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ABSTRACT A lateral motion control scheme for a distributed drive electric vehicle is presented in this paper,
which takes into account both in-car network and movement-parameter uncertainty in a synthetic manner.
Distributed drive vehicles have obvious advantages in terms of safety and comfort at high speeds due to the
well-known E/E architecture, which includes an in-vehicle network, advanced vehicle motion control, and
Advanced Driver Assistance System (ADAS) technologies. This is a fundamentally cyber-physical system.
However, on the other hand, the application/insertion of in-vehicle network and the dynamic of wide-range
varying speeds introduce additional system uncertainties, such as time-varying network induced delays and
inevitable system perturbation, making controller design a difficult problem and even making the system
unstable. This paper develops a cyber-physical control scheme and under which a two-process perturbation
analysis is proposed to illustrate the system uncertainties. A hierarchical control strategy is also devised,
with an upper-level gain-scheduling controller dealing with speed perturbation uncertainties and a lower-
level H∞-LQR controller dealing with in-vehicle network uncertainty. Using real-time hardware in loop
testing, the suggested control technique was found to be effective in dealing with both in-vehicle network
and system perturbation problems while also ensuring reliable vehicle stability in all three scenarios.

INDEX TERMS Distributed drive electric vehicle, cyber -physical, direct yaw-moment control (DYC),
H∞-based linear quadratic regulator (H∞-LQR), gain-scheduling, two-process perturbation analysis.

I. INTRODUCTION
Recently, with the rapid development of smart sensors, digital
controllers, and in-vehicle network technologies in the auto-
motive sector, smart distributed electric vehicles have gained
interest because to their advantages in terms of safety, com-
fort, and structural flexibility [1]–[10]. For smart distributed
drive electric vehicles, advanced lateral motion control con-
sidering wide-range vehicle speeds is one of the most impor-
tant topics. There have been various research studies have
focused on lateral motion control considering uncertainty
caused by vehicle speed in recent years [6], [8], [11]–[17].
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X. Ding et al and B. Leng et al studied the vehicle speed
estimation of distributed drive electric vehicles, which is
one of the most important issues for studying and designing
distributed drive electric vehicles [15], [16]. N. Ding et al
pointed that varying vehicle speeds would make a dis-
tributed drive electric vehicle a time-varying dynamic sys-
tem, where the parameters e.g. cornering stiffness and sys-
tem matrix are time-varying. The lateral motion control
should be designed with considering system uncertainties
caused by varying vehicle speeds, these uncertainties would
make the vehicle control system unstable [18]. H. Jing et
al designed a H∞ dynamic output-feedback controller to
improve the robustness of vehicle lateral motion control with
considering vehicle longitudinal velocity [13]. H. Zhang et al
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presented gain-scheduling control strategy to enhance the
adaptation of the time-varying vehicle lateral motion control
system [6], [14]. X. Huang et al employed the weighted gain-
scheduling H∞ to further improve the adaptation and robust-
ness of the time-varying vehicle lateral motion control [14].

For vehicle lateral motion control, new electronic and elec-
trical architecture (EEA) consisting of digital components,
in-vehicle network, has been widely employed to achieve
integratedmotion control [19], [20]. The application of the in-
vehicle network bring advantages in term of data exchanging
convenience, wire harness reduction and system diagnosis
easiness [21], [22]. On the other hand, the insertion of in-
vehicle network result in system uncertainties e.g. dynamic
parameters perturbation caused by network-induced delay,
which will make the controller design a challenge prob-
lem and even make the system unstable [7], [23], [24].
There have been some researches focusing on lateral motion
control considering uncertainty caused by network-induced
delay [7], [23], [25]–[27]. Klehmet et al and Herpel et al
proposed a delay analysis method based on network calculus
theory for calculating the worst-case response time of each
message sent on CAN in automotive applications [26], [27].
With the proposed delay analysis method, Shuai et al. [7]
pointed that the application of CAN make a distributed
drive vehicle a time-delay dynamic system, where the CAN-
induced delay would lead to the oscillation problem of lateral
motion control of distributed drive vehicle, and proposed
a H∞-based delay-tolerant LQR controller to enhance the
robustness of the vehicle control system. Zhu et al. [23]
proposed a delay analysis based on twoMarkov chains theory
to model the CAN-induced delay in feedback and forward
channels, and designed a robust LQR-based H∞ controller
to deal with the oscillation of the time-delay vehicle lat-
eral motion control with less conservation. Liu et al. [25]
presented a delay analysis on network-induced delays with
considering multiple-package transmissions, and designed a
hybrid schedule-control framework to deal with the uncer-
tainty caused by time-varying network-induced delays, and
ensure the stability of the time-delay vehicle lateral motion
control.

