
Received November 2, 2021, accepted December 7, 2021, date of publication December 23, 2021, date of current version January 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3137636

A Deep Learning-Based Framework for
Phishing Website Detection
LIZHEN TANG AND QUSAY H. MAHMOUD , (Senior Member, IEEE)
Department of Electrical, Computer, and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

Corresponding author: Lizhen Tang (lizhen.tang@ontariotechu.net)

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

ABSTRACT Phishing attackers spread phishing links through e-mail, text messages, and social media
platforms. They use social engineering skills to trick users into visiting phishing websites and entering
crucial personal information. In the end, the stolen personal information is used to defraud the trust of
regular websites or financial institutions to obtain illegal benefits. With the development and applications
of machine learning technology, many machine learning-based solutions for detecting phishing have been
proposed. Some solutions are based on the features extracted by rules, and some of the features need to rely on
third-party services, which will cause instability and time-consuming issues in the prediction service. In this
paper, we propose a deep learning-based framework for detecting phishing websites. We have implemented
the framework as a browser plug-in capable of determining whether there is a phishing risk in real-time
when the user visits a web page and gives a warning message. The real-time prediction service combines
multiple strategies to improve accuracy, reduce false alarm rates, and reduce calculation time, including
whitelist filtering, blacklist interception, and machine learning (ML) prediction. In the ML prediction
module, we compared multiple machine learning models using several datasets. From the experimental
results, the RNN-GRU model obtained the highest accuracy of 99.18%, demonstrating the feasibility of
the proposed solution.

INDEX TERMS Phishing detection, machine learning, deep learning, RNN-GRU, web browser extension.

I. INTRODUCTION
Internet services have brought tremendous changes to peo-
ple’s lives. Most online services manage users through a
membership system, and individual users need to register
and log in to obtain these personalized services. Therefore,
people need to provide personal information when enjoying
these convenient and efficient services. In a secure network
environment, the transmission and storage of information are
protected by network security technology. However, there are
many cybercriminals who use various methods to attack and
steal personal information.

Phishing is one of the cyberattack methods that simu-
late a regular website to trick users into providing personal
information. Since the emergence of phishing attacks more
than ten years ago, network security experts have been using
technical methods to intercept attacks. Attack technology and
anti-attack technology are constantly changing and improv-
ing. Unfortunately, there is no effective technology that can
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completely prevent phishing attacks. From the network secu-
rity reports in recent years, we can see that the economic
losses caused by phishing attacks are huge [2]. According to
the phishing activity report from APWG, there are more than
100,000 phishing links every month, and it has been a grow-
ing trend in the past year [3]. The 2020 annual report from
the Internet crime complaint center showed that the economic
loss caused by phishing attacks was over $54 million [4].

Commonly used means of spreading phishing links are
e-mails, text messages, and social media platforms. The
content of the copy edited by the attacker through social
engineering means that the user is very eager to click on
the phishing link after receiving the information. Therefore,
when the phishing link is accessed in the browser, detecting
the risk through network security technology, and alerting the
user is a very effective anti-attack technology to prevent the
user from leaking personal information.

The core of traditional methods of detecting phishing
URLs is based on rules. The generation of these rules can
be summarized as parsing features from URL and web-
page source code and comparing the feature value with
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an empirical threshold. It can be seen from the academic
research report that the number of effective rules is within 100
[5], [6]. Cybercriminals can also develop new attack strate-
gies based on these rules. The rules are interpretable, and the
logic of the rules is limited, so the detection methods based
on the rules can be easily cracked and used by attackers. For
example, the feature of a URL’s schema is HTTPS, which is
used in many research papers and obtained high importance.
However, the APWG report showed an average of 83 percent
of phishing websites used HTTPS schema in the first quarter
of 2021 [3].

With the rapid development of machine learning, there
are more and more applications in the field of cybersecu-
rity. Some scholars and experts have proposed solutions for
detecting phishing links based on machine learning, and
many academic journal articles show that machine learning-
based solutions have achieved high accuracy [7]–[10]. How-
ever, in the application scenario of a real-time environment,
there are still many challenges. For instance, the real-time
system requires the response time of the predictive service
to be on the order of milliseconds; a high false-positive rate
will affect user experience and user trust.

