing approaches.

Ref Method Gaps identified

Farzad et al. [15] An algorithm is proposed to integrate three classifiers Only handcrafted extractors are explored to extracted
including multi-layer perceptron, k-nearest neighbour and  features for limit machine learning.
SVM.

Setio et al. [24] A multi-view CNN is constructed to extract hierarchical 3D spatial contextual information has not been fully
features from nine 2D slices with different angles of view  utilized, so limited classification performance in low-FP
and group the high-level features for classification. scans is achieved.

Zhu et al. [7] A 3D dual path network (DPN) is proposed as a deep The transfer learning concept did not explore, so training
feature extractor and a gradient boosting machine depth structure not allowed. Additionally, only one CNN
(GBM)classifier for LIDC/IDRI. architecture is explored as feature extractor and machine

learning classifier.

Gong et al. [8] A 3D automatic nodule detection system is designed by A large 3D size is designed to input the network, which

combing residual and squeeze-and-excitation (SE) module  requires a high GPU memory.
to improve the detection effect.

Zhai et al. [9] A multi-task classification network is designed to reduce Nine 2D slices were used to reduce false positives for
false positives for pulmonary nodules. pulmonary nodules, but the spatial context features were not
fully utilized in CT images

Qi Dou et al [10] A multi-level context-based 3D CNN is proposed to The weights for each scale were determined manually,
detect pulmonary nodules, and three scales detection rather than learning from training samples.
results were integrated together to improve the classified
results.

Saleh Albahli et al [24] Synthetic data enhancement in three deep convolutional All the images used for both training and validation are
neural network (CNN) architectures (DenseNet121, images of the chest’s frontal view.

InceptionResNetV2, and ResNet152V2) is proposed to
detect 14 chest related diseases.

Raul Victor M et al [30] Several CNNS (VGG16, VGG19, MobileNet) are used Deep transfer learning method is proved as a relevant
for transfer learning, and each set of depth features with strategy to extract representative features from lung nodule
Bayes, KNN, MLP, RF, SVM linear and SVM RBF CT images.

machine learning techniques is combined.

Dawid Poap et al [31] A heuristic method for detection aggregated x-ray images ~ The method helps doctors to concentrate on special, selected

is proposed. areas in x-ray images, but does not consider deep learning
methods.

Giacomo Capizzi et al [32]  An evaluation model based on a composition of fuzzy The method greatly reduces the computational demands and
system combined with a neural network is proposed. increases the detection performances.

Ahmed T. Sahlol et al [33] The author MobileNet is adopted to previously train on CNN model avoided the redundancy of extraction features
the ImageNet for the feature’s extraction. and AEO and improved the classification accuracy. But other CNN
algorithm was used for feature selection models are not involved in experiment comparisons.

Improved 3D Residual U-Net Network Multi-Branch Classification Networks For Multi-Tasking Learning
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FIGURE 2. The framework of 3-D pulmonary nodules computer-aided detection system. (a) Datasets Generation. (b) Nodule Candidate
Detection. (c) False-positive reduction.

such a huge data bandwidth. Hence, the pre-processed CT 96 x 96 x 96, and then sent to the detection network shown
image is cropped into 3-D input patches with a fixed size of in Fig. 3.
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FIGURE 3. The improved 3-D Residual U-Net network structure. Each cube represents a 4D tensor, where the number outside the cube

represents the number of channels and spatial size.

The nodule candidate detection network contains the
encoding and decoding processes described as follows:

Encoding Process: A 3-D Input Patch is used to roughly
extract three-dimensional space features and location infor-
mation of pulmonary nodules through two convolutional lay-
ers (each contains 24 convolutional kernels of size 3 x 3 x 3).
Four 3-D Residual-Context Guided Attention Modules (3-D
Res-CGAM) and four max-pooling layers make a cross com-
bination. The former aims to fully extract three-dimensional
feature information of pulmonary nodules, while the latter
aims at feature reduction and network simplification. Then,
the feature maps (the number of channels is 64 and the size is
6 x 6 x 6) containing nodule rich abstract feature information
is obtained.

Decoding Process: The feature maps obtained from the
encoding path is upgraded dimension for the first time by
using convtransose3d operation (64 deconvolution kernels
of size 2 x 2 x 2), and these feature maps are concate-
nated with the corresponding feature maps with the same
dimension from the encoding process. Then, the concate-
nated feature maps extract the deep-level feature information
through 3-D Res-CGAM. Furthermore, these features are
upgraded dimension for the second time by convtransose3d
operation, and then a same secondary concatenated operation
is performed. Obviously, the concatenation operation effec-
tively complements the feature information lost in the feature
extraction process, which is beneficial to restore the detail
features of pulmonary nodules.

Nodule features are further extracted by 3-D Res-CGAM,
and feature maps (the number of channels is 128 and the
volume size is 24 x 24 x 24) containing spatial feature
and location information of pulmonary nodules are obtained.
Next, two convolution layers (64 convolutional kernels of
size 1 x 1 x 1 and 3 x 5 convolutional kernels of size 1 x 1 x
1) are used to change the dimension of the obtained feature
maps (the number of channels is 3 x 5 and the volume size
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is 24 x 24 x 24), so that Region Proposal Network (RPN)
operation is applied to realize the regression of boundary
box coordinates and the prediction of nodular probability.
In accordance with the size distribution of nodules, three
anchors with the sizes of 5, 10 and 20mm are applied to the
final feature mapping to generate a set of object proposals,
each contains a 5 x 1 vector (central coordinates (x, y, z),
diameter d and object score p). The coordinates and the prob-
abilities of pulmonary nodules can be predicted by testing the
trained network model. It is worth noting that a novel 3-D
Res-CGAM structure is proposed, which will be described in
detail.

