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ABSTRACT The ideal paraboloidal reflector (IPR) is analyzed as a 4D spatio-temporal linear system
having a dynamic focal plane response that is characterized by an idealized scalar Dirac plane-wave (PW)
signal on the aperture. Using the same path-difference equations that are used for classical steady-state
quasi-monochromatic (QMC) analysis, simple algebraic expressions are derived for the spatio-temporal
focal plane response hfp (x, ct) to the Dirac-PW. These expressions for hfp (x, ct) are used to directly
determine the focal plane response to far-field on-axis short-time transient signals, thereby avoiding the
complexities of QMC-based methods for the analysis of such signals. The derived first-order approximation
of hfp (x, ct) describes its spatio-temporal region of support (ROS) and amplitude whereas the second-order
approximation includes a further spatio-temporal distortion that is the dynamic equivalent of the Petzval
aberration. Examples of the focal plane response to highly transient far-field pulses are described.

INDEX TERMS Broadband antennas, dynamic response of reflectors, paraboloid reflectors.

I. INTRODUCTION
The paraboloidal reflector is ubiquitous and has been very
widely studied for at least 150 years. It is often employed
to increase the intensity of a received aperture signal by
bringing the signal into focus on the focal plane in the region
of its focal point F . Such reflectors are also used to direc-
tionally transmit signals from the focal point into space via
the aperture. Applications include the processing of photonic
signals in such fields as radio astronomy, optical engineering,
terrestrial telecommunications and satellite communications.
Paraboloidal reflectors are also widely used for focusing and
transmitting microwaves and airwaves in such fields as radar,
audio, and ultrasonic signal processing [1].

In the following, we employ Huygens’ Principle to derive
several new useful algebraic approximations for the focal
plane response hfp (x, ct) to a Dirac-PW in the aperture and
we show how these expressions may be employed to explain,
determine, and predict the dynamic (transient and steady-
state) response to general PWs received in the aperture from
far-field on-axis sources. Our analysis makes the same path
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length assumptions about the geometry of the IPR, as shown
in Fig.1, that are widely used for deriving the classical
response to quasi-monochromatic (QMC) signals [2], [3].

Simple closed-form algebraic approximations for the
region of support (ROS) of the 3D spatio-temporal function
hfp (x, ct) are derived and the shape of hfp (x, ct) over that
ROS is numerically confirmed for a wide range of focal
lengths. Importantly, these approximations for hfp (x, ct)may
be used to determine the dynamic response of the IPR to gen-
eral PW aperture signals, including short pulse-like transient
signals, wavelets and other dynamic signals. These expres-
sions for hfp (x, ct) are simplified algebraically-equivalent
versions of those in [4] and [5] and it is this simplicity that
allows us to describe the behavior of hfp (x, ct) over a wide
range of focal lengths.

A. A BRIEF REVIEW OF PREVIOUS WORK
Classical multidimensional Fourier-based frequency-domain
methods of analyzing the IPR [1]–[3] assume that the
aperture input signal is quasi-monochromatic (QMC) and
therefore closely approximated by a sinusoidal PW of
temporal frequency ωt0 having an idealized 1D Fourier
temporal-spectrum having Dirac support proportional to
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δ (ωt − ωt0) + δ (ωt + ωt0). As described in [3], such
QMC-based methods do not lend themselves to finding,
explaining, or predicting the dynamic response of the IPR
to important classes of non-QMC aperture signals, largely
because conventional QMC-based analysis assumes that the
IPR system has reached the periodic steady-state at a constant
frequency ωt0. This approach is often justified because of
the prevalence in nature of QMC photonic signals and has
yielded a very large body of QMC-based literature that is
widely referenced in [1]–[3] and includes classical closed-
form complex-valued algebraic transfer functions from the
plane of the aperture to the focal plane, such as those due to
Fraunhofer, Airy and Fresnel. QMC-based analysis has also
yielded important classical algebraic approximations for the
so-called aberrations of IPRs (and lenses), including both the
Petzval de-focusing effect and off-axis coma distortion.

Further explanation of the use of QMC-based analysis for
analyzing the dynamic performance of IPRs (and lenses) is
summarized in Appendix A, essentially by assuming that the
aperture signal and the corresponding focal plane response
are approximated by the superposition of a large number
of monochromatic signals via the multidimensional Fourier
transform.