In this paper, we propose a deep learning-based framework
to detect phishing links in a real-time web browsing envi-
ronment. We developed a browser plug-in to receive client
information, call the background prediction service, and show
the prediction results to users. When the URL of the current
tab of the browser is predicted to be a phishing link, the
current page will receive an obvious warning prompt. The
prediction result is obtained by the core prediction service
calling a trained machine learning model. We introduced
multiple models with multiple data sets for comparison and
backup. It is concluded from the experimental results that the
RNN-GRU model obtains the highest accuracy rate of 99.18,
which is better than SVM, Logistic Regression, Random
Forest. The contributions of this paper are:

1) A deep learning-based framework for detecting phish-
ing URLs. We trained and tested the models using
seven custom datasets generated from four existing
data sources, and we achieved the highest accuracy of
99.18% with the RNN-GRU model.

2) A prototype implementation of the proposed frame-
work as a Chrome browser extension.

We organized the rest of the paper as follows: Section II
summarizes the related work focusing on deep learning mod-
els and real-time frameworks. Section III presents the design
and architecture of the proposed framework. Section IV dis-
cusses the prototype implementation, including some open-
source frameworks, services, and tools that we have utilized.
Experimental results and analysis are reported in section V.
Finally, Section VI concludes the paper and offers ideas for
future work.

II. RELATED WORK
Phishing attacks represent a serious problem, and the tech-
nology for detecting and intercepting phishing attacks is

constantly evolving. It is the most accurate and fast way to
filter good URLs through the whitelist and block phishing
URLs through the blacklist. However, the list method cannot
detect new phishing links, and because of the low cost of
creating a phishing URL, the attacker does not rely on using
the same phishing link multiple times.

Many research reports based on machine learning have
been published, and high accuracy results have been obtained
in experiments. However, in the actual network environment,
there are still many victims of phishing attacks every year,
causing economic losses. There is still a certain gap between
the experimental data results and the real network secu-
rity solutions. Therefore, it is very important to study anti-
phishing solutions in a real-time environment.

We divide the related work into two parts: (1) deep
learning-based methods for detecting phishing websites
(2) frameworks with prototype implementations.

A. DEEP LEARNING-BASED METHODS
In this part, we reviewed some state-of-the-art deep learning-
based solutions for phishing websites detection.

Bu and Cho [11] proposed a deep autoencoder model
to detect zero-day phishing attacks and obtained 97.34%
accuracy. They extracted character-level features from URL
strings and executed experiments on three different datasets
collected from Phish Storm [2], ISCX-URL-2016 [12], and
Phish Tank [13]. They used receiver-operating characteris-
tic curve analysis and N-fold cross-validation to evaluate
the experimental results. Comparing the root mean square
error (RMSE) in the reconstruction phase between legitimate
URLs and phishing URLs, they found the RMSE increased
significantly for the phishing URL.

Somesha et al. [14] introduced deep learning models for
detecting phishing websites only using ten features extracted
from HTML and a third-party service. They compared three
deep learning models and calculated 18 features’ weights.
The experimental results demonstrated that the Long Short-
Term Memory (LSTM) model achieved the highest accuracy
of 99.57%. However, they only used one published dataset
with 3526 instances. The dataset is obviously too small for
deep learning training. The high accuracy rate in the experi-
mental results may be due to the uneven distribution and poor
diversity of the test data.

Adebowale et al. [15] combined the convolutional neu-
ral network (CNN) and long short-term memory (LSTM)
algorithm to classify phishing websites. The hybrid classifier
obtained an accuracy of 93.28% and an average computa-
tional time of 25s by using image, frame and text features.
They collected URLs from Phish Tank and Common Crawl
and extracted image features from URLs. The image features
are used to feed the offline CNN model, and the text features
are contributed to the LSTM classifier. The innovative point
of this solution is to combine the characteristics of pictures
and text. However, from the experimental results, there is
still room for improvement in the accuracy rate, and the
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FIGURE 1. Architecture of the deep learning-based framework for detecting phishing URLs.

calculation time is too long to meet the requirements of real-
time prediction products.

B. FRAMEWORKS AND SYSTEMS
When detecting whether a webpage is at risk of phishing
attacks, the core service is a prediction service based on
machine learning. The response time of predictive service is
the most important indicator to measure the feasibility of this
real-time system.

Atimorathanna et al. [16] introduced an anti-phishing pro-
tection system, which consists of a web browser extension,
an e-mail detection plug-in, filters, and a machine learning-
based phishing detecting server. The browser extension is
used to extract the current URL, capture a screenshot, and
store the user’s visit history as a profile on the client-side. The
server mainly uses the following processes to detect phish-
ing links: (1) using the blacklist and whitelist of third-party
services to filter new URLs; (2) using a machine learning
model based on 13 features to predict whether the URL is a
phishing link; (3) using computer vision technology to detect
website logos and comparisons the similarity of screenshots
of web pages. The logo detector in the article is used to
identify 20 well-known online banks and some commonly
used website logos.

