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ABSTRACT Wearable speech enhancement can improve the recognition accuracy of the speech signals in
stationary noise environments at 0dB to 60dB signal to noise ratio. Beamforming, adaptive noise reduction,
and voice activity detection algorithms are used in wearable speech enhancement systems to enhance speech
signals. In recent works, a word rate recognition accuracy of 63% for a 0db signal-to-noise ratio is not
satisfactory for a robust speech recognition system. This paper discusses the experimental study using fixed
beamforming, adaptive noise reduction, and voice activity detection algorithms with the inclusion of−10dB
to 20dB signal to noise ratio for different types of noises to test the wearable speech enhancement system’s
performance in noisy environments. It also compares deep learning-based noise reduction methods as a
benchmark for speech enhancement and word recognition for different noise levels. We have obtained an
average word rate recognition accuracy of 5.74% at −10dB and 93.79% at 20dB for non-stationary noisy
environments. The outcome of the experiments shows that the selected methods perform significantly better
in the environment with high noise dB for both stationary and non-stationary noise. We found that there is no
significant statistical difference between the stationary and non-stationary noise word recognition and SNRs
level. However, the deep learning-based method performs significantly better than the fixed beamforming,
adaptive noise reduction, and voice activity detection algorithms in all noisy levels.

INDEX TERMS Wearable speech enhancement, beamforming, adaptive noise reduction, voice activity
detection, deep learning.

I. INTRODUCTION
Wearable technology refers to devices users can wear, tak-
ing the form of an accessory such as jewelry, sunglasses,
watches, etc. [1]. As we can use wearable devices in a
noisy environment, the speech application systems such as
ASR needs to eliminate the noise to improve their perfor-
mance and robustness. Wearable devices were used in speech
enhancement due to the size and proximity with the mouth
that reduces the noise while recording the speech [2], [3].
For example, suppose everybody always wears a personal
microphone near his/her mouth; the signal-to-noise ratio can
be vastly improved, compared with having a microphone
at a greater distance [3]. Most hearing devices, such as
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hearing aid, implement the recent speech enhancement algo-
rithms [4], [5].

We can classify noisy environments as stationary and non-
stationary noisy environments in speech recognition. We typ-
ically hear non-stationary background noises in our everyday
environment, referring to the background noises that we hear
in a real conversation. On the other hand, stationary noises
resemble the noise on telephone lines [6].

Speech enhancement deals with the noisy speech signals
by reducing the background noises while preventing the
alterations in speech features. We use speech enhancement
for speech signals processing applications like speech coder,
automatic speech recognition, voice over IP, hearing aid,
and many more. Speech enhancement systems are frequently
used as a pre-processer to enhance speech quality. Generally,
algorithms used in speech enhancement systems consist of
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three types, namely filtering algorithms, spectral restoration
algorithms, and speech model-based algorithms [7].

We use Filtering algorithms to filter the unwanted noisy
signals that attenuate the noise features to produce a clean
speech signal. Filtering algorithms contain time-domain
filters, frequency-domain filters [7]–[9], and parametric
filters [7].

A spectral restoration algorithm is a function to esti-
mate the performance of noise reductions in the fre-
quency domain to gain a clean speech spectrum from
noisy speech spectrums. The spectral restoration algorithms
include minimum mean-square error log-spectral amplitude
estimator (LSA) [10]–[12], minimum mean square error
spectral estimator (MMSE) [8], [10], [13], [14], maximum
likelihood spectral amplitude estimator (MLSA) [7], [15]
and maximum a posteriori spectral amplitude estimator
(MAPA) [7], [16], [17].