However, each of the aforementioned studies focus on
a different sort of system uncertainties, e.g. considering
dynamic parameters perturbation caused by varying vehicle
speeds without considering dynamic parameters perturbation
caused by network-induced delay, or vice versa. As shown
in Figure 1, a smart distributed drive electric vehicle has
already been a cyber-physical system rather than a pure
time-varying/time delay dynamic system, where there are
uncertainties which caused by not only the cyber system but
also the physical system [28]–[32]. The analysis and design
with synthetically considering effect of cyber and physical
uncertainties for the vehicle lateral motion control have not
been addressed yet.

In order to deal with all aforementioned problem,
the main contributions of this study are summarized as
follows:

• A cyber-physical control scheme with explicitly consid-
ering to tolerate both uncertainties of the physical system
and the cyber system is adopted for the advanced DYC,
where a two-process perturbation analysis is proposed to
illustrate the system uncertainties.

• To deal with all of the aforementioned uncertainties,
a hierarchical control approach is developed, in which an
upper-level gain-scheduling controller is adopted to han-
dle the uncertainty of the speed perturbation (in view of
physical system), and a lower-level H∞-LQR controller
is designed to deal with the uncertainty of the in-vehicle
network induced delay (in view of cyber system).

The rest of this paper is organized as follows: in section II,
a cyber-physical approach to lateral motion control for dis-
tributed drive electric vehicle is described. The distributed
drive electric lateral dynamic control model is derived.
In section III, the uncertainty of the intelligent distributed
drive electric vehicle, is analyzed separately from the physical
system and the cyber system. A cyber-physical hierarchical
scheme is designed in section IV. In section V, hardware-in-
loop (HIL) tests are implemented to validate the proposed
method in a real CAN environment. Finally, conclusions are
summarized in section VI.

FIGURE 1. DYC architecture based on cyber-physical control scheme.

FIGURE 2. Control-oriented vehicle model. (a) 2-DOF lateral dynamics
model of a vehicle with DYC. (b) Simplified rigid-body motion model of a
vehicle for DYC.

II. SYSTEM DESCRIPTION
As shown in Fig. 1, a smart distributed drive electric vehicle
with in-vehicle network and digital components (e.g. smart
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sensors and motor controllers based on advanced MCU) can
be considered as a cyber-physical control system, in which
physical information data from/to digital components such
as vehicle/wire speed and torque commands are exchanged
by in-vehicle network that is actually a cyber channel not a
mechanical/physical connection. In this section, basic vehicle
dynamics are introduced for the design of the advanced DYC
controllers.

A. CONTROL-ORIENTED VEHICLE DYNAMICS MODEL
As shown in the research [17], [26], in this study,
a widespread 2-DOF bicycle model of vehicle lateral dynam-
ics, as shown in Fig.2. is adopted for the DYC controller
design. In Figure 2, CG is the center of vehicle gravity; m is
the vehicle mass; IZ is the vehicle yaw inertia;MZ is the yaw
moment applied to the vehicle; lf and lr denote the distances
from the front and rear axles to CG. δ is the steering angle
of the front wheels. αf and αr respectively represent the slip
angle of the front and rear wheels, Fyf and Fyr separately
represent the longitude tire forces of the front and rear wheels.
V is the vehicle speed, β is the side slip angle of the CG,
and γ is the yaw rate of the vehicle. According to the 2-DOF
vehicle model, the lateral dynamics of a vehicle with DYC
can be expressed as follows:

ẋ = Ax + Bu+ Eδf (1)

where

x =
[
β γ

]T u = MZ

A =

 −2(Cf+Cr)
mV

−2(Cf lf−Cr lr)
mV 2 − 1

−2(Cf lf−Cr lr)
Iz

−2
(
Cf l2f +Cr l

2
r

)
IzV


B =

[
0 1

Iz

]T
E =

[
2Cf
mV

2Cf lf
Iz

]T
whereCf andCr respectively represent the cornering stiffness
of the front and rear wheels.