The authors collected and established their own database
for the training of the logo detection model and obtained an
accuracy rate of more than 95%. The comparison of the sim-
ilarity of the two screenshots uses Python’s OpenCV library.
The experimental results of the URL analyzer showed that
the Random Forest classifier achieved the highest accuracy of
96.257%. It is a completed online real-time detection system

for phishing, combining multiple methods to protect users
from being attacked effectively. However, there is still room
for improvement in the machine learning model’s perfor-
mance, and the number of logos that the logo classifier can
detect is too small.

Maurya et al. [17] introduced an anti-phishing system,
which contains a web browser extension. The browser plug-
in obtains the current URL in real-time and extracts features
based on the DOM structure, then detects whether there is a
risk of phishing attacks and prompts the user. The detection
service is divided into three stages, namely whitelist match-
ing, blacklist filtering, and prediction based on a machine
learning model. The prediction phase determines the URL
that meets the criteria as a phishing link based on character-
level features. For example, there are no hyperlinks to the web
page, and the number of hyperlinks to external domain names
exceeds a certain percentage. Such rules are vulnerable to
attackers, and some normal URLs are likely to be misidenti-
fied. In addition, the author improves accuracy by combining
three basic classification models.

Shah et al. [18] presented a machined learning-based
browser extension for detecting phishing URLs. They trained
the Random Forest model using the UCI dataset, which con-
tains 11,055 instances with 30 normalized features. There-
fore, it is required to extract features based on the current
URL string in a real-time environment. In the article, the
authors extracted 16 features that do not rely on third-party
services. Experimental results show that the accuracy rate is
89.6%, which has a lot of room for improvement.

Sundaram et al. [19] built a Chrome browser extension for
phishing websites detection. They used the UCI data set to
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train themodel and packaged the trainedmodel into a browser
extension. The article did not describe the implementation
details and results in detail, nor does it give the average
calculation time for real-time detection of a URL. However,
the feature extraction process relies on third-party domain
name services.

Abiodun et al. [20] developed a website to verify a link
is a phishing URL or not. The detector was implemented
by JAVA programming language and a library named JSoup
HTML Parser (JHP). This solution is mainly divided into
three stages. The first is to use JSoup to parse the DOM
structure of the website to be detected. The second is to
analyze the number of link tag <a> from the DOM structure
and analyze the attribute ‘‘href’’ value. The attribute value is
classified as an empty link, external links and internal links.
Third, the link calculator figured out an indicator, which has a
value between 0 and 1. When the value exceeds 0.8, the URL
to be verified is considered a phishing link. Since no machine
learning model is introduced, there is no training process.
In the experiment, the authors used 300 URLs to test the
performance of the link calculator. The testing results showed
they achieved 99.97% accuracy and a 0.03 false-negative rate.
They will need to use a larger test data set to verify this
solution in the future. From the analysis, it is a misjudgment
to judge the phishing risk by analyzing the characteristics of
the link tag from the website source code alone, and it is easy
for attackers to use this rule to circumvent these rules.

A web browser architecture with an intelligent engine
for phishing websites detection named EPDB is presented
in [21]. Compared to the traditional web browser architec-
tures, the EPDB has a brilliant engine-integrated machine
learning model for detection in a real-time environment.
They used the UCI dataset to train machine learning models.
In the predictive process, the rule of extraction framework
is applied, which could extract 30 features of a website.
The experimental results showed the Random Forest classi-
fier obtained the highest accuracy of 99.36%. Although the
accuracy of the experimental data is very high, this solution
also has some limitations and challenges. First, developing
a browser is a highly complex task. Some functions of the
browser need to be compatible with mature browser functions
before they can be promoted to users. In addition, the data
set for training the model is single, and the robustness of
the model needs to be verified again. Finally, the rule-based
feature extraction framework relies on third-party services.

III. FRAMEWORK DESIGN
Figure 1 depicts the architecture of the components of our
proposed framework. There are four modules in terms of data
collection tasks, machine learning (ML), cloud application,
and web browser extension. The data collection module is an
independent scheduled task application. The ML module is
used for training modules. The web browser extension is a
client-side product. The cloud application is built to deal with
false alarms and phishing URLs reported by users from the

web browser extension. The orange lines with arrows in the
figure show the data interaction process.