B. PREVIOUS DYNAMIC ANALYSIS OF THE IPR
The dynamic analysis of the IPR as a transmitting antenna has
been studied for the case of electromagnetic short-pulses and
later, in a series of related publications [6]–[10]. In this body
of work, the source is at the focal point of the IPR and closed-
form expressions are derived for the electric and magnetic
fields radiated by the IPR to locations in space. By assuming
a Dirac source function at the focal point, these pioneering
works lead to polynomial expressions for the electric and
magnetic impulse responses of the IPR in the direction from
the focal point to a location in free space. Importantly, they
exploit the fact that the impulse response fully characterizes
the response of the IPR system to general short-time dynamic
transmitted signals, including wave propagation from the
focal point to the reflector. As an example, the radiated
response to a short Gaussian pulse at the focal point has been
reported. This previous work differs from this contribution in
several ways. First, we study the dynamic response of the IPR
as a receiver rather than as a transmitter: that is, in the reverse
direction whereby the received input signal is a PW on the
aperture and the output of the IPR system is the focal plane
onto which the received signal is reflected. The IPR receiver
is considered as a stand-alone spatio-temporal 4D linear sys-
tem that does not inherently depend on the scalar propagation
equation, such as the Rayleigh-Sommerfeld model, that may
subsequently be required to evaluate the focal plane response
due to a far-field source.

In this contribution and following [4], [5], the focal
plane response to a general received dynamic aperture PW
is obtained from hfp (x, ct) via 1D temporal convolution,
essentially determining the general received aperture PW
as the superposition of elemental delayed-Dirac functions.

In contrast, QMC-based analysis forms the general aperture
PW as a superposition of elemental monochromatic signals,
as further explained in Appendix A. Thus, the approach
used in this paper is based on the frequency-time dual of
QMC-based analysis: that is, by assuming idealized Dirac
support in the time domain rather than in the frequency
domain.

In the following, the results in [4] and [5] are improved
upon and extended in the following ways. First, new approxi-
mate and much-simplified closed-form algebraic expressions
for hfp (x, ct) are derived. Second, the hypothesis in [4]
and [5] that the Petzval aberration applies with high accuracy
to dynamic responses is confirmed. Third, temporal convo-
lutions are described that explain and confirm how the IPR
responds to highly transient electric field sources in the far
field of the IPR. Throughout, numerical verifications are
presented that confirm the accuracy of these new expressions
for hfp (x, ct) over a wide range of focal lengths.

II. THE FOCAL PLANE RESPONSE OF THE IDEAL
PARABOLIC REFLECTOR TO THE DIRAC-PW APERTURE
SIGNAL
The surface of the ideal paraboloidal reflector (IPR) is
illustrated in Fig. 1 where the 3D spatial co-ordinates
x ≡ (x1, x2, x3) are identified and where the disc-shaped
aperture and the focal plane are in parallel. Relevant angles
and path lengths are also shown in Fig.1.

FIGURE 1. The paraboloidal reflector.

The aperture plane is given by x3 = −F + 1max and
x3 < 0, the on-axis focal point F is at x ≡ (0, 0, 0), the
vertex V is at x ≡ (0, 0,−F), P is any point on the paraboloid
and the focal plane is given by x3 = 0. In this contribution,
we assume that the source signal is on-axis in the far-field
of the IPR at x ≡ (0, 0,R) such that R � F , implying that
the signal received in the aperture disc lies approximately on
a PW. In the following, we characterize the dynamic focal
plane response hfp (x, ct) of the IPR to an idealized scalar
Dirac plane-wave (PW) signal that is received on the aperture
plane at time instant t = − (F −1max) /c and therefore at
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the vertex V at time instant t = −F/c from which it reaches
the focal point (FP) at t = 0.
The Dirac-PW aperture signal is defined as follows:

Diracaper (x, ct) =
1

c
δ (ct −1max + F)

for

{
xr ≡

√(
x21 + x

2
2

)
≤ D/2,

x3 = −F+1max

Diracaper(x, ct) = 0 otherwise (1)

where 1max + F is the distance along the path AVF shown
in Fig.1, implying that this instantaneous signal is reflected
from the vertex V at the instant t = −F/c and therefore
is incident at the focal point FP from all locations P at the
instant t = 0. For all xr > 0, wave fronts are received at the
focal plane over a continuous range of times as determined
in the following analysis. This temporal dilation is a direct
consequence of the spatial compression from aperture to focal
plane: that is, of spatial focusing.

In Appendix B, we employ Huygens’ principle to deter-
mine the double-integral that expresses the focal plane
response hfp_exact (x, ct) without any approximations beyond
that implied by the spectral validity of this principle [2].
We note that Huygens’ principle is invalid for spectral
temporal-frequency componentsωt of the received signal that
do not satisfy the inequality 2π/ωtc � D; equivalently, the
corresponding largest spectral wavelength λt of the received
dynamic signal must be at least an order of magnitude
less than the diameter of the dish and of all path lengths.
In Appendix B, we use a number of well-known path length
approximations [1]–[3] to significantly reduce the algebraic
complexity of hfp_exact (x, ct). The first-order approximation
hfp1 (x, ct) and the second-order approximation hfp2 (x, ct)
may be considered as time-delay versions of the phase-shift
approximations used in classical QMC-based analysis.