In the DYC, the yaw-momentMZ is the directly generated,
as shown in Fig. 2(b), by the longitudinal tire forces of wheels
actuated by motors, which can simply expressed as follows:

MZ = −Fflx l1 + Ffrx l2 − Frlx l3 + Frrx l4

=

4∑
i=1

(−1)i
Tmiireduli

r
(2)

where

l1 = ls cos δ − lf sin δ

l2 = ls cos δ + lf sin δ

l3 = l4 = ls

with Tmi being the torque measurement of the motor i, iredu
being the transmission ratio between themotor and the wheel.

B. REFERENCE STATE MODEL
As shown in the research [25], [33], a typical expression of
the reference state model is adopted here as shown in Eq.2,
where the desired/reference sideslip angle is set to zero, and
the desired/reference yaw rate is usually defined by steering
angle, vehicle speed and structural parameters.

The reference state model selects the yaw rate and the side
slip angle of the CG:

r =
1

1+ τγ s
Rδf (3)

where

r =
[
βref γref

]T
R = [0V/

(
lf + lr +

mV 2
(
Cr lr − Cf lf

)
2Cf Cr

(
lf + lr

) )
]T

III. SYSTEM UNCERTAINTY ANALYSIS
For the advanced DYC as a typical cyber-physical system,
to illustrate the impact of the insertion of the in-vehicle net-
work and the characters of the varying speeds, a two-process
perturbation analysis is proposed, where the uncertainties not
only in motion control process but also in the data commu-
nication process is described in detail in this section. For
the uncertainty analysis in lateral motion control process, the
impact of the varying speed is mainly considered here in DYC
design according to the research [34]. For the uncertainty
analysis in data communication process, the effect of the
network-induced delay is concentrated on here according to
the research [35], [36].

A. UNCERTAINTY IN MOTION CONTROL PROCESS
As shown in the studies [5], [23], varying speeds will cause
the system uncertainties owing to the nonlinearity relation
between system parameter matrices e.g. A, E and vehicle
speed V as in Eq.1. The uncertainties in motion control
process can be described in the following expressions.

According to robust control system theory, an actual sys-
tem model is presented as the following:

A′ = A+1A, E ′ = E +1E (4)

with

A′ =

 −2(Cf+Cr )
mV ′

−2(Cf lf−Cr lr )
mV ′2

− 1
−2(Cf lf−Cr lr )

IZ

−2(Cf l2f +Cr l
2
r )

IZV ′


E ′ =

[
2Cf
mV ′

2Cf lf
IZ

]
1A = A′ − A =

 2(Cf+Cr )1V
mVV ′

2(Cf lf−Cr lr )1V (V+V ′)
mV 2V ′2

0
2(Cf l2f +Cr l

2
r )1V

IZVV ′


1E = E ′ − E =

[
−

2Cf1V
mVV ′ 0

]
where A′ is the actual system matrix,1A is the system matrix
perturbation, E ′ is the input matrix, 1E is the input matrix
perturbation, V ′ is the actual speed.
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B. UNCERTAINTY IN DATA COMMUNICATION PROCESS
As shown in the study [25], the application of in-vehicle
networkwill lead to the new problem, e.g. inevitable network-
induced delays as shown in Fig. 3.

FIGURE 3. Timing diagram of motion control system based on
cyber-physical approach.

Where τ loopk is the delay of the entire control loop, τ sck is
the delay of the feedback channel from the sensor to the con-
troller, τ cak is delay the forward channel from the controller to
the actuator. The details of multiple-package transmissions
and time-varying network-induced delays are shown in [25].

With assumptions and terms as in [25], the network-
induced delays can be expressed as the following:

τ
loop
k = τ sck + τ

ca
k

τ sck = T

0 < τ cak ≤ T

T < τ
loop
k ≤ 2T (5)

Owing to the network-induced delays, the vehicle dynamic
control system model can be rewritten as [25]:

xk+1
= Adxk + Buduk + Brd rk +10,k (uk−1 − uk )

+11,k (uk−2 − uk−1)+ · · · +1ϒ,k (uk−ϒ−1 − uk−ϒ )

(6)

where

1i,k

=


0, τk−i − iTs ≤ 0∫ τk−i−iTs

0
eA(Ts−θ)dθ · Bu, 0 ≤ τk−i − iTs ≤ Ts∫ Ts

0
eA(Ts−θ)dθ · Bu, Ts ≤ τk−i − iTs

Then defining a new vector ξ (k) = [xTk uTk−1 . . . u
T
k−γ−1]

T ,
an augmented delay system equation can be obtained as

ξk+1 = Aaugξk + Bud,auguk + Brd,augrk (7)

where

Aaug =


Ad 10,k −11,k · · · 1γ−1,k −1γ,k 1γ,k
0 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0



Bud,aug =


Bud
0
0
...