2) 3-D RES-CGAM ARCHITECTURE
ResNet, as shown in Fig. 4(a), is a common CNN net-
work structure, it introduces the skip connection channels
to realize the feature reuse and solve the network degra-
dation. However, there are big differences in appearance,
type and size of pulmonary nodules and the complex sur-
rounding texture environment. It is difficult to simultaneously
extract the local and global features, and the model depth
is too shallow to make full use of the semantic features.
To address this issue, 3-D Res-CGAM structure is designed
based on ResNet, as shown in Fig. 4(b). The original residual
3-D convolution is replaced by 3-D context-guided mod-
ule (3-D CGM), which integrates the low-dimensional and
high-dimensional local features and global features to extract
the rich 3-D spatial features information of nodules. The
attention channel mechanism is introduced into the model to
adjust adaptively each channel feature of the feature maps,
and the correlation between feature channels are modelled
explicitly. Therefore, more expressive feature maps can be
obtained.

It is noted that 3-D Res-CGAM structure integrates 3-D
CGM structure and channel Attention mechanism module
presented as follows:
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FIGURE 4. Structure diagram of improved residual block. (a) 3-D Residual
module. (b) 3-D Res-CGAM.

a: 3-D CGM STRUCTURE

Pulmonary nodules often have different sizes and irregular
shapes, and 3 x 3 x 3 convolution kernel is often used
to extract the features information. However, it is difficult
to capture the global features of pulmonary nodules with a
larger diameter by the limited receptive field of 3b x 3 x
3 convolutional kernels. And the failure to make full use of
the three-dimensional spatial context information of nodules
may lead to the omission of pulmonary nodules detection.
To address the above problems, 3-D CGM is designed by
introducing the dilated convolution with different dilation
rates into 3 x 3 x 3 convolution kernel, as shown in Fig. 5.

Dilation rate :2

L.(9

FIGURE 5. Structure of 3-D context-guide module (3-D CGM).

Dilation rate: 1

. Conv
3x3x3

In Fig. 5, the Feature Input represents the input feature
map, which includes low-dimensional local features (texture,
space and position) information. When the Feature Input is
convolved by a 3 x 3 x 3 dilated convolution with a dilation
rate of 1, we will get the relative input features, which are
high-dimensional local features containing more semantic
information of pulmonary nodules. After high-dimensional
and low-dimensional local features are concatenated together,
and then they are convoluted with 3 x 3 x 3 dilated convo-
lution kernel with a dilation rate of 2 to achieve the spatial
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context global features. Finally, low-dimensional and high-
dimensional local features and global features are concate-
nated together, and then they are convoluted with 1 x 1 x 1
convolution kernel to obtain the feature maps containing rich
contextual features and multi-scale information.

Obviously, when the size and parameter of convolution
kernel remain unchanged, the 3-D CGM structure appro-
priately increases the receptive field by reasonably setting
the dilation rates of the dilated convolution, captures the
multi-scale context information of pulmonary nodules, and
extracts multi-scale feature layers including local and global
features, which plays a role of context guidance.

b: CHANNEL ATTENTION MECHANISM
Channel attention mechanism shown in Fig. 6 includes
Squeeze and Excitation operation for adaptive recalibration.
Squeeze Operation: The global average pooling operation
is used to compress the features of the convolution feature
map after residual operation, and then the global features
(1 x 1 x 1 x C) on the feature channel are output. Since
the channel numbers of the output feature matches that of the
input feature, the global receptive field can be obtained on the
feature layer close to the input. The process is descried in for-
mula (1) [8], where x5 represents the features after residual
operation, Fyq represents the squeeze function that aggregates
global spatial information into channel-wise statistics by
global average pooling, L x H x W is the spatial dimen-
sions of xpeg, and z is the output features after global pooling
operation.

ze = Fyq (res)

1 L H w L
L xH x Wzizlzjzlzkzlxres @i, J, k) (1)

Excitation Operation: The channel global features is
resulted by the squeeze operation, and then they are
performed excitation operation. The first layer of FC structure

lx (LxHxWxC)

-

|

Excitation

!
®

lfé (LxHxWxC)
FIGURE 6. Structure of Channel attention mechanism.
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is used for dimension reduction, which reduces the calcu-
lation amount by decreasing the number of channels. The
hyperparameter R is set to 16, and ReLU function is used.
The second layer of FC structure is designed to restore the
original dimension, and sigmoid function is adopted to obtain
the activation vectors (1 x 1 x 1 x C) of each channel. Then,
the activation vectors are multiplied by the original feature
maps to obtain the new feature maps with more distinguishing
ability for each channel feature. The process is descried in for-
mula (2) [8], where F, is the excitation function to generate
the scales of the feature channels, w; (w; € R(FXC) and wy
(wy € R¥R) represent the training weight parameters, and o
represents the sigmoid function.

s="Feyp(z,w) =0 (g(z,w)) =0 WaReLU (w12)) (2)

Benefiting from the feature recalibration strategy of two
above operations, the channel attention mechanism focuses
the model on the relationship between the feature channels
rather than the relationship in spatial position. The trained
network automatically learns the feature weights on different
channel, so as to enhance the channel features with the most
critical information and weaken the channel features with
more interference information. By introducing channel atten-
tion mechanism into the model, the feature expression ability
is improved, which is conducive to detect pulmonary nodules
from the complex background environment. The details of
each structure are shown in Table 2.