A. THE SEMI-ELLIPTICAL FOCAL PLANE RESPONSE
EMPLOYING THE FIRST-ORDER APPROXIMATION
hfp1

(
x, ct

)
In Appendix C1, the first-order path difference assumption is
employed to prove that the focal plane response is given by:

hfp1 (xr, ct)

≈
2

xr
tan−1

ψ (xr, t) 8

16
(
F
D

)
−

(
D
F

)


for 0 < ψ (xrt) < 1, F ≥ D/
4 (2)

hfp1 (xr, ct) ≈ otherwise

where

xr ≡
√
x21 + x

2
2

9 (xr, t) =

√√√√(1− ( ct
xr sin (θmax)

)2
)

(3)

and

θmax = tan−1
(

8FD

16F2
− D2

)
(4)

The 3D focal plane response hfp1 (xr , ct) represents the 4D
function hfp1 (x, ct) on the focal plane, i.e., for x = (x1,
x2,0). To our knowledge, (2) is a new result where the func-
tion ψ (xr , t) plays a key role in determining both the ROS
and the semi elliptical shape of hfp1 (xr , ct) and is therefore
defined here as the dynamic generation function (dgf). The
3D spatio-temporal ROS of hfp1 (xr , ct) that is obtained from
0 < ψ (xr , t) < 1, is equivalent to the ROS in C7 and it is
shown in Fig. 2(a). In Fig. 2(a) the value of hfp1 (xr , ct) is also
illustrated for three values of xr .

FIGURE 2. (a) The 3D spatio-temporal ROS of hfp1
(
xr , ct

)
is the exterior

of a wide angle cone, as shown, where β = tan−1 (θmax ). The value of
hfp1

(
xr , ct

)
is indicated for three value of xr by the red curves.

(b). hfp1
(
xr , ct

)
for F = 15m, D = 6.75m showing the role of the decaying

semi-elliptic pulse as xr increases.

The shape of hfp1xr (, ct) is also determined by ψ (xr , t)
which represents a semi-ellipse for constant xr . As xr
increases from 0, the long axis of the ellipse is moving from
the temporal direction to the spatial direction. In Fig2(b)
we show hfp1 (xr , ct) for the Square Kilometer Array (SKA)
IPR paraboloid [11], [12] with F = 15m, D = 6.7 m
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as a continuous function of space-time, thereby quantifying
the time-dilation and confirming the asymptotic decrease of
amplitude with increasing distance xr and the corresponding
asymptotic increase in its duration the decaying semi-elliptic
pulse as xr increases.

Both the tangent and inverse tangent operations in (2)may
be neglected for F/D ratios greater than about unity, yielding
the particularly simple further approximation

hfp1 (xr , ct) ≈
2θmaxψ (xr , t)

xr
,

for 0 < ψ (xr , t) < 1F > D/4

hfp1 (xr , ct) ≈ 0 otherwise (5)

B. ON THE ACCURACY OF THE SIMPLIFIED EXPRESSION
IN EQUATION 5
The especially simple approximation of equation (5) is valid
over a wide range of F/D ratios. It follows from equation
(4) that F/D → ∞ implies that θMAX → 0 and therefore
hfp1 (xr , ct) is given by equation (5). In Fig. 3 we show
the limitation of equation (5) by displaying a slice through
hfp1 (xr , ct) at xr = 1 m for various low-valued F/D ratios,
ranging from 0.8 to as low as 0.3. Clearly, the modifying
effect of the tangent and inverse tangent operations in equa-
tion (2) is to perturb the semi-elliptical shape of hfp1 (xr , ct)
as shown for F/D = 0.3, 0.5 and 0.8. A similar result is
obtained for other constant xr slices of hfp1 (xr , ct).