0

 , Brd,aug =


Bud −10,k

I
0
...

0


where (10,k ,11,k , . . . ,1γ,k ) are uncertain terms caused by
time-induced delay, Aaug is the actual system matrix, Bud,aug
is the input matrix, Brd,aug is the reference model input
matrix.

FIGURE 4. The hierarchical approach of the vehicle lateral motion control
system based on the cyber-physical control scheme.

IV. CONTROL DESIGN
For the advanced DYC as a typical cyber-physical system,
to deal with all aforementioned problems, a hierarchical con-
trol scheme is developed in this study, as shown in Fig.4,
where an upper-level gain-scheduling controller is adopted to
deal with speed perturbation uncertainties, and a lower-level
H∞-LQR controller is designed to deal with the uncertainty
of the in-vehicle network for motion control. The proposed
hierarchical control scheme is called GS H∞-LQR.
The upper controller adaptively executes planning and

decision-making tasks to produce the desired βref and γref ,
and to adjust the system parameters e.g. system matrix A or
A′ according to the actual varying speeds, to deal with the
system uncertainties caused by the speed perturbation.

The lower controller ensures the actual motion parameters
β and γ following the desired motion parameters βref and
γref , and improving the robustness against to time-varying
network induced delay with H∞-LQR approach.

A. UPPER CONTROLLER
The upper controller is the decision-making layer, which
adopts adaptive gain-scheduling control, to extend the linear
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control method to adapt it to the time-varying system [6]. The
basic idea of the algorithm is to obtain some key parameters
related to vehicle stability control through online estimation,
such as vehicle speed, tire cornering stiffness, etc. The con-
troller parameters e.g. gain k(V ) are updated in real time
according to the estimated parameters e.g. V , so that the con-
troller can adapt to the parameter uncertainty of the model.

In order to reduce the calculation amount of the controller
and avoid a large number of online calculations from affecting
the real-time performance of the controller, the controller is
designed offline to calculate the change trend of the controller
gain k(V ) corresponding to different vehicle speeds V , gen-
erate a lookup table K (V ) and download it to the electronic
control unit; during operation, the controller calculates the
control rate uk = K (V )ξk online based on the lookup table of
the current state. The gain-scheduling control block diagram
is as shown in Figure 5.

FIGURE 5. Gain-scheduling control block diagram.

B. LOWER CONTROLLER
The lower controller is the tracking control layer, which is
used to obtain the torque control commands to maintain the
actual vehicle state e.g. βref and γref to follow the target.
This layer also takes into account the uncertainty of the cyber
system. Considering that the network induced delay time-
varying and bounded, the lower controller is designed based
on H∞-LQR control method to ensure the robustness of the
system.

The time-varying loop delay brings uncertainty to the con-
trol system, e.g. the uncertain term 01(τk ) in Aaug and Baug.
The uncertain term 01(τk ) can be linearized using Taylor
expansion [25], and then expressed as a multicellular model.

The Taylor expansion of the uncertainty term 01(τk ) can
be expressed as

01(τk ) =
∫ T

T−τk
eAsdsB = −

∞∑
q=1

(−τk)
qA

q−1

q!
eATB

01(τk ) = −
h∑

q=1

(−τk)
qA

q−1

q!
eATB+2h (8)

Ignoring the h-order infinitesimal, it is approximately as
follows:

01(τk ) = −
h∑

q=1

(−τk)
qA

q−1

q!
eATB (9)

definition:

Gq = (−1)q+1
Aq−1

q!
eATB

ϕ1 =
[
ρhI ρh−1I · · · ρ2I ρI

]T
ϕ2 =

[
ρhI ρh−1I · · · ρ2I ρI

]T
...