The speech model-based algorithms combine the func-
tions of speech reduction and user speech production mod-
els to cancel the noise features from noisy speech signals.
Well-known speech models used for speech enhancement
include the harmonic model [7], [18]– [20], the linear pre-
diction (LP) model [7], [21], and the hidden Markov model
(HMM) [7], [10]. There are many filtering algorithms, such
as Least Mean Square (LMS), Recursive Least Square (RLS),
and Normalized Least Mean Square (NLMS), that have
revealed their effectiveness in the reduction of noisy signals
and improving the quality of speech. However, they may
have limited ability to perform well on low signal-to-noise
ratio (SNR) conditions.

The existing speech enhancement algorithms use a single
microphone to process the speech signals [22]. However,
these algorithms are computationally expensive and ineffec-
tive in canceling the noisy speech signals, especially at low
signal-to-noise ratio (SNR) levels, i.e., −10dB to 10dB [23].
These noises are difficult to filter as it has different charac-
teristics in different environments. So, speech enhancement
is very much required [24].

The wearable microphone array, embedded in textiles,
consists of multiple microphones used to record the speech
signal that gives the best recognition at 10dB SNR than a sin-
gle microphone [2]. Microphone array and speech enhance-
ment are the components embedded in wearable speech
enhancement (WSE) that process speech signals in multi-
channel under noisy environments such as the outdoor envi-
ronments [3]. For example, a spectral statistical filter is
applied in wearable hearing devices for handling stationary
noise environment (Gaussian noise) and non-stationary noise
environments (babble, factory, and car) at−5dB to 20dB [4].
The existing WSE system can filter 0 to 60dB of SNR,

which gives 62.5% WRR at 0dB considered low SNR and
83% at 60 dB considered high SNR. However, it was
tested only with white Gaussian noise but never envi-
ronmental noise. For instance, Alessandro et al. (2016)
did not consider all types of noises in a real-time
environment.

Although the existing system developed for WSE in
noisy environments was only tested for White Gaussian
noise (WGN) at 0 to 60dB SNR (which is stationary
noise) [5], [3], they were never tested for non-stationary
environmental noises such as Airport noise, babble noise, car
noise, Exhibition noise, and Restaurant noise.

Currently, Deep Learning has gained attention in signal
processing applications, with significant improvements in
various phases of signal processing such as filtering, feature
extraction, and recognition [39]. Several of the existing works
proposed their techniques based on deep learning such as
target speech separation supervised machine learning [40],
linear prediction coefficient as DeepLPC [41], which uses
deep learning approach to estimate the augmented Kalman
filter, deep attention features for speech separation [42] and
many more [43].

It is essential to experiment with the WSE under non-
stationary environmental noises because wearable devices
are used mainly in the outdoor environment. WSE contains
beamforming to enhance the speech signal by suppressing
the noisy signals, adaptive noise reduction (ANR) to filter the
noise signals by using suitable filtering algorithms, and voice
activity detection (VAD) to detect the speech signals.

In this paper, we are experimenting with the microphone
and multi-channel enhancement-based WSE’s with Gaussian
noise, babble, airport, car, restaurant, and exhibition noise
at low level to high-level SNRs. We take advantage of the
existingWSE system developed in [25] to test its word recog-
nition rate in both the stationary Gaussian noise and non-
stationary noisy environments at −10dB to 20dB SNR using
the AURORA database [25]. We consider Deep Learning-
based speech enhancement techniques as a benchmark for
comparison.

The rest of the paper is organized as follows. Section II
explains the research background of wearable speech
enhancement systems. Section III describes the experimental
design performed on the existing WSE using the Aurora
database modified for a noisy environment. The results
are presented in Section IV, and we conclude our work in
Section V.

II. WEARABLE SPEECH ENHANCEMENT (WSE) SYSTEM
The existing Wearable Speech Recognition system used a
feature extraction method tested in real-time environments at
three SNR levels (i.e., 15db, 10db, and 5db) [26]. The exist-
ing wearable speech enhancement improves the recognition
accuracy at high SNR levels [5].