III. THE SECOND ORDER PETZVAL ABERRATION AND
EXACT HUYGENS ANALYSIS
In Appendix C2, the second-order path difference assumption
is employed to prove that the focal plane response is given by:

hfp2 (xr, ct)

≈
2

xr
tan−1


√√√√
1−

(
ct − x2r

2F
xr sin θMAX

)2
8

16
(
F
D

)
−

(
D
F

)


for

∣∣∣∣∣∣ ct − x2r
2F

xr sinθMAX

∣∣∣∣∣∣ < 1, F ≥ D/
4

hfp2 (xr, ct)

≈ 0 otherwise (6)

Relative to hfp1 (xr, ct), this second-order term x2r /2F intro-
duces a delay of x2r /2Fc seconds without otherwise alter-
ing its dgf-determined shape. This is shown in Fig.4 where
the exact focal plane response hfp_exact (xr , ct) (computed
using the numerical evaluation of (B.1) discussed in the next
section) is compared with hfp1 (xr , ct) and hfp2 (xr , ct) for
F = 6.75m, D = 15m and xr = 1m.
It can be seen in Fig. 4 that the delay between

hfp1 (xr , ct) and hfp2 (xr , ct) for this case is, as expected,
about 0.24 nanoseconds. The exact solution hfp_exact (xr , ct)
is in very good agreement with hfp2 (xr , ct), any small differ-
ences representing the effect of third and higher order terms.

FIGURE 3. The focal plane Dirac-PW response hfp1
(
1, ct

)
for F /D = 0.3,

0.5 and 0.8 confirming the requirement to use equation (5) instead of
equation (2) for F /D < 1.

FIGURE 4. The exact Huygens’ solution hfp_exact
(
xr , ct

)
in Appendix B,

eq. (B.1), the first-order approximation hfp1
(
xr , ct

)
in (2) and the

second-order approximation hfp2
(
xr , ct

)
in (6); F = 6.75m, D = 15m and

xr = 1m.

It is suggested and partly explained in [4] and [5] that
this second-order approximation corresponds to the dynamic
version of the QMC-derived Petzval aberration. This is con-
firmed in Fig. 5 where the ROS is upwardly skewed onto
a paraboloid by the second-order term. The dotted-blue
parabolic 3D surface given by ct = x2r /2F implies late
arrival by time x2r /2Fc relative to the time of arrival at the
focal plane. For the on-axis case, this late arrival closely
corresponds to the non-physical Petzval paraboloidal surface

x3 ≈ ct = x2r /2F =
√
x21 + x

2
2/2F obtained by rotating

the dotted blue curve in Fig. 5 by 2π about the ct axis.
This Petzval surface in x has its vertex at the focal point,
x = (0, 0, 0), a focal length of F/2, is curved outwards
from the reflector and its focal point is at 1 x = (0, 0,F/2).

1The suggestion in [5] showed the Petzval surface for a lens rather than
a reflector. For a lens, the curves in Fig. 5 are skewed downwards instead of
upwards.
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The entire 3D spatial ROS of hfp2 (xr , ct) is the volume in
(x1, x2, ct) that lies between the two surfaces obtained by
similarly rotating the red curves by 2π in Fig. 5

FIGURE 5. Region of support of hfp for first-order and second order
approximation. The 3D regions of support are obtained by 2D rotation by
2π around the ct axis.

We conclude that, as for QMC signals, the second-order
response to dynamic signals is more sharply represented on
the Petzval paraboloidal surface than on the focal plane.
Consequently, Petzval-curved dishes may be preferable than
a plane in applications involving short transient dynamic
signals. As a numerical example of the extent of the Petz-
val correction, for a focal length of 6.75 m, to retain sharp
dynamic images out to a distance of xr = 1 meter from the
focal point the required physically-curved Petzval surface is
a distance of 7.4 cm from the focal plane. We note that the
location of the Petzval surface does not depend on diameter
D or speed c.

A. EXACT HUYGENS’ ANALYSIS
In order to evaluate the accuracy of the above first-order
and second-order path difference approximations, we have
numerically evaluated the exact Huygens’ expression in
(B.1).

It should be noted that for this approach is limited by
the fact that Huyghen’s Principle is a valid approximation
for both the diameter D of the dish and the focal length F
requires that both are at least an order of magnitude larger
than the longest significant wavelength of the signal Numer-
ical evaluation of (B.1) is non-trivial because the delayed
Dirac function in the integrand of (B.1) will, in general, be
zero at the discrete numerical samples of hfp (xr , ct) and the
instants when it is non-zero will be between those samples.
Thus, temporal resolution is a serious technical challenge
that will always yield inexact solutions. Accordingly, we
have separately developed a numerical integration program
in MATLAB to approximate (B.1) to arbitrary spatial and
temporal precision. For brevity, the details of the program are
omitted.

This program has been used to compute hfp_exact (xr , ct),
the exact solution using (B.1), which is used in Fig. 4.
to evaluate the accuracy of the 3 focal plane responses for the

SKA IPR: they are the exact Huygens solution in (B.1), the
first-order approximation in (2) and the second-order approx-
imation in (6), shown in Fig. 4. The results, as discussed in the
previous section, are observed to be in very good agreement.