ϕh+1 =
[
ρhI ρh−1I · · · ρ2I ρI

]T
(10)

where: q = 1, 2, · · · , h, ρ = τmin = 0, ρ = τmax = T/2, the
uncertain term 01(τk ) can be expressed as:

01(τk ) =
h+1∑
i=1

µj (k)Uj

µj (k) > 0,
h+1∑
j=1

µj (k) = 1, ∀j = 1, 2 . . . h+ 1,

∀k ∈ Z+ (11)

The vertices of a convex polyhedron can be expressed as:

Uj =
[
Gh Gh−1 · · · G2 G1

]
ϕj, ∀j = 1, 2 . . . h+ 1

(12)

In order to solve the uncertainty of the network control system
and ensure the stability of the system, this paper further
designs a linear quadratic regulator motion controller based
on robust H∞. The performance index function J is designed
as a quadratic form of the error e and the control input u,
as shown below.

J =
∞∑
i=0

(eTi Qei + u
T
i Rui) (13)

Considering the feedback control rate uk = −Ki(V )ξk ,
the performance function J is equal to the 2-norm of the
following expression:

zk = Fξk + Hu (k) = Fξk − HKi(V )ξk = (F − HKi(V )) ξk
(14)

where

F =
[
Q1/2 0
0 0

]
; H =

[
0

R1/2

]
The motion control problem can be transformed into the
optimal control problem of the following closed-loop control
system:

ξ (k + 1) =
(
Aaug,i(V )− Baug,i(V )Ki(V )

)
ξ (k)

+Gaug,i(V )δf ’(k)

zk = (F − HKi(V )) ξk (15)

where, Aaug,i(V ),Baug,i(V ),Gaug,i(V ) respectively are the
system matrix corresponding to the vehicle speed V , Ki(V )
is the controller gain corresponding to the vehicle speed V .
Theorem: assuming a given controller, if there is a positive

definite matrix �, matrix Y , M satisfy: (16), as shown at
the bottom of the next page, where: Yi = Ki(V )Mi, then the
control system is stable.

Therefore, the controller design based on H∞ can be
expressed as (17), as shown at the bottom of the next page.

774 VOLUME 10, 2022



W. Cao et al.: Improved Motion Control With Cyber-Physical Uncertainty Tolerance for Distributed Drive Electric Vehicle

FIGURE 6. HIL test bench. (a) Schematic diagram of HIL simulation
platform. (b) Four-wheel motor characteristic model.

This problem can be solved using the LMI toolbox in
MATLAB. Controller gain Ki(V ) = YiM

−1
i .

V. RESULTS AND DISCUSSIONS
To evaluate the proposed scheme, a real-time hardware-in-
the-loop (HIL) test bench using dSPACE AutoBox-based
high-fidelity vehicle simulator, a real prototype CAN system
and a four-motor control unit (MCU) was constructed using

TABLE 1. Main system parameters.

S12X chips, as detailed in [25]. Fig. 6 shows the schematic
diagram of hardware-in-the-loop simulation platform.

The main parameters of the high-fidelity full-vehicle sim-
ulator used in the real-time HIL test bench were acquired
from a prototype EV by Beijing Electric Vehicle Co., Ltd. and
provided in Table 1. The specifications of the four-in-wheel
motors in the prototype EV are also described in detail as
in [25]. Especially, themodels of the four motors (as actuators
in this study) are built with considering the torque saturation
of the motor (which is the input saturation of the vehicle)
as in [18] and the actuator delay (which is described by the
first-order inertial link with the time constant kk= 20ms here)
as shown in Fig. 6(b).

Tmax(n) =

{
90(Nm) n < 2000(rpm)
9550× 18.8(kW )/n(Nm) n >= 2000(rpm)

(18)

where 90Nm is the motor peak torque in the constant torque
state, 18.8kW is the motor power, 2000rpm is the rated rotat-
ing speed of the motor, n denotes the motor speed, Tmax(n)
denotes the motor maximum torque.

In order to verify the effectiveness of the proposed method,
two typical steering wheel angle inputs are considered in this
study, including the J_turn test and the Fishhook test. The


−�i 0 Aaug,i,jM − Baug,i,jY Gaug,i
0 −I FMi − HYi 0

MT
i A

T
aug,i,j − Y

TBTaug,i,j M
T
i F

T
− Y Ti H

T
−�i −Mi −MT

i 0
GTaug,i 0 0 −η2I

 < 0

∀j = 1, 2, . . . , (h+ 1). (16)

min
�,M ,Y ,η

η2

subject to


−� 0 Aaug,i,jM − Baug,i,jYi Gaug,i
0 −I FMi − HYi 0

MT
i A

T
aug,i,j − Y

T
i B

T
aug,i,j M

T
i F

T
− Y Ti H

T
−�−Mi −MT

i 0
GTaug,i 0 0 −η2I

 < 0

∀j = 1, 2, . . . , (h+ 1). (17)
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FIGURE 7. Two test cases.