3) LOSS FUNCTION OF NODULE CANDIDATE DETECTION

Considering that the detection performance of RPN operation
combined classification task with regression task is far supe-
rior to that only using one of these two tasks [34]. During
nodule candidate detection, the loss function adopted by the
whole task includes classification loss L;; and regression loss
Lyeg. The loss function of the whole task is formulated as:

L (p, 1) = ALets (s P*) + P*Lieg (11, 1)) ©)

where A is a hyperparameter to balances classification loss
and regression loss, and it is set to 0.5. The p and p* represent
the predicted probability and the true label of anchor, respec-
tively. If Intersection over Union (IoU) between anchor and
ground truth bounding box is greater than 0.5, it is considered
as a positive sample (p* = 1). If IoU is less than 0.2, it is
considered as a negative sample (p* = 0). The f;(x, y, z, d)
and £(x*, y*, z*, d*) represent the coordinate vector of the
predicted and the true bounding box of the nodule position,
respectively.

The classification loss L. is binary cross-entropy loss
function, which can be formulated as:

Les (p.p*) = —w[p*logp + (1 — pHlog(1 —p)] @)

where w represents the weight.
The regression loss L., uses the smooth L1 loss function
to calculate the position information of the regression, which
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can be formulated as:

Lyeg (ti, t,.*) = Zie{x pzd) smoothy,| (t,- — ;l.*) 5)
Cosa -, |- <1

h PR * =
smoothy 1 (t, t ) |[l. — tl*| — 0.5, otherwise

(6)

B. MULTI-SCALE FEATURE FUSION CLASSIFICATION
NETWORK FOR MULTI-TASK LEARNING

To improve the comprehensive performance of classification
network, a novel multi-scale feature fusion classification net-
work for multi-task learning is designed.

1) NODULE CANDIDATE CLASSIFICATION FRAMEWORK
Considering that massive false-positive nodules are generated
after nodule candidate detection, it is necessary to classify
true positive and false-positive nodules. The classification
accuracy is limited by two factors: (1) Due to pulmonary
nodules vary in size and shape, and true positive and
false-positive nodules have similar appearance, it is inevitable
to loss some key microscopic detail features during the fea-
ture extraction. (2) The nodules feature information extracted
by using single receptive field is very limited, which leads to
low classification accuracy. In view of the above consider-
ations, a multi-branch 3-D classification network of multi-
task learning is designed to classify candidate nodules. The
network structure is shown in Fig.7, which consists of three
functional networks. Multi-branch classification (main task)
and image reconstruction (auxiliary task) work together to
perform multi-task learning.

Shared feature network is responsible for three-
dimensional features extraction of pulmonary nodules.
Its input feature map is the 3-D data (the volume size is
48 x 48 x 48) cropped at the centre of the nodule candidate
position. Due to the small number of positive samples, data
augmentation is conducted to expand the dataset. Shared
feature network consists of 15 layers: 8 convolution layers
(the size of convolution kernel is 3 x 3 x 3; the number
of convolution kernels is 16, 16, 32, 32, 64, 64, 128, 128,
respectively; each convolution layer performs convolution,
BN, ReL.U activation operations), 3 max-pooling layers (the
size of max-pooling layers is 2 x 2 x 2; the stride is 2), and 4
original residual structures.

Multi-branch classification network can fully integrate
the feature information from different levels and receptive
fields in the shared feature network to improve the classifi-
cation accuracy. The network structure uses the feature maps
of size 24 and 12 in shared feature network to obtain two
feature maps of size 6 with different receptive field informa-
tion through two and one max-pooling operation respectively.
Then, they are concatenated with the feature maps of size 6
in the shared feature network, and the multi-scale feature
information is fused through 1 x 1 x 1 convolution operation
to obtain the nodule feature layers with three receptive fields.
Finally, global max-pooling and two-layer full connection
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TABLE 2. Different structures of candidate nodule detection (SE and 3-D CGM structure are shown in Table 3 and Table 4 respectively.).

Structures Layer Type Kernel Size Number of filters
Res 1 Input - -
2 Conv+BN+ReLU 3x3x3 32
3 Conv+BN 3x3x3 32
4 Input+Layer3 - -
5 ReLU - -
Res+3D-CGM 1 Input - -
2 3D-CGM 3x3x3 32
3 Conv+BN+ReLU 1x1x1 32
4 3D-CGM 3x3x3 32
5 Conv+BN Ix1x1 32
6 Input+Layer5 - -
7 ReLU - -
Res+Attention 1 Input - -
2 Conv+BN+ReLU 3x3x3 32
3 Conv+ BN 3x3x3 32
4 SE - 32
5 Layer3*Layer4 - -
6 Layer5+Input - -
7 ReLU - -
3D Res-CGAM 1 Input - -
2 3D-CGM 3x3x3 32
3 Conv+BN+ReLU 1x1x1 32
4 3D-CGM 3x3x3 32
5 Conv+ BN 1x1x1 32
6 SE - 32
7 Layer4*Layer5 - -
8 Layer6+Input - -
9 ReLU - -
TABLE 3. Structure of SE. 6 convolution layers (the first five layers with 3 x 3 x 3
——— v~ e~ T T convolut%on kernels; the las.t .one layers with 1 x 1 x 1
Size convolution kernel) and 2 original residual structures.
SE 1 GlobalAvgPool - -
g gggy ReLU }H ;g/ 16=2 2) LOSS FUNCTION OF PULMONARY NODULE
4 Sigmoid ) - CLASSIFICATION
Considering that two-branch network for nodule classifica-
TABLE 4. Structure of 3-D CGM. tion task and image reconstruction task are simultaneously
trained during false-positive reduction, the total loss function
Structure  Layer  Type ‘;ez?el ?;Eﬁo“ of multi-branch network of multi-task learning is formulated
3D-CGM 1 Tnput - - as:
2 Conv+ BN+ReLU 3x3x3 1
i CmiBNRAU a2 Lol = Lets + Linge ™
5 Concat(Layer3,Layer) - -

operation are performed to obtain the classification probabil-
ity of pulmonary nodules.