IV. ON rfp
(
xr , ct

)
, THE FOCAL PLANE RESPONSE TO

FAR FIELD SOURCES
We have so far assumed the existence of a PW on the aperture
without considering the wave propagation equation that mod-
els the propagation from the far field source to the aperture.
Following [3], we model the propagation of the PW from the
far-field employing the scalar wave Rayleigh-Sommerfeld
equation applied to photonic propagation at speed c. In that
case, let the far-field photonic source be written uFF (x, ct) =
uFF (0, 0,R, ct) ,R � F resulting in a propagation-delayed
and significantly attenuated aperture signal [3] of the form

uaperture (x, ct) =
1

Rsc
d
dt

[uFF (x, ct + Rs)] (7)

where, from Fig.1, Rs = R + F − 1MAX and is the path
distance from the far-field spatial point source to the aperture.
The response on the focal plane rfp (xr , ct) to this far-field
excitation uFF (x, ct + Rs) is therefore given by,

rfp (xr, ct)

=
1

Rsc

[
hfp (xr, ct − Rs)

∗
d
dt

[uFF (0, 0,Rs, ct − Rs)]
]

(8)

where ∗ denotes 1D convolution with respect to ct . (8) allows
the focal plane temporal response to be determined as a
function of distance xr from the focal point. It is emphasized
that this equation assumes that Huygens’ Principle in (1)
is accurate at all temporal frequencies and yet this is only
a valid assumption for spectral components of the source
signal that have corresponding wavelengths that are at least
an order of magnitude smaller than the diameter D and the
path lengths in Fig.1. QMC-based analysis typically makes
the same assumptions about the wavelength of the chromatic
signal [2], [3].

It is noted that the derivative term in (7) implies that the
temporal average of rfp (xr , ct) is zero.

V. SOME EXAMPLES OF RESPONSES TO DYNAMIC
FAR-FIELD SOURCES
A. EXAMPLE 1: FOCAL PLANE RESPONSE TO A FAST
GAUSSIAN TRANSIENT BURST IN THE FAR-FIELD
Consider the transient far-field Gaussian pulse
uFF (0, 0,R, ct) shown in Fig. 6(a) along with its temporal
derivative in Fig. 6(b), where both pulses have an effective
duration of approximately 4 nanoseconds.

The purpose of this example is to demonstrate the useful-
ness of hfp1 (xr, ct) for directly determining the focal plane
response of the IPR to short duration pulses of this type.
Considering again the SKA paraboloid withF = 6.75m,D =
15m, we evaluate (8), i.e., the temporal convolution between
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FIGURE 6. (a). Example 1: Far-field Gaussian impulse as the input signal. (b). Example 1: The derivative of the impulse signal. (c). Example 1:
hfp1

(
xr , ct

)
for xr = 0.05 m and xr = 0.2778 m. (d). Example 1: Focal plane responses rfp

(
xr , ct

)
for xr = 0.05 m and xr = 0.2778 m.

hfp1 (xr, ct) and the aperture signal shown in Fig. 6(b), for
the two values xr = 0.05m and 0.2278m. For these values
of xr , (8) yields the corresponding two focal plane responses
rfp (xr , ct) shown in Fig. 6(d) where the propagation delay
has been ignored by centering the responses about the time
origin. These responses are easily explained. For xr = 0.05m,
the location is sufficiently close to the focal point so that
the duration of uFF (0, 0,R, ct) is much larger than that of
hfp1 (0.05, ct) (shown as the blue curve in in Fig. 6(c)). This
results in a rfp (xr , ct) (shown as the blue curve in Fig. 6(d))
with a high amplitude and a shape which is close to that of
the received signal in the aperture.

At xr = 0.2778m, this relative increase in distance from
the focal point yields a function hfp1 (0.2778, ct) (shown as
the red curve in Fig. 6(c)) that is of significantly larger dura-
tion and lower amplitude than the received aperture signal.
This is causing the response rfp (0.2778, ct) (shown as the
red curve in Fig. 6(d)) to be attenuated and spatially smeared
by hfp1 (0.2778, ct) that it fails to significantly respond to the

received aperture signal and consequently consists in large
part of the transient behavior of the IPR.