The core process of this framework is mainly divided into
the following six steps: the first is to collect and integrate
data from various data sources; the second is to combine
different data sets for machine learning model training, and
store the trained model in a file system; the third is that the
interface for predicting phishing risk calls the trained model
to make predictions; the fourth is that the browser extension
calls the prediction interface to perform real-time detection
and display the detection results; the fifth is that users can
submit real-time feedback when they disagree with the detec-
tion results, such as misjudgment, missed alarm; finally, the
report submitted by the user is verified throughmanual review
and automatic review strategy, and the verification result is
synchronized to the data set

A. DATA COLLECTION TASKS
Data is the core of the field of machine learning. The quality
and quantity of data significantly impact the performance of
machine learning-based modules [22]. The data collection
module is the foundation of this system. A data collecting
task is divided into two parts, obtaining data from different
data sources, then analyzing and storing data.

We collected data from different open sources shown
in Table 1. The Phish Storm [2] dataset contains 96,018
URLs: 48,009 legitimate URLs and 48,009 phishing URLs.
The ISCX-URL2016 [12] dataset contains 35378 legitimate
URLs and 9965 phishing URLs. We loaded around 350,000
benign URLs from an open Kaggle project [23]. In addition,
we initially collected 400,000 data and regularly grabbed new
data from the Phish Tank platform [13] every day.

TABLE 1. Data sources.

We analyzed the basic structure of the URL and parsed out
basic information such as protocol, domain, subdomain, top-
level domain, and path [24]. Table 2 presents the major fields
of a table namedURL.We stored data in a relational database,
as it is flexible and efficient for providing data services by
reading based on SQL. These data services can combine
multiple data sets. For example, select 20,000 phishing links
from phish tank and 20,000 good links from Kaggle, and
combine them into a balanced data set with 40,000 instances.

B. MACHINE LEARNING
The machine learning module is mainly responsible for
model training and model testing. In this framework, the data
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FIGURE 2. The characters dictionary with 100 ASCII characters which are widely used in URLs.

TABLE 2. The database table URL’s structure.

of the training model is updated regularly, and the training
and testing processes of all models are automatically and
regularly triggered. The system will record each run’s param-
eters and data collection types and dump the model to the file
storage system. It is flexible to add new models to the ML
module. This research developed six machine learning mod-
els, namely Logistic Regression, Support vector machines
(SVM), Random Forest, RNN, RNN-GRU, and RNN-Long
short-term memory (LSTM).

1) PARAMETER CONFIGURATION
The parameter configuration process initializes the model
parameters according to the configuration file. The config-
uration file includes a parameter grid corresponding to each
model, and each parameter has a discrete number of values.
In the model training process, one of the permutations and
combinations of these parameter values will be selected for
each training. When all the combinations are applied to the
model and the training is completed, the optimal parameter
combination can be obtained by comparing the accuracy of
the model.

2) DATA LOADING
The dataset used for model training is obtained from the
database through the data service. The data service supports
the flexible selection of different data source combinations
and datasets of varying data volumes. Each data instance
contains a URL string and a label that signs the URL is a
phishing link or legitimate link. The label values are normal-
ized as 1 and 0.

3) FEATURE EXTRACTION
We treat the URL string as a document containing semantics
and apply the Natural language processing (NLP) technology

to extract features. The feature extraction process converts a
collection of text documents to a matrix of token counts, and
each token stands for one word. In classical machine learning
models, the tokenization process converts a URL string to a
list of words. Therefore, the number of features equals the
vocabulary size found by analyzing the data.

In deep learning models, the tokenization process parses a
URL string to a list of characters (Character-level tokens).
The characters in the URL come from the ASCII charac-
ter set. We chose the most common 100 characters as the
character set dictionary for this study. Figure 2 shows all the
arranged characters and the corresponding index.

The maximum length of a URL is 2083 characters [24].
Because of the calculation time of the deep learning model
and the analysis of the statistical data of the existing data
set, we set the maximum number of URL characters to 200.
Therefore, each URL can be transformed into a 200∗100
matrix. The position of the dictionary corresponding to each
character is marked as 1, and the remaining values are
0. Figure 3 shows the process of forming a matrix using
Google’s official website as an example.

FIGURE 3. The process of creating a feature matrix from a URL string and
the character dictionary.