Image reconstruction network (decoder) can recover
the key microscopic feature of pulmonary nodules in the
shared feature network (encoder) as much as possible, which
assists multi-branch network to improve classification perfor-
mance. Image reconstruction network includes 3 deconvolu-
tion layers (the size of deconvolution kernel is 2 x 2 x 2),
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Here, the classification loss and image reconstruction loss
are defined as L5 and LimRe, respectively. The threshold o €
(0, 1) represents a trade-off between the two tasks to avoid the
degradation of classification ability due to excessive empha-
sis on image reconstruction task. After many experiments,
the « is set to 0.4. Actually, « = 0 means that there is only
classification task.

In order to optimize the classification performance of
pulmonary nodules, the model is evaluated by cross-entropy
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FIGURE 7. Structure of multi-branch 3-D classification network based on multi-task learning.

loss function [9] described as:

Las =L (Ym S)I'l) = ynlogyn + (1 —yn) log (1 - 5’11) 3

where yj, is true label of the ng, sample, y, = 1 represents the
positive nodules, y, = 0 represents the negative nodules, and
Yn is the prediction probability of the positive nodules.

The sum of cross-entropy loss of each voxel is calculated
in image reconstruction, and its average value is taken as the
loss function Liyre formulated as follows:

1 N R
Limre = ﬁ Zn:O L (xnv xn) )

where L represents the cross-entropy loss function, and N
represents the number of voxels of the input image with a
size of 48 x 48 x 48. The x, and X, represent original voxel
value and predicted voxel value of input image, respectively.

IV. EXPERIMENTS AND RESULTS

Numerous experiments were performed to verify the pro-
posed 3-D computer-aided pulmonary nodule detection
system, and the experimental conditions were set to Ubuntu
16.04 operating system and two NVIDIA GeForce GTX
2080Ti GPUs.

A. EXPERIMENTAL DATASET GENERATION

1) DATASET CHOSEN

Lung Nodule Analysis 2016 (LUNA16) dataset involved
in this experiment is extracted from Lung Image Database
Consortium and Image Database Resource Initiative
(LIDC-IDRI) database, which is primarily for large-scale
algorithms evaluation competition in pulmonary nodule
detection and false-positive reduction. It retains 888 chest
CT scans including 1186 positive pulmonary nodules. The
nodule annotations were manually marked by 4 experienced
radiologists:(1) Each physician independently reviewed the
CT scan and marked the lesions with non-nodules, nodules
< 3mm, and nodules >= 3mm. (2) The nodule annotations
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from all four doctors were reviewed independently, and each
radiologist decided to accept or reject each annotated infor-
mation. The LUNA16 dataset included CT scans with section
thickness <= 2.5mm, pulmonary nodules with diameter >=
3mm and annotated by at least 3 of 4 radiologists.

2) DATA PRE-PROCESSING

LUNAI16 dataset are pre-processed to improve the detection
performance of pulmonary nodules: (1) Load raw CT images
and masks from LUNA16 dataset. (2) Boundary box of lung
mask is obtained, and its resolution is resampledto 1 x 1 x 1.
(3) Lung region is reserved with Hu value range of [—1200,
600] and normalized to range of [0,255]. (4) Lung masks are
dilated to remove small holes in the lung, and & operation
is applied to the new lung mask and original CT images. (5)
CT images is resampled and the data within boundary box is
intercepted, then the labels are converted to voxel coordinates
and transformed with a new resolution of 1 x 1 x 1, and
the pre-processed data and labels are stored in files with .npy
extension. Table 5 includes the dataset description of before
and after of pre-processing.

TABLE 5. Dataset description.

Dataset Npmber Volumes Nodule  Instance Format
of images (G)
Original 216672 119.1 1186 888CT Raw/mhd
Pre-
. 248412 75.2 1186 888CT Npy
processing

B. EXPERIMENTAL CONDITIONAL SETTING

When it comes to the selection and optimization of
user-defined parameters, these works achieved excellent
detection performance by setting reasonable hyperparame-
ters [7], [8], [22]. On this basis, we adjusted the user-defined
model parameters through numerous experiments presented
as follows.
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1) NODULE CANDIDATE DETECTION

LUNA16 competition dataset was equally split into 10
subsets. 10-fold cross-validation were performed to evaluate
nodule candidate detection performance. For each fold, 90%
of the dataset for training and 10% of the dataset for testing,
and the average of 10-fold cross-validation results was taken
as the detection results of nodule candidate. During the train-
ing, limited by memory resources of GPU, the large-size CT
images were cut into 96 x 96 x 96 3-D cubes to match the
data bandwidth, and the batch size was set to 8. In order to
alleviate the overfitting problem caused by the model, data
augmentation was performed on cubic patches of positive
samples: (1) Rescaling in the range [0.75, 1.25]; (2) Left-right
flipping and random rotating. In the experiment, stochastic
gradient descent (SGD) was selected as the model optimizer,
and the model was trained for 150 epochs. During the train-
ing experiment, the epoch was usually selected in the range
of 100 to 200. When the epoch is less than 150, the loss of
training and verification decreases rapidly. When the epoch
exceeds 150, the loss tends to decrease gently, and excessive
training time is consumed. However, ten-fold cross-validation
effect at this time was equivalent to that of 150 epochs.
To sum up, we make the train experiment stop at 150 epochs.
The learning rate was initialized to 0.01, and it gradually
decreased with the increase of training epochs. The learning
rate was decreased down to 0.001 after 75 epochs and 0.0001
after 120 epochs, respectively. During the testing, a large
number of nodule proposals would be detected and some
of which overlapped each other. Therefore, the nodules less
than 3mm detected diameter were removed, and then Non-
Maximum Suppression (NMS) with IoU threshold of 0.1
was applied to remove the overlap proposals. Finally, the test
results were achieved. In order to prevent network overfitting,
data enhancement is carried out during the pre-processing
stage. 10-fold cross-validation and dropout (P = 0.5) were
used in the training process during the detection stage. The
fine-tuned hyper-parameters settings in the experiment are
shown in Table 6.