Wearable speech enhancement (WSE) is developed in the
wearable platform, and the output from WSE is applied
in computing platforms by using speech to text engine
(STT). The WSE consists of a squared array microphone set,
a recording component to record the speech signals, noisy
signals, beamforming, adaptive noise reduction (ANR), and
voice activity detection (VAD).

The architecture of WSE, as shown in Figure 1, consists
of two platforms: 1. Wearable platform, where the speech
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FIGURE 1. The architecture of wearable speech enhancement (WSE) [3].

enhancing process is performed, and 2. Computing plat-
form where the word recognition accuracy process is carried
out [3].

A. BEAMFORMING
Beamforming is a signal processor used together with a
microphone array to supply the capability of spatial filter-
ing. The microphone array gives the spatial tests of the
transmitting signals, which the signal processor controls to
produce the output signals of beams [27]. Beamforming can
be achieved by filtering the microphone array signals and
combining the output signals to extract the desired speech
signal and reduce the unwanted noisy signals [28]. In simple
terms, beamforming helps to reduce the noisy signal from the
speech signal by removing a particular frequency of noisy
signals from the speech signal frequency captured from the
microphone array.

There are two types of beamforming: adaptive beamform-
ing and fixed beamforming. Adaptive beamforming is where
the input signal directivity varies based on the noise signals
changes in the environment.

Fixed beamforming is where the input signal directivity is
fixed across time, and the distance between the microphones
is constant. Fixed beamforming was obtained using the delay
and sum beamformer [27]. Based on the microphone array in
figure 1, Alessandro et al. (2016) developed a fixed beam-
former using DMA theory as explained in [3] [5]. The out-
put beam B(t) has been calculated by applying a delay to
the microphone M2 and subtracting from M1 as shown in
equation (1)

B(t) = M1(t)−M2(t-T)
n∑
0

x2(n) (1)

The variance in Time of Signal Arrivals between the two
microphones is

T0 =
a
c
cos θ (2)

where d is the distance between M1 and M2, c is the sound
speed (constant at 20◦C) and θ is the input angle. Distance
between microphones and input angle is constant.

The first stream is a user beam that contains the highest
SNR signals, and another stream is the noise with the lowest
SNR signals. These two streams are the input signals to the
adaptive noise reduction component. Fixed beamforming is
not suitable for outdoor environments as the noises can come
from different directions, reducing the capability of noise
filtering of WSE.

B. ADAPTIVE NOISE REDUCTION (ANR)
Adaptive noise reduction (ANR) is used as a multi delay
block frequency adaptive filter to delete the environmental
noises using an LMS filter [32], [33]. User beam and refer-
ence noise are the inputs to the ANR. The ANR component
filters the noise in the user beam that is consistent with
reference noise (speech signal already exists in the user beam
as beamforming and not attenuated) [34].

In general, we cannot assume that noise was filtered in
a speech signal. In this scenario, the LMS filter used by
the ANR partly suppresses and changes the required signal,
which depends on the attenuation of the speech signal in the
reference beam and user beams. The SNR of the output signal
is defined in [3].

SNRoutput =
1

SNRrfn
(3)
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where SNRrfn is Signal-to-Noise ratio of reference noise
signals.

C. VOICE ACTIVITY DETECTION (VAD)
The Voice Activity Detection (VAD) algorithm separates the
user’s voice in the user stream [3], which is helpful for two
reasons:
(i) Segmentation: the system needs to know the exact

boundaries of each word in the spoken utterance.
(ii) Data Reduction: the system only sends data as required

and not continuously over the transmission channel.
The VAD is implemented in a time domain, and the recog-
nition is performed every 20 seconds, taking 20 samples per
frame to calculate the Zero crossing and Energy characteris-
tics using the angular windows frame function [35], [36].

Energy Zero Crossing =
∑n

0
sign(x[n]− sign(x[n− 1]))

(4)

where x[n] indicates the number of samples per frame. When
Zero Crossing is small and Energy is high, it is categorized
as voiced speech signal, otherwise it is deemed to be the
unvoiced region of the speech signal.