4) MODELLING
It is a solution to treat a URL as a document and use character
separators to parse words as features. However, many words
in URLs also lack semantics. Moreover, the analysis of word-
level results in an extensive dictionary will slow the calcu-
lation time. Therefore, we choose to analyze with character
level and the characters of the entire URL as a sequence. The
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recurrent neural network (RNN) is a feedback neural network
that stores temporary states. It’s suitable for training sequence
data [25]. Figure 4 shows a regular RNN architecture that
consists of an input layer, several hidden layers and an output
layer. Compared to the feedforward artificial neural networks
(ANN), RNNs have a unique architecture with a connection
function between neurons in hidden layers. The figure shows
that the current hidden state is related to the previous hidden
state and the current input. The current hidden state’s func-
tional form can be represented as Eq. (1) and (2). The tanh is
a nonlinear function, W represents the weights between the
neurons, and b is the bias vector of the setting. The softmax
calculates the output value as an activation function, as shown
in Eq. (3), and the model prediction value is related to the
current hidden state.

ht = fw (ht−1, xt) (1)

ht = tanh (Whxxt +Whhht−1 + bh) (2)

Yt = softmax
(
Wyhht + by

)
(3)

The scenario that detects the phishing link is a many-to-one
task type, the input is character-level sequence data, and the
output is a category. Figure 5 shows the structure of one
hidden layer.

FIGURE 4. The architecture of a basic RNN. Whx , Whh, Wyh respectively
means the weight matrix between input and hidden layer, the weight
matrix between two hidden layers, the weight matrix between hidden
and output layer.

FIGURE 5. Character-level features in an RNN model for phishing URL
classification.

Before model training, the structure of the model is fixed,
and activation function is established, so the process of model

training is the process of optimizing the weights parame-
ters by calculating each error. First, randomly initialize the
weights matrix, then calculate the difference between the
actual value and the predicted value, then use the optimized
algorithm to find the optimal solution to minimize the differ-
ence, and finally adjust each weight by calculating the step
each time.

Depending on the architecture of RNN and activation
functions used, the basic RNN architecture does not per-
form well for handling inputs for long sequences because
of the vulnerability to gradient vanishing or exploding prob-
lems [26]. To address these, Hochreiter and Schmidhuber
introduced a gradient-based model named long short-term
memory (LSTM) in 1997 [27]. They invented a long short-
term memory unit instead of tanh function to compute hidden
states. The LSTM unit consists of three gates and two mem-
ory cells. Cho et al. proposed a novel model with a hidden
unit, which was motivated by LSTM in 2014 [28].

Since the hidden unit contains two gates to control and
calculate the hidden state, this model is also named gated
recurrent unit (GRU). Figure 6 demonstrates the architecture
of the gate units. It can be said that long short-term memory
network (LSTM) and gated recurrent unit (GRU) are two
enhanced versions of RNN. Many studies and experimental
data show that for sequence data training, the LSTMandGRU
architecture can achieve better performance than the basic
RNN architecture [29]–[31].

5) OPTIMIZER AND LOSS FUNCTION
In the model training process, it is also essential to choose a
suitable optimizer and loss function. Among many optimiza-
tion algorithms, we have selected Adam, which is a popular
and effective optimization algorithm for deep learning [32].
Since the problem is a binary classification problem, we used
the cross-entropy loss function [33], which is also called log
loss function. According to the scenario of the current prob-
lem, the output predicted value is a floating-point number
between 0 and 1. Cross-entropy loss increases as the predicted
probability diverge from the actual label. It is believed that it
will converge quickly in the initial stage of training with the
same learning rate. The loss value of each epoch is calculated
by calculating the average loss value of all data points.

6) DUMP MODEL TO FILE SYSTEM
After the model training is completed, the system will save
the model to the specified file directory. Each file has a
different version number, and the file name is related to the
version. When the system is deployed to the cloud, it will use
the Google file system to manage these files. The prediction
service can load these models directly and perform real-time
prediction for single or multiple URL links, and each call
takes less than 200ms.

C. WEB BROWSER EXTENSION
We have developed a Chrome browser extension. Since users
installed the extension in the Chrome browser, the extension
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FIGURE 6. (a). A LSTM unit. G stands for a gate. ht means the current
hidden state, and Ct means a current memory cell state. The t-1 is a
previous time. (b). A GRU unit. G stands for a gate. ht means the current
hidden state, and ht−1 means the previous hidden state.

will automatically detect whether the newly opened URL
is at risk of phishing. If there is a risk, the user will be
interactively prompted through a popup box, and the entrance
feedback error detection will be provided. The extension will
call the HTTP interface of the prediction service to obtain
the detection result and save the detection result in Chrome’s
storage.

D. CLOUD APPLICATION
When a false alarm or missed alarm occurs in the prediction
service, the user can take the initiative to report the cur-
rent falsely detected URL from the browser plug-in portal.
We have developed a website to receive these reports. Once
the report is submitted to the system, the system has a manual
review process to confirm the risks of these URLs. In addi-
tion, there are automatic audit strategies to improve audit
efficiency. Once the review is completed, these URLs will be
regularly synchronized to the data collection module, and the
source is reported. In addition, the website provides a detec-
tion interface for browser plug-ins, supports multi-strategy

detection, and currently includes whitelists, blacklists, and
machine learning models.