2) FALSE-POSITIVE REDUCTION

Taken the center of the candidate nodules as the coordinate,
CT images were cut into 48x 48 x 48 3-D cubes and then
randomly disrupted. The data proportion of training sets,
testing sets and verification sets were divided into 8:1:1. Since
the number of false- positive nodules was much larger than
the true positive nodules in dataset, the data imbalance may
lead to the model overfitting. Hence, 3-D cubic patches of
including true positive nodules were rotated 90°, 180°, and
270° in the transverse plane for data augmentation. During
the training, Adam stochastic optimization was applied to
the backpropagation, the weights were randomly initialized
from Gaussian distribution N (0, 0.012), ReLU was used as
the activation function, and the batch size was set to 12. The
learning rate was initialized to 0.1, and it was reduced by
10% every 3000 iterations. Batch normalization and dropout
(rate = 0.5) were adopted to improve the generalization
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ability of model. When the model performance starts to
decline on the verification set, the training process is stopped.
In order to prevent network overfitting, data enhancement,
early stop, dropout (P = 0.8) and L2 regularization were
used in the training process at the classification stage. The
fine-tuned hyper-parameters settings in the experiment are
shown in Table 6. Furthermore, the classification networks’
GPU Memory resource is 10907 M, and the training time is
about 48h.

3) EVALUATION INDICATORS

Detection sensitivity and free receiver operating character-
istic (FROC) score are used to evaluate the performance of
the CAD system. Generally, nodule detection algorithms are
applied for screening nodules on chest CT, and thus enable
radiologists to focus only on positive cases. In this case,
false-positive cases may be corrected by radiologists, and
false-negative cases cannot be corrected. Therefore, in order
to assist radiologists to diagnose, an excellent detection algo-
rithm should be evaluated as lower false positive rate and
higher sensitivity. In the LUNA16 competition, a candidate
is regarded as a true nodule if it is located within the range
of R (half the diameter of the annotated nodules) from the
nodule center. The sensitivity represents the percentage of
pulmonary nodules correctly identified by classification. It is
evaluated by formula (10), where TP, FN and TP+FN are
defined as the number of true positive nodules, false neg-
ative nodules and all detected nodules, respectively. In the
LUNA16 competition, a candidate is regarded as a true nod-
ule if it is located within the range of R (half the diameter of
the annotated nodules) from the nodule center. The sensitivity
represents the percentage of pulmonary nodules correctly
identified by classification. It is evaluated by formula (10),
where TP, FN and TP+FN are defined as the number of
true positive nodules, false negative nodules and all detected
nodules, respectively.

. TP
Sensitivity = ———— (10)
TP + FN

FROC curve reflects the decreasing trend of false-positive
nodules, and the average sensitivity at the seven pre-defined
false-positive rates (0.125, 0.25, 0.5, 1, 2, 4, 8 FPs/scan)
reflects the competition performance metric (CPM). The
higher the CPM score, the better the system performance.

In order to comprehensively evaluate the performance of
the classification, the metrics commonly also used for clas-
sification include accuracy, precision, recall, specificity and
F1-score, which can be expressed by the following formulas
(11), (12), (13), (14) and (15), respectively.

TP + TN
Accuracy = (11)
TP+ FP+ FN + TN
. TP
Precision = —— (12)
TP + FP
TP
Recall = ——— (13)
TP + FN
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TABLE 6. Setting of Hyper-parameters.

Learning rate decay strategy

Networks Training Optlml'zatlon Bé?.tch
epoch algorithm size .
Initial epochs Epochs> Nxepochs Epochs>Nxepochs
3D Res-CGAM 150 SGD 8 0.01 0.001 (N=1/2) 0.0001(N=4/5)
Multi-branch _ _
classification network 50 Adam 12 0.1 0.01(N=1/5) 0.001(N=2/5)
. TN . . .
Specificity = ————— (14) in each-fold experiment and the overall detection perfor-
IN + FP

Precision % Recall
Fl1=2

15
¥ Precision + Recall (15
C. EXPERIMENTAL RESULTS ANALYSIS
The CAD system is verified on the LUNA16 well, and the
network performance is evaluated as follows.

1) NODULE CANDIDATE DETECTION

a: ABLATION STUDY

Under the same experimental conditions, 10-fold cross-
validation comparative experiments are conducted on
Res-3 x 3 x 3 structure, Res+Attention structure, Res+
3D-CGM structure and 3-D Res-CGAM structure, respec-
tively. As shown in Fig. 8, experimental results show that:
(1) When 3 x 3 x 3 convolution is replaced by 3-D CGM
in the original residual module, the sensitivity is improved in
10-fold cross-validation experiments. Obviously, 3-D CGM
can extract more multi-scale nodule features with rich spatial
context information. (2) By introducing the channel attention
mechanism into the original residual module, the sensitivity
curve becomes relatively flat and slightly increased in each-
fold experiment.
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FIGURE 8. Comparison of 10-fold cross validation results from ablation
study.