In discreet time signal processing, zero-crossing occurs if
the successive samples of the signal have different algebraic
signs. The zero-crossing is ameasure of the frequency content
of a signal, i.e., the rate at which ZC occurs is the measure-
ment of the frequency content of the input signal. It provides
the total count in each time interval that the amplitude of
the speech signal passes through the value of zero can be
expressed as

sign [x (n)] =

{
1, x (n) ≥ 0
−1, x (n) < 0

(5)

D. DEEP LEARNING MODEL
Currently, Deep learning-based schemes such as Recurrent
neural networks (RNN), LSTM (Long Short-Term Mem-
ory) networks, and convolution neural networks are widely
adopted in various applications. These schemes follow the
feed-forward learning process, because information flows
through the function being evaluated from x, through the
intermediate computations used to define f, and finally to the
output y. There are no feedback connections in which outputs
of the model are fed back into itself [45].

The feature map of these signals is obtained and employed
as Mel-filterbank (FBANK) feature. These features are
arranged in a two-dimensional array whose size is. These
FBANK attributes are considered more robust when com-
pared with the decorrelated features such as Mel-frequency
cepstral coefficients (MFCCs).

This model of CNN (Convolutional Neural Network) with
the FBANK attribute helps to obtain the learning weights
of the hidden layer. Similarly, the convolution layers are
based on the weighted sum of the input attributes. The fully

FIGURE 2. Deep learning architecture for speech enhancement and word
recognition [44].

connected layers are connected to the sub-region of the input
feature map and share the weight across the local receptive
fields to extract the same feature across the input representa-
tion. The feature map hidden unit value of CNN model can
be presented as hij

hi,j =
m−1∑
k=0

m−1∑
l=0

f
(
wk,lxi+k.j+l + bi,j

)
= f

(
W ⊗ X + bi,j

)
(6)

where f denotes the activation function, wk,l denotes the
weights of weight matrix W, bi,j denotes the shared bias
and xi+k,j+l denotes the input value at position i + k and
j + l, and ⊗ is the cross-correlation field. Based on this
model, we have considered 6 different architectures of the
convolution model. Figure 2 depicts the architectural model
proposed by Rownicka et al. [44].

The architecture depicts the (a) CNN model, (b) Very
Deep Convolutional Neural Network (VDCNN) with max
pooling and fully connected layer, (c) VDCNN with average
pooling layer (VDCNN-avg), (d) VDCNN with max pooling
(VDCNN-max), (e) VDCNN with max pooling and convolu-
tion (VDCNN-max-conv) and (f) VDCNN with convolution
layer (VDCNN-conv).
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III. METHOD
This research aims to conduct a noise reduction experi-
ment for a wearable speech enhancement (WSE) system in
stationary and non-stationary noisy environments at differ-
ent SNR levels of speech signals. We will perform several
enhancement experiments using the existing wearable speech
enhancement methods including the Fixed Beamforming,
ANR, and VAD algorithms. The experiment intends to exam-
ine the WSE system’s performance for stationary and non-
stationary environmental noises. Our experiment considers
the low-level SNRs to high-level SNRs (−10dB to 20dB)
using white Gaussian noise, airport noise, babble noise, car
noise, exhibition noise, and restaurant noise. The following
sections describe the speech database, the experimental setup,
and the evaluation method.

A. SPEECH DATABASE
In this research, we have used the Aurora [25] speech
database to experiment with the wearable speech enhance-
ment system under noisy environments at different SNR lev-
els of speech signals. We have selected 25 utterances from the
Aurora noisy dataset consisting of 13 unique male voices and
16 unique numbers of female voices. While the numbers of
trials are different for different noise levels, we have ensured
a minimum of 25 samples for each dB level.