FIGURE 8. Results of J_turn test. (a)Yaw rate. (b)Torques of four-wheel
motors. (c) The β − γ phase trajectory error.

respective steeringwheel angle signals are shown in the figure
below.

For comparative analysis, two traditional controllers are
also designed: the first controller is a gain-scheduling linear
quadratic regulator (GS LQR), whose gains are variable with
the speeds of the vehicle without considering the affect of
network-induced delay. The second controller is H∞-based
linear quadratic regulators (H∞-LQR) to deal with the affect
of network-induced delay, without considering the affect of
varying vehicle speeds. The proposed method is presented as
GS H∞-LQR in the legends of Fig. 7 and Fig. 8.
In three control cases, the same parameter values are set-

ting as follows: the system sampling period of the vehicle
motion control system is set to T = 0.02s, and the solver

FIGURE 9. Results of Fishhook test. (a) Yaw rate. (b) Torques of
four-wheel motors. (c) The β − γ phase trajectory error.

in the simulator chooses a fixed step size of 0.001 seconds.
The selection of the weighting matrix in the performance
indicators of the linear quadratic regulator is as follows:

Q =
[
20000 0

0 10000

]
,R = 0.00005

For GS LQR control, gains are:

K (15) =
[
13427 26434

]
K (20) =

[
14188 28417

]
K (30) =

[
13870 30609

]
For H∞-LQR control, gains are:

K =
[
5372 10255

]
For proposed control, gains are:

K (15) =
[
5372 10255

]
K (20) =

[
8593 12520

]
K (30) =

[
15223 15214

]
A. J_TURN TEST
In this test, the longitudinal speed of the vehicle is set to
108 km/h, and the tire-road friction coefficient is 0.8. The
Fig. 8 shows the real-time HIL test results of the three control
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cases in the J_turn test. As shown in Fig. 8(a), only the
proposed method can keep the actual yaw rate tracking the
desired yaw rate well. The traditional GS LQR leads to sig-
nificant oscillation in motion control process. The traditional
H∞-LQR make tracking error. As shown in Fig. 8(b), the
traditional GS LQRmethod leads to oscillations in the torque
outputs of four driving motors. It means serious damage and
extra energy consumption for the driving motors, and ride
comfort of the vehicles with the traditional method. Whereas,
with the proposed method, the vehicle yaw motion can be
adjusted smoother and faster, which means that the vehicle is
safer and more comfortable for drivers and passengers in the
ramp steering. Fig. 8(c) shows that the traditional H∞-LQR
lead to obvious yaw rate error, it means that inaccurate lateral
motion control. The proposed method makes little yaw rate
error, which means an accurate lateral motion control.

B. FISHHOOD TEST
In this test, the longitudinal speed of the vehicle is set to
72km/h, and the coefficient of friction between the tire and
the road surface is 0.8. The results with three control schemes
are shown in Fig. 9 in the fishhood test.

Similarly, only the proposed method can keep the actual
yaw rate tracking the desired yaw rate well. While the tra-
ditional GS LQR leads to significant oscillation in motion
control process and the traditional H∞-LQR make tracking
error. It means that the proposed method is more effective
than traditional methods in the fishhood test.

VI. CONCLUSION
The lateral motion control of the smart distributed drive
vehicle has been a typical cyber-physical system. This paper
proposes a cyber-physical control scheme to analyze the
system uncertainties caused by varying vehicle speed and
network-induced delay, by introducing a two-process per-
turbation analysis. Then a hierarchical approach is devel-
oped to deal with all the system uncertainties. The real-time
HIL test bench test results show that the proposed approach
can effectively improve the vehicle motion control perfor-
mance and ensure the robustness of the networked system.
Nowadays, with the new networked electronic and electrical
architecture (N-EEA), smarter vehicles with growing ADAS
are being developed rapidly. The proposed cyber-physical
control scheme and two-process perturbation analysis can be
potentially used in ADAS areas such as ACC, which may be
also worth of investigating in the future. It is also necessary
to further consider and study the vehicle-road collaboration
with considering more road condition.
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