Obviously, the generalization ability of the whole model
can be enhanced by introducing channel attention mechanism
under different distributed test dataset. (3) When 3-D CGM
and channel attention mechanism are both introduced into
original residual module, the sensitivity curve was the flattest
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mance is optimal.

The detected results of four detection structures are com-
pared in Table 7, which shows that: (1) Compared with
Res-3 x 3 x 3, the average sensitivity of Res+3D-CGM
increases from 92.2% to 93.2%. However, the average num-
ber of candidates per scan significantly increases from 31.52
to 59.60. It indicates that 3-D CGM enhances the fea-
ture extraction capability of the model, and the multi-scale
features of pulmonary nodules are fully utilized, but a large
number of redundant features are extracted, which reduces
the detection efficiency. (2) To address the above thorn
problem, the channel attention mechanism module is further
introduced to Res+3D-CGM structure. The average sensi-
tivity of 3-D Res-CGAM is up to 94.0%, and the number
of candidate nodules decreases, which improves the detec-
tion performance of pulmonary nodules. It indicates that
the attention mechanism dynamically adjusts the channel
characteristics of the feature map. Hence, useful nodule
feature information is enhanced and useless nodule feature
information is suppressed. Furthermore, time complexity of
structure and the standard deviation of sensitivity values cal-
culated from cross-validation folds are shown in Table 7.

b: RESULTS VISUALIZATION

Considering that CT images belong to 3-D data, only the
central slices of true positive nodules detected by 3-D
Res-CGAM structure was visualized. In Fig. 9, the upper row
shows the ground truth in the dataset, the true position of
nodules is marked in green box, and true label 1 and diameter
coordinate of the nodules are marked below each sample
image. The next line shows the nodular slices detected, where
the size of the red box is related to that of the detected nodules.
It can be seen that the detection probability for pulmonary
nodules with various shapes and different sizes is close to 1,
and the diameter of the nodules is close to that of the ideal
label. It indicates that the network model efficiently detects
pulmonary nodules in chest CT images.

2) FALSE-POSITIVE REDUCTION

a: ABLATION STUDY

FROC curves of the multi-branch classification network
performing single-task learning (image reconstruction not
included) and multi-task learning (image reconstruction
included) are compared in Fig. 10, which reflect the average
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TABLE 7. System performance at nodule candidate detection stage.

Average Total Total Average number Standard deviation Memory Usage Training Time
sensitivity number number of of of (GPU)M)
Structures (%) of detected candidates/scan sensitivity (%)
candidates nodules
Res-3X3X3 92.2 27998 1094 31.52 2.77 8906 About 9h/fold
Res+3D-CGM 93.2 52929 1105 59.60 2.49 17528 About 15h/fold
RestAttention 92.5 35450 1097 39.92 2.04 9380 About 10h/fold
3D Res-CGAM 94.0 44627 1114 50.25 2.48 17998 About 21h/fold
~ O
Ground ' ' g
Truth
1.20.412mm 1.16.332mm 1.8.824mm 1.5.920mm 1.5.143mm 1.5.108mm 1.4.859mm 1.4.623mm
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0.999.20.062mm  0.999.16.276mm 0.999. 10.771mm 0.998.8.644mm 0.996,6.073mm  0.964.5.104mm 0.999.5.275mm  0.954, 4.841mm 0.992, 4.708mm

FIGURE 9. Visualization of central slices for nodule ground truths and detection resuilts.
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FIGURE 10. Comparison of FROC curves for ablation study.

sensitivity at different false positive rates. On the FROC
curve, the abscissa represents the false positives rates of 1/8,
1/4, 1/2, 1, 2, 4, and 8 per scan, and the ordinate represents
the sensitivity. It can be seen, the average sensitivity of the
two tasks increases steadily with the increase of the average
false positive rate of per scan, but the sensitivity of multiple
tasks learning is higher than that of single task learning.

The average sensitivity at 7 predefined false positive rates
and CPM performance are shown in Table 8. The multiple
tasks learning reaches higher average sensitivity at 7 false
positive rates per scan than single task learning, and CPM
score is up to 0.959.

The confusion matrices of single task and multiple tasks
are illustrated in Table 9. The designed model can correctly
classify most nodules. It is obviously noted that the number
of nodules correctly classified by multi-task model was more
than that by single-task model.
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Furthermore, more metrics is list in Table 10 to evaluate
the network classification performance. Obviously, Multiple
tasks overall outperforms than single task in accuracy, pre-
cision, recall, specificity and Fl-score, which means that it
achieves an excellent classification performance of an accept-
able false negative rate (Precision) and low false positive
rate (Recall).

Overall, the classification performance of multi-task learn-
ing is better than that of single-task learning. Therefore,
the image reconstruction auxiliary network of the multi-task
learning plays a role in adjusting the CNN hierarchy of the
shared feature network. And the detail information at pixel
level which is beneficial to nodule classification is preserved
to improve classification accuracy as much as possible.

b: LOSS WEIGHT SELECTION
Image reconstruction can recover some detail features lost
during the feature extraction, and the model performance is
improved by making full use of the detail feature information.
Hence, the image reconstruction task is introduced into the
classification task to improve the classification effect. How-
ever, in order to train the prediction model with superior
classification performance, it is necessary to ensure that the
two task losses are properly weighted in the combined loss
function. So, the threshold is set as o € (0, 1) in formula (7),
where « represents the weight ratio of nodule classification
loss and image reconstruction loss. As shown in Fig. 11, 6
threshold values are selected as « (0, 0.1, 0.3, 0.4, 0.5, 1.0)
between [0,1] to carry out a comparative experiment, and the
optimal weight of « is found for image reconstruction loss.
The experimental results are analyzed as follows: (1) When
o = 0, it means that the model cannot obtain any fea-
ture information from the image reconstruction task, which

VOLUME 10, 2022



H. Yuan et al.: Pulmonary Nodule Detection Using 3-D Residual U-Net Oriented Context-Guided Attention

IEEE Access

TABLE 8. System performance at the false positive reduction stage.