The selected noisy speech utterances incorporate five non-
stationary environmental noise types: Airport. Babble, Car,
Exhibition and Restaurant and one stationary noise type
which is the White Gaussian noise at seven different SNRs:
−10dB, −5 dB, 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB. For
−10dB noisy speech signals. We also selected 25 utterances
from the AURORA clean training dataset, where we the-
atrically mixed −10dB noisy signals with the clean training
dataset. We have prepared 42 different conditions for every
25 utterances.

For Deep learning methods, we have used the Aurora
4 dataset that contains 7138 utterances from 83 speakers.
The clean dataset has an audio duration of about 15 hours.
We grouped the test set of this dataset into four different
subsets as 330 clean signals selected from SI-84 WSJ corpus
(Set A), 330 sets with five types of different noises varying
from −10 to 20 dB SNR (Set B), 330 sets of recording
with different microphone (set C), and 330 sets of recording
with different microphone with added white Gaussian noise
(set D). The overall duration of all these test sets is about
9 hours.

B. EXPERIMENTAL DESIGN
The procedure of this experiment begins with the devel-
opment of wearable speech enhancement (WSE) based on
Beamforming, Adaptive Noise Reduction, and Voice Activity
Detection algorithms, as shown in Table 1, with the detailed
procedure is explained in the section below.

1) BEAMFORMING
In this experiment, we used the directional microphone
array (DMA) in the squared array position to capture the

TABLE 1. Experimenting the wearable speech enhancement (WSE) using
different types of environmental noises at different SNR levels.

signals recorded and stored in the recording component.
These recorded signals become the input signals to the beam-
forming component [3].

The beamforming device was placed at 10mm to 15mm
from the left channel speaker of the sample utterance drive,
while the noise generator driver was at the left corner. Python
was used to write the code for mixing the speech and noise
samples. On the other hand, we used the C programming
language to write the beamformer code.

This research only tested the existing fixed beamforming
algorithms in the wearable speech enhancement by using
stationary and non-stationary environmental noises, as adap-
tive beamforming was never implemented on WSE. As such,
it provides the opportunity for us to improve the WRR
accuracy rate in non-stationary environments using adaptive
beamforming.

2) ADAPTIVE NOISE REDUCTION (ANR)
The output signals of the beamforming device are the input
signals of adaptive noise reduction. We apply the LMS algo-
rithm written in python to filter the noise signals using the
MATLAB simulations andARMprocessor, which filter noise
in real-time.

3) VOICE ACTIVITY DETECTION (VAD)
The output audio signals from the adaptive noise reduction
will be the input signals for voice activity detection (VAD).
The VAD algorithm, written in python language, identifies
the presence or absence of speech in audio signals.

4) DEEP LEARNING APPROACH
The input audio signals are processed through Deep learn-
ing methods adopted from [44], which are Convolutional
Neural Networks (CNN), Deep Neural networks (DNN),
Very deep convolutional neural networks-Fully Connected
(VDCNN-FC), VDCNN-avg, VDCNN-max, VDCNN-max-
conv, and VDCNN-conv [44]. In VDCNN-avg, the max-
pooling layers were replaced with average pooling using the
same kernel sizes and strides as in the baseline VDCNN
model [44].

In the first phase, all audio signals are trained, where
the convolution layers are activation functions are used to
learn the weight parameters and transfer these weights.
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The fully connected layers are used to learn the non-linear
functions in the considered space. Finally, the softmax
layer is used to provide the outcome of the Deep learning
model.

C. EXPERIMENTAL SETUP
1) DEVICE CONFIGURATION
(a) Controller: stm32f103CBT6
(b) Main clock: 72MHz
(c) Memory: 128KB ROM/ 20KB RAM
(d) External storage: Transcend 8GB class 4 memory card.
(e) Transducers: capacitive electret microphones
(f) Servos: 9G servo

2) SAMPLING SETUP
Two transducers output was pre-amplified, then fed to
a single-stage bandpass filter(80Hz-16KHz), then gain
adjusted, level shifted to 1.75V, then fed to individual ADC’s
(analog to digital converter).