B. EXAMPLE 2: A SWITCHED-ON AND SWITCHED-OFF
SINUSOIDAL FAR-FIELD EXCITATION AND THE
QMC-BASED STEADY-STATE AIRY DISC
Consider the IPR with the following parameters:
D = 15m,F = 6.75m, c = 3 × 108 m/s. Let the IPR
be excited by a far-field switched-on/switched-off sinusoidal
PW signal given by

eFF (x, ct) = eFF (0, 0,R, ct)

≡ (u (ct)− u (ct − cT)) sin
(
ω0,ctct

)
,

ω0,ct = ω0,t/c (9)

implying that the temporal frequency is given in Hz by f0,t =
ω0,t/2π and that the sinusoid is switched on at t = 0 and off
T seconds later. In this example we use f0,t = 4.41 GHz and
T = 0.908 nanoseconds.Neglecting the attenuation from the
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FIGURE 7. (a). Example 2: hfp1
(
xr , ct

)
for xr = 0.05 m and

xr = 0.2778 m. (b). Example 2: Focal plane responses rfp
(
xr , ct

)
for

xr = 0.05 m and xr = 0.2778 m.

far-field to the aperture plane, it follows from (8) and (9) that
the focal plane response is proportional to

rfp (xr, ct) =
[
hfp (xr, ct)

∗
d
dt

[
(u (ct)− u (ct − cT)) sin

(
ω0,ctct

)]]
(10)

and thus to

rfp (xr, ct) =
[
hfp (xr, ct)

∗
[
(u (ct)− u (ct − cT)) cos

(
ω0,ctct

)]]
C. ZERO-VALUED AIRY CIRCLE AT STEADY STATE,
xr = 0.2778m
For f0,t = 4.41 GHz and T → ∞ in equation (9), the resul-
tant classical QMC-based steady-state focal plane response

rfp (xr , ct) is almost exactly zero at xr = 0.2778 m. This
corresponds to a zero-valued circle on the Airy disc [3]. How-
ever, the complete dynamic response rfp (xr , ct) of equation
(10) for finite T is not zero because it includes the turn-on
and turn-off transients as shown in the red curve in Fig 7(b)
for T = 0.908 nanoseconds. The duration of these transients
is 0.3 nanoseconds, exactly the duration of the corresponding
hfp1 (xr , ct) as shown with the red curve in Fig. 7(a).

D. NON-ZERO-VALUED AIRY STEADY-STATE, xr = 0.05m
Consider now the same signal as in the previous case of
this example, but at a location that is much closer to the
focal point and is given by , xr = 0.05m. For this case
hfp1 (xr, ct) is given with the blue curve in Fig. 7(a) and
clearly, hfp1 (xr, ct) is of significantly shorter duration and
higher gain than in the previous case. Accordingly, the
transient response rfp (xr , ct) for xr = 0.05 given with
the blue curve in Fig. 7(b) is of shorter duration (about
0.05 nanoseconds) and the steady-state response is now
non-zero, as would be expected from the classic QMC
approach.
Remark: The proposed general dynamic theory describes

the complete response (transient and steady-state) and
thereby includes the quasi-monochromatic (QMC) steady-
state behavior of the ideal parabolic reflector as a special
case. The theoretical results of the proposed approach are
entirely consistent with both the theoretical and experimental
behavior of QMC steady state results and they yield the
classical Airy disc.

VI. CONCLUSION
New algebraic expressions for the focal plane response
hfp (xr , ct) of the IPR to a Dirac-PW in the aperture have been
derived from Huygens’s Principle,. These expressions reveal
that hfp (xr , ct) is characterized by a semi-elliptic dynamic
generation function (dgf) that yields a semi-elliptical focal
plane response to the Dirac-PW aperture excitation. The
shape and 2D spatio-temporal ROS of hfp (xr , ct) have been
derived and explained. The path length approximations used
are those widely employed for classical QMC-based Fourier
analysis. The second order approximation obtained by includ-
ing the additional term x2r /2F in the path difference approx-
imation, confirmed and quantified the observation in [4]
and [5] that the signal received on the Petzval paraboloid
corrects the corresponding aberration delay of the dynamic
focal plane response. These new results are algebraically
equivalent to those first published in [4], [5] for hfp1 (xr, ct)
but are far more algebraically simple.

Further, by temporally convolving the Dirac PW response
hfp (xr , ct)with the attenuated and delayed time-derivative of
the far-field source, the full dynamic focal plane response
to general on-axis far-field signals is obtained for photonic
signals. Two examples have been presented to illustrate this.

The above analysis is the frequency-time dual of clas-
sical QMC-based analysis, where the latter assumes Dirac
support in the frequency domain whereas we assume Dirac
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support in the time domain. The proposed general dynamic
theory describes the complete response (transient and steady-
state) and thereby includes the quasi-monochromatic (QMC)
steady-state behavior of the ideal parabolic reflector as a
special case.