IV. PROTOTYPE IMPLEMENTATION
The prototype implementation of the entire framework is
divided into three independent applications.

The browser extension is independently packaged and
uploaded to the Chrome browser according to the extension
development specifications of the Chrome browser and will
be reviewed and released by the Chrome platform. Chrome
browser plug-in development uses three web front-end devel-
opment languages: HTML, JavaScript, and CSS.

The data collection application is based on Python as the
main development language, using scheduled tasks tomanage
the collection tasks of each data source. Among them, phish
tank crawls information from web pages, using the most used
package named Beautiful Soup.

Model training, prediction services and product official
website are integrated into one application. This application
also uses Python as the primary language and imports Flask
as the web framework. Model training is managed by timed
tasks as well. After the training is completed, the core per-
formance indicators are written into the MySQL database
in real-time, and the model is dumped into the file system.
The prediction service is a RESTful API that provides clients
with real-time POST requests to obtain detection results. The
core function of the official website is to accept the suspected
phishing link submitted by the user and determine the link
risk by manual and automatic verification.

A. WEB FRAMEWORK
We used Python as our core language, which is a modern
high-level programming language in the field of data mining
and machine learning. There are various frameworks and
libraries for the Python language. In our system, data col-
lection, data storage, model training, websites, and HTTP
services are all supported bymature libraries and frameworks.
In addition, the access and use of these packages are very
simple and convenient.

Considering the usage scenarios and read and write per-
formance, we chose the MySQL relational database. First,
the website has user management, report management, model
version management and other functions, which require a
relational database. In addition, the data set used for model
training is acquired dynamically. It is very flexible to combine
different data sources and data volumes to form a new data
set for model training. For example, we obtained 200,000
phishingURLs from Phish tank and 340,000 legitimate URLs
from Kaggle. A balanced data set with 40,000 URLs can
be flexibly combined, including 20,000 phishing URLs and
20,000 legal URLs.

We imported the Flask as a web framework to provide
HTTP service and maintain the official website. Flask is a
lightweight web framework and easy to extend [34]. For
example, the flask-user package provides user authorization
services.
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B. TRAINING MODEL
1) SCIKIT-LEARN
The scikit-learn is open-source and widely used for predictive
data analysis in the machine learning field [35]. We imported
a scikit-learn library to train three traditional machine learn-
ingmodels: Logistic Regression, RandomForest, and support
vector machine.

2) PYTORCH
The PyTorch is an open-source deep learning framework
and development platform. We used the dataset module
to build a custom dataset as input for the training model.
In the deep learning models’ construction, we imported
the linear layer, RNN layer, GRU layer, and LSTM layer.
We imported torch.cuda package that utilizes GPUs for par-
allel computation [36].

C. WEB BROWSER EXTENSION
The development of Chrome browser extension must strictly
follow the development guidelines in [37]. The chrome plug-
in has a configuration to contract version numbers, intro-
duce built-in APIs, and permission control. Data interactions
between modules are messaged and temporarily stored in
Chrome storage. A background script listens for browser tab
change events, gets the URL currently accessed, calls the
back-end prediction service to get the result, and finally sends
the result to a content script. The content script is primarily
responsible for presenting the results on the page. In addition,
a popup Html shows the details.

Figure 7 shows an example of entering a legitimate URL.
In this case, the user opens the page in a web browser with
no additional information. When the user clicks the plug-
in button on the right side of the toolbar, the popup page is
displayed with the current URL string, risk level, and other
information.

FIGURE 7. A screenshot of the chrome browser extension’s popup page.
The current URL is ’https://www.google.com/’.

Figure 8 presents an example. When the entered URL is
detected as a phishing link, a popup box with a red back-
ground appears on the page, prompting the user that the
website is at phishing risk. If the user confirms that the URL is
not a phishing network, they can click the false alarm button
to respond to this false alarm. Figure 9 shows the style and
content of popup pages on high-risk sites.

FIGURE 8. A screenshot of the chrome browser extension’s alert warning
message window when it detected a phishing URL. The current URL is
‘‘http://srv172932.hoster-test.ru/Notice/webmail/main%20all/
login.html’’.

FIGURE 9. A screenshot of the chrome browser extension’s popup page
when it detected a phishing URL.