We configure ADCs at 12bit vertical resolution and 16000
Samples per second (+/−50 due to clock stability). Data
written to SD card via Conversion complete interrupt linked
to DMA channel which writes the value in SD card and a
copy in Buffer variable defined in RAM. Both ADC sampling
times were synchronized. Amplifiers used were based on
LM358 general purpose Opamp.

3) VARIABILITY SETUP
Timer 1 PWM channels connect the Two 9G servos at 16bit
resolution (Effective usable steps were around 30000 per
servo due to higher ARM deflection of Servos). The distance
between each microphone is fixed at 10 mm.

4) NOISE AND SAMPLE UTTERANCE SYSTEM SETUP
The primary noise driver is Edifier 2.0 channel speaker. The
speech is varied at the amplifier and the noise samples were
continuously looped and fed to the amplifier from the Bea-
gleBone Black Single Board.

The speech samples were driven with only left channel
speakers of Logitech USB speakers and the BeagleBone
Black single-board computer feds the samples.

5) SNR SETUP
The desired SNR (−10dB,−5dB, 0dB, 5dB, 10dB, 15dB and
20dB) was achieved by individually tuning the noise sound
amplifier gain control and the sample utterance amplifier gain
control by measuring individual Sound Pressure levels (SPL)
to calculated values.

D. EVALUATION METHODS
In this research, we used the spectrogram analysis and the
Word Recognition Rate (WRR) to evaluate the performance
of the wearable speech enhancement system in a noisy envi-
ronment (stationary and non-stationary noise).

Spectrogram analysis is used to analyze the amplitude of
speech signals [37]. We perform the spectrogram analysis for

both stationary (White Gaussian Noise) and non-stationary
environmental noises (Babble, Airport, Car, Exhibition, and
Restaurant) on time-domain using MATLAB.

We test the voiced speech signal received after the voice
activity detection with the ASR speech to text engine to
determine the word error rate (WER). We calculate the Word
error rate to evaluate the performance of the wearable speech
enhancement systems. WER is computed as follows:

WER =
S + D+ H

N
(7)

where N is the total number of words/letters in the sentence,
S is the number of substitutions of other words with, D is
the number of deletions I is the number of insertions in a
sentence.

By calculating the WER, we determine the word recogni-
tion rate (WRR) as:

WRR = 1−WER (8)

WRRmeasures the performance accuracy of wearable speech
enhancement system.

IV. RESULTS
A. SPECTOGRAM ANALYSIS
A spectrogram analysis shows the spectral illustrations of a
time-varying signal [38]. Figure 3 represents the clean speech
signal, while Figures 4 to 15 show spectrograms analysis:
(a) noisy speech at −5 dB SNR and (b) enhanced speech
using adaptive beamforming, ANR, and VAD algorithms.

We have considered different noise types for this analysis
as white Gaussian noise, airport noise, Exhibition, Restau-
rant, Babble, and car noise. This experiment adds the 5dB
noise to the original signal and processes it through the
considered speech enhancement model.

The filtered signal is also known as the reconstructed
signal, which can be used to analyze the performance of the
existing approach.

Figure 4 depicts the spectrogram for unfiltered white Gaus-
sian noise in speech signal at −5db, while figure 5 shows
filtered white Gaussian noise in speech signal at−5db. From
the spectrogram, we can see that speech distortion due to
noise has been rectified through speech reconstruction with
a suitable filter. Figure 6 shows the unfiltered airport noise
in speech signals at −5db, while figure 7 shows the filtered
airport noise at −5db.

Figure 8 depicts the unfiltered babble noise in speech
signal at−5db, while figure 9 shows the filtered babble noise
at −5db. Figure 10 shows the unfiltered car noise in speech
signal at −5db, and figure 11 depicts filtered car noise in
speech signal at−5db. Figures 12 and 13 depict the unfiltered
exhibition noise in speech signal at −5db and filtered exhi-
bition noise at −5db, respectively. Finally, figure 14 depicts
the unfiltered restaurant noise in speech signal at−5db, while
figure 15 shows the spectrogram for filtered restaurant noise
in speech signal at −5db.
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FIGURE 3. Clean speech signal.