APPENDIX A
REVIEW OF QMC-BASED FOURIER ANALYSIS FOR
DYNAMIC PW SIGNALS
In the general case, we are concerned with 4D spatio-
temporal signals of the form s (x, t), where the 3D spatial
variable is x = (x1, x2, x3) ∈ R3. Classical analysis of the
IPR typically employs Fourier frequency-domain methods
wherein all signals are assumed to be quasi-monochromatic
(QMC) and can therefore be written in the form, s (x, t) =
M (x, t) exp

(
jω̄xT

)
exp

(
jωt0 t

)
, ω̄ =

(
ωx1 , ωx2 , ωx3

)
where

ωt0 is the constant temporal frequency and ω̄ is the 3D
spatial frequency [1] [2] [3]. QMC-based analysis is, the
steady-state periodic spatio-temporal frequency response and
thereby does not directly reveal the dynamic (i.e., temporally
transient) behavior of the IPR.

Although the complex exponential term exp
(
jωt0 t

)
is

implied, it is conveniently factored out of the QMC-based
Fourier transfer function expressions [1] [2] [3], allowing
analysis to proceed by algebraic manipulations of spatial-
frequency signal functions of the form M (x) exp

(
jω̄xT

)
,

thereby characterizing the complete IPR system in terms of
the 3D distribution M (x) of spatial frequencies at the given
constant temporal QMC frequency.

For the general case of propagating non-QMC PW signals
sAP (ct) on the aperture, the following four analytical steps
are necessary for full dynamic analysis:

1) Obtain the 1D Fourier transform SAP (jωct) of sAP (ct).
2) Determine the 4D frequency-domain Fourier transfer

functionH
(
jωx1 , jωx2 , jωx3 , jωct

)
from aperture disc to

focal plane. This transfer function must be valid over
the relevant bandwidth of SAP (jωct) and simplifies to
a 2D transfer function H (jωr , jωct) for the on-axis IPR

case, where ωr =
√
ω2
x1 + ω

2
x2 .

3) Evaluate the 2D Fourier transform of the desired 2D
spatio-temporal signal on the focal plane as the product
Rfp (jωr , jωct) = SAP (jωct)H (jωr , jωct).

4) Nontrivially, determine the 2D inverse Fourier trans-
form rfp (xr , ct) = I−2

[
Rfp (jωr , jωct)

]
to yield the

desired focal-plane dynamic response rfp (xr , ct).

The above QMC-based process does not lend itself to
closed-form algebraic spatio-temporal solutions for dynamic
responses rfp (xr , ct), nor does it lead to explanations or
predictions of the dynamic behavior of the IPR. Dynamic
analysis is almost always carried out numerically. Clearly,
for the off-axis case, circular spatial symmetry is lost
and therefore the above 2D Fourier transforms become
3D Fourier transforms over the spatio-temporal domain
(x1, x2, ct).

APPENDIX B
THE FOCAL PLANE RESPONSE TO A DIRAC-PW
APERTURE SIGNAL BY HUYGENS’ INTEGRATION USING
EXACT AND APPROXIMATE PATH DIFFERENCES
B.1 THE EXACT SOLUTION FOR hfp

(
(x1, x2,0), ct

)
Employing Huygens’ principle to the elemental wavelets at
each point P in Fig. 1, the focal plane response to a Dirac-
PW in the aperture given by integration of the wavelets
received from each elemental area in the aperture. Using polar
coordinates (θ, ϕ) this yields the exact Huygens’ solution for
the focal plane response

hfp_exact (xr, ct)

=

∫ π/2

−π/2

∫ θMAX

−θMAX

cos (n̄, r̄1)
2πr1c

×r20δ (ct−1l (xr)) |sin θ | dθdϕθMAX ≤ π
/
2

where θMAX

= tan−1
(

8FD

16F2
− D2

)
and therefore F ≥ D/4 (B.1)

Evaluating this integral requires that the path lengths in the
integrand be determined in terms of (xr ,F,D, θ, ϕ, c). From
the geometry of Fig. 1, it can be shown that,

r0 = 2F/(1+ cos θ ) (B.2)

and

r1 = r0

√
1−

2xrsin θcosϕ
r0

+
x2r
r20

(B.3)

where

θ = sin−1 (r/r0) (B.4)

The exact path length difference from P to a point Q
(see Fig. 1) on the focal plane at distance xr from the focal
point is given by,

1l (xr) ≡ r1 − r0 = r0

(√
1−

2xrsin θcosϕ
r0

+
x2r
r20
− 1

)
(B.5)

Substituting (B.2) and (B.3) in (B.5) yields the exact path
difference

1l (xr)=
2F

1+cos θ


√√√√√1−

2xrsin θcosϕ(
2F

1+cos θ

) +
x2r(
2F

1+cos θ

)2−1


(B.6)

The following first order and second-order approximations
approximate the above square root in terms of its Taylor
series. It can be shown that the so-called obliquity term
in (B.1) is given by (B.7), as shown at the bottom of the next
page.