FPs/scan
Task type 0.125 0.25 0.5 1 2 4 3 CPM
Single task 0.789 0.832 0.870 0.903 0.931 0.950 0.980 0.891
Multiple task 0.928 0.942 0.952 0.959 0.983 0.986 0.990 0.959

TABLE 9. Confusion matrix of the classification results.

Confusion Predict results
Matrix 0 1
Single Multiple Single Multiple
Task type task tasks task tasks
Real label 0 106195 107457 3869 2607
1 1566 527 31007 32046

TABLE 10. Network Classification Performance.

Model Accuracy  Precision Recall Specificity  FI-
score
Single task 0.961 0.889 0.951 0.964 0.919
Multiple tasks 0.978 0.924 0.983 0.976 0.953

FROC performance

0.7 1
> 0.6
2
=2 0.5
@
€
& 0.4 4
0.3 —— a=0,CPM=0.891
: — a=0.1,CPM=0.931
0.2 4 a=0.3,CPM=0.952
— a=0.4,CPM=0.959
0.1 — a=0.5,CPM=0.924
—— a=1.0,CPM=0.884
0.0 T T T T T
0.125 0.25 0.5 1 2 4 8

Average number of false positives per scan

FIGURE 11. FROC curve comparisons with different image reconstruction
loss weight in LUNA16.

is equivalent to single task. (2) When o € (0,0.4), the
classification performance is improved with the increase of
threshold . When o = 0.4, the CPM score is the highest and
nodules classification effect is the best. When a € (0.4, 1),
the classification performance is decreased with increasing .
However, the classification effect of multiple tasks is slightly
better than that of single task, which shows that the image
reconstruction task can improve the classification perfor-
mance. (3) When o = 1, it means that classification task and
image reconstruction task are not divided into the main task
and the auxiliary task, and they are equally important. At this
time, the classification model learns more redundant and
useless feature information from the image reconstruction.
Therefore, the classification effect is even slightly inferior to
that of single task.

When a loss threshold « is appropriately selected for image
reconstruction, the multi-task model can learn more useful
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microscopic feature at pixel level to improve the classification
performance. So multi-task learning is superior to single-task
learning.

V. DISCUSSIONS
To be fair, the performance comparison is conducted on

different nodule candidate detection systems under LUNA16
dataset in Table 11. Machine learning algorithm was applied
to detect pulmonary nodules in methods [17], [35]-[37],
which largely depended on the manual feature extraction
of pulmonary nodules, and it was difficult to achieve auto-
matic detection, resulting in poor generalization ability of the
model. Traditionally, thresholding, morphological operation,
and region growing are often used for lung segmentation and
nodule candidate detection, and SVM and its variants are used
as classifiers [17], [35]-[37].

Deep learning algorithm was applied to detect pulmonary
nodules in methods [7], [25]-[27], [38]-[40], which could
learn automatically features from data without relying on
manual extraction of features. It can be found that deep
learning methods show high sensitivity in the detection
of pulmonary nodules. In the methods [25], [38], multi-
ple 2D cross-sectional slices of pulmonary nodules were
selected as input, but the spatial context information of
3-D pulmonary nodule features could not be extracted,
so the detection sensitivity of 2D network model was
lower than that of 3-D network model. However, 3-D net-
work [7], [26], [27], [39], [40] involved more parameters,
which increased the storage space requirements, but it could
extract rich target spatial information, which was more con-
ducive to detect pulmonary nodules from CT images.

For considering the above-mentioned, a 3-D CAD system
is designed to effectively improve the model performance
in pulmonary nodule detection and false-positive reduction.
We constructed 3-D Res-CGAM architecture based on 3-D
Residual U-Net with lower network complexity and big-
ger model depth, which enhanced the3-D feature extraction
ability and model generalization. Obviously, the detection
sensitivity is high and the average number of candidates per
scan is relatively low.

To comprehensively evaluate false-positive reduction per-
formance of automatic nodules detection system, CPM
scores are compared on the LUNA16 dataset in Table 12.
Method [10] designed the 3-D input feature maps of three
sizes, and the fusion weight was manually determined to
classify pulmonary nodules, but its detection rates needed
further improvement. Method [28] integrated with three 3-D
CNN subnetworks to classify pulmonary nodules at the
expense of a high network complexity. Method [11] designed
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TABLE 11. Performance comparison during nodule candidate detection.