FIGURE 4. The spectrogram for unfiltered white Gaussian noise in speech
signal at −5db.

FIGURE 5. The filtered white Gaussian noise in speech signal at −5db.

On the other hand, Figures 16 and 17 show the unfiltered
and the reconstruction quality of the deep learning scheme at
10db noise for the airport noise. Figures 18 and 19 show the
unfiltered and the reconstruction quality of the deep learning

FIGURE 6. The unfiltered Airport noise in speech signal at −5dB.

scheme at 10db noise for white Gaussian noise (WGN), while
Figures 20 and 21 show the unfiltered and the reconstruction
quality of the deep learning scheme at 10db noise for Babble
noise.

B. WORD RECOGNITION RATE
Table 2 and Table 3 show the evaluation outcomes of the
experiments using the Beamforming, ANR, and VAD algo-
rithms in WSE at different levels of SNRs under stationary
and non-stationary noisy environments.

FromTable 2, theWSEwith fixed beamforming, ANR, and
VAD is very effective at 20dB SNR, but the recognition accu-
racy gradually decreases at 15dB, 10dB, 5dB, 0dB, −5dB,
−10dB, respectively for the Stationary white Gaussian noise.
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FIGURE 7. The filtered Airport noise in speech signal at −5dB.

FIGURE 8. The unfiltered Babble noise in speech signal at −5dB.

TABLE 2. Word recognition rate (WRR) for wearable speech enhancement
(WSE) under stationary environmental noise.

TheWRRwas lower for the negative dB than the positive dB.
We also found that the performance of CNN is better than the
WSE for all noise levels.

FIGURE 9. The filtered Babble noise in speech signal at −5dB.

FIGURE 10. The unfiltered Car noise in speech signal at −5dB.

FIGURE 11. The filtered Car noise in speech signal at −5dB.

The scatter diagram shown in Figure 22 shows a linear rela-
tionship between the SNR level andWRR (p-value < 0.001).

Similarly, the result in Table 3 also shows that WSE with
fixed beamforming, ANR, and VAD is very effective at 20dB
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FIGURE 12. The unfiltered exhibition noise in speech signal at −5db.

FIGURE 13. The filtered exhibition noise in speech signal at −5db.

FIGURE 14. The unfiltered restaurant noise in speech signal at −5db.

SNR, but the recognition accuracy gradually decreases at
15dB, 10dB, 5dB, 0dB, −5dB, −10dB for non-stationary
noise. The results show that selected methods for WSE can

FIGURE 15. The spectrogram for filtered restaurant noise in speech signal
at −5db.

FIGURE 16. The unfiltered Airport noise in speech signal at 10dB.

FIGURE 17. The reconstruction quality of the deep learning scheme for
Airport noise in speech signal at 10dB.

better deal with environmental noise issues at 20dB, 15dB,
and 10dB SNRs and can be more suitable for speech recog-
nition applications, especially in the outdoor environment.

From Table 3, the average WRR for non-stationary noises
was the highest for exhibition and the lowest for restaurants
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FIGURE 18. The unfiltered white Gaussian noise in speech signal at 10dB.

FIGURE 19. The reconstruction quality of the deep learning scheme for
white Gaussian noise in speech signal at 10dB.

FIGURE 20. The unfiltered Babble noise in speech signal at 10dB.

(a difference of about 9%). The lowWRR for the restaurant is
due to the mix-up of many speeches and non-speech noises.

By referring to the scatter diagram, there is a linear rela-
tionship between the SNR level and WRR. Figure 23 depicts
the linear relationship of SNR and WRR for non-stationary
noise (p-value < 0.001).