V. EVALUATION RESULTS
All the experiments were executed on a MacBook
Pro 2020 running Quad-Core Intel Core i5 CPU @ 2 GHz
with macOS Big Sur 11.5.2 operating system. The server
has a 500 GB storage capacity. In addition, the test data
ratio is 0.2.

We have seven data sets, six models, and each model
has different parameters. Our experiment is carried out in
the following steps to find the optimal model quickly. First,
choose a model that may perform well from the theoretical
analysis. We prefer the GRU model. Then, we compare the
data sets with the best performance from the experimental
results. Second, we use the data set determined in the previous
experiment to train different models and compare the results.

Finally, we optimize the model hyperparameters for the
model with the dataset. The primary method is to enumerate
the optional discrete values of the parameters and perform
cross-combination to compare the performance of all experi-
mental results.

Evaluate whether a machine learning model has high per-
formance, standard statistical metrics with accuracy, recall,
and precision [38]. These indicators are obtained by simple
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mathematical calculations of four atomic statistical indica-
tors in terms of the number of correctly identified positive
instances (TP), the number of correctly identified negative
data points (TN), the number of negative data points pre-
dicted by the model are positive (FP), the number of positive
instances labelled as negative (FN). In the article, we use
the F1 score to represent the meaning of the recall and pre-
cision. In addition, in cybersecurity detection applications,
false alarms can affect the user experience and trust, and
leak alarms are likely to directly cause user losses. Therefore,
we use accuracy, F1, false-positive rate, false-negative rate to
measure the efficiency ofmodels. Themathematical formulas
for these metrics are as Equations (4), (7), (8), and (9).

accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

F1 =
2× precision× recall
precision+ recall

=
TP

TP+ 1
2 (FP+ FN )

(7)

false positive rate =
FP

FP+ TN
(8)

false negative rate =
FN

FN + TP
(9)

Furthermore, Average precision (AP) is a widely used metric
in evaluating the accuracy of deep learning models by com-
puting the average precision value for recall value over 0 to 1;
higher is better. Mean average precision (mAP) is the average
of AP. Equation (10) shows the calculation logic. In this
scene, the number of classes is two.

mAP =
1

classes

∑
c∈classes

TP(c)
TP (c)+ FP(c)

(10)

A. GRU WITH DIFFERENT DATASETS
In this experiment, we compared different datasets fed to
the GRU classifier. The number of epochs is 20, the batch
size is 32, KPT stands for the data collected from Kaggle
and Phish Tank, and each KPT dataset is a balanced dataset,
which consists of the same number of phishing URLs and
legitimate URLs. Table 3 shows the core performance indi-
cators of the GRU model with 8 datasets. The ISCX dataset
obtained the highest accuracy. However, the F1 score is lower
than the other three KPT datasets, and the false-negative
rate is high. In other words, more legitimate instances are
predicted as phishing URLs during the test data process. This
result is probably because there are not enough data points
labelled as phishing.

Furthermore, we combined false-positive rate and false-
negative rate to measure efficiency. From figure 10, we can
see that the RNN-GRU model with the KPT-12 dataset

TABLE 3. The GRU model with different datasets.

performs best. In KPT datasets, the false rate decreases lin-
early as the number of data increases.

FIGURE 10. The RNN-GRU model’s performance in experiments with
different datasets.

Figure 11 shows the accuracy and F1 of each dataset.
The KPT-12 dataset obtained 99.18% accuracy and 99.15%
F1 score. To quantify how well the RNN-GRU model
performs every class, we calculate the mean of average pre-
cision (mAP) of a set of classes. The mean average pre-
cision (mAP) in RNN-GRU models with KPT-12 dataset
is 0.986.

Assessing the efficiency of a machine learning model is
incomplete, depending on accuracy. In experiments, it is
customary to get high accuracy in one dataset and not per-
form well in another. It is also likely that models with high
accuracy will not predict new data accurately in a real-time
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FIGURE 11. The accuracy and F1 score of different datasets applied to an
RNN-GRU model.

environment. These situations may be due to the fact that
overfitting has already occurred [39]. Overfitting is a concept
in data mining that analyzes whether a trained model can effi-
ciently predict unknown new data [40]. In machine learning-
based classification models, it is common to compare errors
in the training process with errors in the validation process to
see if there is overfitting, along with epoch. Figure 9 presents
the training loss and validation loss along with epochs in the
RNN-GRU model. One of the strategies to avoid overfitting
is early-stopping [40], [41]. As shown in figure 12, the epoch
equals 6 is the demarcation point between underfitting and
overfitting.

FIGURE 12. The GRU’s training loss and testing loss along with epochs.