Algorithm Methods Types #Scans #Nodules Sensitivity (%) FPs/Scans
Javaid et al. [17] 2D+3D 1308 Unknown 91.65 3.19
Machine Lu et al. [35] 2D 294 631 85.2 3.31
Learning Murphy et al. [36] 2D 888 1186 85.6 3359
Torres et al. [37] 2D 888 1186 76.8 22.2
Zhu et al. [7] 3D 888 1186 91.7 Unknown
Setio et al. [25] 2D 888 1186 90.1 85.4
Huang et al. [26] 3D 99 Unknown 90.0 Unknown
Deep Hamidian et al. [27] 3D 534 Unknown 80 15.28
Learning ZNET. [38] 2D 888 1186 88.4 79.3
Ypsilantis et al.[39] 3D 1080 Unknown 90.5 4.5
Dou et al. [40]. 3D 888 1186 90.6 86.5
3D Res-CGAM 3D 888 1186 94.0 50.25
TABLE 12. Performance comparison during false-positive reduction.
False positives per scan
CAD system 0125 025 03 I 3 n 3 CPM P-Value
Zhang et al. [6] 0.890 0.931 0.944 0.949 0.965 0.972 0.976 0.947 0.285
Dou et al. [10] 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.827 0.002
Zuo et al. [11] 0.630 0.753 0.819 0.869 0.903 0.915 0.920 0.830 0.007
Cao et al. [28] 0.695 0.801 0.851 0914 0.939 0.949 0.961 0.873 0.035
Ye et al. [41] 0.621 0.733 0.849 0.899 0.918 0.924 0.934 0.839 0.019
Li et al. [42] 0.739 0.803 0.858 0.888 0.907 0916 0.920 0.861 0.003
Wang et al. [43] 0.788 0.847 0.895 0.934 0.952 0.959 0.963 0.905 0.052
Zheng et al. [44] 0.876 0.899 0.912 0.927 0.942 0.948 0.953 0.922 0.013
H Cao et al. [45] 0.848 0.899 0.925 0.936 0.949 0.957 0.960 0.925 0.051
Setio et al. [46] 0.859 0.937 0.958 0.969 0.976 0.982 0.982 0.952 0.571
Our method 0.928 0.942 0.952 0.959 0.983 0.986 0.990 0.959 1

a 3-D input feature map and multi-scale feature layers were
used for feature fusion to improve the feature extraction for
high classification accuracy, but the microscopic informa-
tion of nodules is not fully utilized. Method [43] adopted
deep learning model with adaptive feature map size for pul-
monary nodule detection, it scores higher than the previous
methods. Method [44] input maximum intensity projection
images (MIP) of different thickness to improve the detection
effect, and used feature fusion of different thickness to reduce
false positives. Method [6] used multi-scale LOG Gaussian
filter to detect candidate nodules and achieved good classi-
fication results, but it contained more false-positive nodules
in the nodules candidate detection. Method [46] designed a
CAD system that focused on some special types of nodules
(proximal pleural nodules, proximal vascular nodules, etc.),
and achieved good nodule detection performance, but it lacks
universality.

Anova test is performed to supplement the P-Values, which
records the significant difference between errors of the pro-
posed and existing method in Table 12. Take P-Value =
0.05 as the evaluation standard of method difference, it is
obviously noted that our woks are significantly different from
the works in [10], [11], [41], [42] and [44] but equivalent to
the rest works with high CPM.

In view of the above works, the proposed 3-D automatic
nodules detection system is summarized as follows: In the
detection stage, 3-D Res-CGAM structure is designed to
obtain rich and representative context feature information of
multi-scale pulmonary nodules, which improves the detection

96

TABLE 13. Abbreviation of different words used in the article.

Abbreviation Description
CAD Computer-aided detection
CT Computerized tomography
CNN Convolutional neural network
RPN Region Proposal Network
SE Squeeze-and-excitation
3D-CGM 3D context-guided module
3D Res-CGAM 3D Residual-context guided attention module
Res+3D-CGM Residual+3D context-guided module
FROC Free receiver operating characteristic
CPM Competition performance metric

sensitivity and model generalization. In the classification
stage, the classification task is combined with the image
reconstruction task well, and the multi-level features of dif-
ferent receptive fields in the feature extraction process are
fully utilized to improve nodules classification accuracy and
reduce false positives. Overall, the proposed 3-D detection
system applied to detect multi-scale pulmonary nodules with
different shapes obviously outperforms than the previous
detection systems, and CPM score is up to 0.959. It is worth
noting that network model has good generality. Table 13 is
supplemented to host all the frequently used abbreviations
with their descriptions to improve the readability.

When it comes to the limitations of our methodology and
the threats-to-validity of the experimental results, unstruc-
tured CT data of patients was used to improve the network
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model, and achieved good detection sensitivity and classifi-
cation accuracy. Actually, structured data including clinical
baseline data, disease history and laboratory examination are
usually used to make an accurate judgment of the patient’s
condition in clinical practice. Therefore, the future works
focus on how to combine the structured data with unstruc-
tured data to integrate multi-modal data for perfect features
construction is vital to nodule screening.

VI. CONCLUSION
The mainstream feature extraction network adopted in CT

image processing is easy to extract redundant macro-features
and lose key micro-features during feature information trans-
mission, so the extracted features are lack of representa-
tiveness, which resulting in low detection sensitivity and
high false positive. Hence, an efficient three-dimensional
automatic pulmonary nodule detection system was developed
to solve the above thorny problems. (1) A 3-DCGAM mod-
ule was designed to improve the network feature extraction
capability. By extracting representative nodular features, the
detection performance of candidate nodules was prior to that
of mainstream 3-D CNN, and the sensitivity was up to 94%
under the condition of low false positive. (2) A multi-task
learning model was designed by combining CT image recon-
struction task and nodule classification task, which can
fully learn the microscopic features of image spatial context
to improve nodule classification performance. The single-
channel input mode greatly reduces network parameters,
and the receptive field features from different branches can
effectively identify pulmonary nodules with different sizes
and shapes. The CMP of LUNA16 challenge evaluation was
increased to 0.959. This research work is beneficial to pro-
mote the research on chest CT image automatic detection
equipment under the background of complex medical engi-
neering. It aims to achieve benign and malignant diagnosis
of pulmonary nodules and early screening of lung cancer
through clinical medical imaging process. Our future work
will focus on combing structured and unstructured data to
construct excellent pulmonary nodule features and incorpo-
rating clinical records into the nodule detection process.
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