FIGURE 21. The reconstruction quality of the deep learning scheme for
Babble noise in speech signal at 10dB.

FIGURE 22. The SNR and WRR linear relationship for stationary noise.

TABLE 3. Word recognition rate (WRR) for wearable speech enhancement
(WSE) under Non-stationary environmental noises.

When we compare the linear relationship of SNR and
WRR for both the stationary and non-stationary noise,
we found that the gradient for the latter was higher than the
former. It indicates that the performance of selected methods
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FIGURE 23. The SNR and WRR linear relationship for non-stationary
noise.

FIGURE 24. WRR for both the stationary and non-stationary noises.

for WSE improves at a higher rate when SNR increases for
non-stationary noise.

By comparing the result in Tables 2 and 3, we found that
the selected methods for WSE was better for stationary noise
at low dB but was more effective for non-stationary noise at
high dB noise. Figure 24 depicts the differences in the WRR
for both the stationary and non-stationary noises for the WSE
based on fixed beamforming, ANR, and VAD. The selected
methods work well for stationary noise at −10dB to 10dB.
For 15dB and 20dB, theWSE is very effective for recognizing
speech in non-stationary noises.

Finally, to determine whether the result for stationary and
non-stationary noise was significantly different, we have con-
ducted the Analysis of Variance (ANOVA), and the result
is shown in Figure 25 below. It was found that the linear
relationship of SNR andWRR was not significantly different
between the stationary and non-stationary noise. As such, the
performance of the selected methods for both the stationary
and non-stationary noise was statistically similar at a 95%
confidence level.

We have also compared the performance of several Deep
learning-based methods for word recognition. Table 4 depicts
the average word recognition rate for all levels of SNR from
−10dB to 20dB.

Among the Deep learning methods, VDCNN-conv
reported the highest WRR at 90.45%, while DNN shows

FIGURE 25. Result of ANOVA.

TABLE 4. Word recognition rate for the deep learning methods.

the lowest WRR at 87.45%. In terms of the speech datasets,
Dataset A has the highest WRR, while dataset B has the
lowest WRR.

When we compare the result of dataset B results and the
selected methods forWSE, the performance in terms ofWRR
is lower than Deep Learning methods. The WRR for most of
the Deep Learningmethods is twice asmuch. It shows that the
selected methods for WSE are inferior to the Deep Learning
methods.

V. CONCLUSION
In this study, we experiment on a wearable speech enhance-
ment system based on fixed beamforming, ANR, and VAD
algorithms and their recognition accuracy. We conducted the
spectral analysis and word recognition rate evaluations on the
WSE. The word recognition rate evaluation had confirmed
that the selected methods for WSE could not perform effec-
tively under low SNR conditions. However, it performed bet-
ter in a noisy stationary environment than in non-stationary
noisy environments.

We also found that the selected methods for WSE perform
effectively at high SNR in stationary and non-stationary noisy
environments. The linear relationship between the SNR and
WRR has proven that the current WSE successfully filters
noise at higher SNR but fails at lower SNR. The strength
of the noise is too small for the selected methods for WSE
to filter the noise away. As such, more work is needed to
increase the ability of the WSE to filter noise with low SNR,
which can be a promising future direction in WSE research.

We have used the Benchmark Deep Leaning methods to
compare the selected methods for WSE in terms of WRR.
Among the Deep learning methods, VDCNN-conv reported
the highest WRR, while DNN shows the lowest WRR. The
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performance of selected methods for WSE in terms of WRR
is lower than Deep Learning methods. The WRR for most
Deep Learning methods is twice as much as the WSE.
It shows that the performance using fixed beamforming,
ANR, and VAD is inferior to the Deep Learning methods.
It suggests that the existing methods for noise reduction
in WSE, such as fixed beamforming, ANR, and VAD, are
not adequate. New methods for noise reduction in WSE are
needed to improve the performance of the WSE in a noisy
environment.
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