B. THE KPT-12 DATASET FOR DIFFERENT CLASSIFIERS
The experiment is to apply the same data set to different
machine learning models, from which the best performance
model can be analyzed. Many studies have shown that the
random forest classifier performs better than other traditional
classification models in detecting phishing networks [7],
[8], [42]. Therefore, we chose logistic regression, SVM, and
random forest. In addition, the RNN model architecture is
ideal for training sequence data in deep learning algorithms.
In this experiment, we compared the performance metrics

of these six models. Table 4 presents that the RNN-GRU
achieved the highest accuracy of 99.18%, and the Random
Forest obtained the lowest false-positive rate of 0.0047%.

TABLE 4. Different classifiers’ performance comparison by the same
dataset: KPT-12.

In this experiment, the accuracy and F1 scores of all models
were very close. This performance can be seen in Figure 13.
Because the accuracy of the underlying RNN model is less
than 0.9, it is not shown in the figure. From the results data
of the three deep learning models, the effects of gate unit
and LSTM unit on sequence data training are explained once
again.

FIGURE 13. The accuracy and F1 score in different models with KPT-12
dataset.

Although the random forest model gets the lowest false-
positive rate, the false-negative rate is the highest, and the sum
of the two error rates is the highest.

C. HYPERPARAMETER OPTIMIZATION
From the above two experimental results, we can conclude
that the KPT-12 dataset applied to the RNN-GRU model can
obtain the best performance.

The third experiment is to optimize the model hyperparam-
eters for better performance. The optional values of param-
eters are listed in table 5. A total of 162 combinations of
optional values for all parameters will be performed in turn.
Because the computer GPU running the experiment does not
support parallel computing and it takes a long time to train
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FIGURE 14. The false-positive rate and false-negative rate in different
models with KPT-12 dataset.

a model with the KPT-12 dataset, the experiment will be
performed after the system is deployed to the cloud. Access
the TensorBoard tool to visualize a comparison of execution
results and performance metrics to get the best combination
of parameters [43].

TABLE 5. The optional values of parameters.

D. COMPARISON
This section compares the RNN-GRUmodel to existing solu-
tions that train deep learning models to detect phishing web-
sites. Table 6 shows a comparison from different dimensions,
such as data collection, models, performance indicators,
limitations.

As for the limitations of the proposed solution implementa-
tion, since there are no short links in the data set of the training
model, all current prediction services cannot accurately detect
whether short links are at risk of phishing. Furthermore,
we intercepted the first 200 characters of the URL, so for
URLs with more than 200 characters, part of the information
is lost, so it may affect the detection results. In addition, the
process of the automatic review report is currently judged
based on rules such as remote IP address, client information,
and the number of times the URL has been submitted. This
strategy can easily be used maliciously by phishing attackers.
In the future, more data will be needed to support automatic
review results, for example, by obtaining the HTML of the
current URL, identifying the similarity between the logo
image and the whitelisted website, and whether there is an
input box in the HTML.

TABLE 6. Comparison of proposed RNN-GRU model with other deep
learning-based solutions.
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TABLE 7. (Continued.) Comparison of proposed RNN-GRU model with
other deep learning-based solutions.

VI. CONCLUSION AND FUTURE WORK
Many machine learning-based solutions have been proposed
in recent years to deal with phishing attacks, but results have
not been verified in live browsing environments, and there is
a lack of analysis and research of products for phishing detec-
tion. In this paper, we proposed a framework for phishing

detection in a real-time browsing environment. The novel
features of the framework are:

1) We utilized closed-loop data to drive better perfor-
mance of machine learning models. A dataset is fun-
damental to model training, and high-quality data can
improve the performance of amodel. The feedback data
from users are high-quality data with advancement,
accuracy, and sensitivity.

2) The system is running in a real-time environment with-
out delays. The prediction results are displayed when
the web page is opened.

3) Experimental data can be tracked. The model training
process is an automated task, and each execution result
is stored in a real-time database.

4) We have developed a browser extension as a client
product that every ordinary netizen can use.

5) The implementation of predictive services is
extendable, and individual detection services can be
combined. For example, you can introduce a blacklist
filtering service, computer vision service.

6) The feature extraction process in the deep learning
model is independent of third-party services.

In the future, we will deploy the whole system to a cloud
platform. Configure machines with NVIDIAGPUs for model
training and increase efficiency with GPU’s parallel com-
puting power. Afterward, users can download the extension
through the ChromeWeb Store. In addition, we plan to imple-
ment our framework as a plug-in for other browsers.
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