Substituting (B.6) and (B.7) in (B.1) yields the exact
Huygens’ expression hfp_exact (xr ,F,D, ct). However, the
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resulting integrand in (B.1) is far too complicated for alge-
braic integration and for understanding the dynamic behav-
ior of the IPR. We have therefore numerically evaluated
hfp_exact (xr ,F,D, ct) using a MATLAB program that allows
arbitrary temporal and spatial resolutions. For brevity, the
numerical algorithm and the MATLAB program are omitted
from this contribution although the results are used (in Fig. 4)
as a comparative benchmark for estimating the accuracy of
the first and second approximations hfp1. and hfp2.

B.2 THE FIRST ORDER AND SECOND ORDER
APPROXIMATIONS
We make the widely employed assumption [1] that the obliq-
uity term is approximated as follows.

cos (n̄, r1)
2πr1c

≈
r1
2πc

(B.8)

Following [4] [5] the well-known first order and the second
order expressions for IPR path differences [1] [2] employ the
first and second order terms of the Taylor Series expansion
of the square root in (B.5). Accordingly, the second-order
approximation assumes that∣∣∣∣∣xrsin θcosϕr0

+
x2r
2r20

∣∣∣∣∣� 1 and cos θ ≈ 1 (B.9)

yielding

1l (xr) ≈ −xrsin θcosϕ +
x2r
2F

(B.10)

The first-order approximation imposes the yet more stringent
assumption that

xr
4F

(1+ cos θ )� |sin θcosϕ| (B.11)

yielding

1l (xr) ≈ −xrsin θcosϕ (B.12)

APPENDIX C
DERIVATIONS OF FIRST-ORDER APPROXIMATION hfp1
AND SECOND-ORDER APPROXIMATION hfp2
Substituting (B.8) in (B.1) yields

hfp1 (xr, ct) =
∫ pi/2

−π/2

∫ θMAX

−θMAX

δ (ct + xrsin θcosϕ)

× |sin θ | dθdϕ (C.1)

C.1 DERIVATION OF hfp1
The inner integral of (C.1) cannot be performed directly over
θ . To proceed we follow [4] [5] [13] to yield the equivalent

relation

δ (ctCxrsin θcosϕ) =
δ
(
θ − sin−1

(
bmct
xrcosϕ

))
√
x2r cos2ϕ − (ct)

2
(C.2)

Substituting (C.2) into the inner integral of (C.1) yields the
equivalent inner integral∫ θMAX

−θMAX

|sin θ |
δ
(
θ − sin−1

(
−ct

xrcosϕ

))
√
x2r cos2ϕ − (ct)

2
dθ

=

 |ct|

xrcosϕ
√
x2r cos2ϕ−(ct)

2
u

×

(
θ −sin−1

(
−ct

xrcosϕ

))θMAX

−θMAX

=


|ct|

xrcosϕ
√
x2r cos2ϕ − (ct)

2
, |ct|<xrsin θcosϕ

0, otherwise
(C.3)

where u (.) is the unit step function. To proceed to the outer
integral (over ψ from −π to π ) we employ the indefinite
integral identity [14].∫

1

cos (ϕ)
√
acos2 (ϕ)− 1

dx

= tan−1
(

sin (ϕ)
a cos2 (ϕ)−1

)
+ C (C.4)

implying the corresponding definite integral relation∫ ϕ2

ϕ1

1

cos (ϕ)
√
a cos2(ϕ)− 1

dx

= tan−1
(

sin
(
ϕ2
)

a cos2
(
ϕ2
)
−1

)

− tan−1
(

sin
(
ϕ1
)

a cos2
(
ϕ1
)
− 1

)
(C.5)

Note that this identity is different and algebraically far sim-
pler than the identity in [5, 4] and thereby makes possible
new simplified closed form approximate solutions for the
focal plane response. Substituting a = (xr/ct)2 in (C.5) and
substituting the result into (C.1) yields, after considerable
algebraic manipulation,

hfp1 (xr, ct) =
1

xr

∫ cos−1(ct/xrsin θMAX )

−cos−1(ct/xrsin θMAX )

×
1

xrcosϕ
√
x2r cos2ϕ − (ct)2

dϕ (C.6)

r20
cos (n̄, r1)
2πr1c

=
2F2 (2Fsin θ tan(θ/2)+ 2Fcos θ − xrsin θcosϕ)

πc(1+ cos θ )
(
4F2
− 4Fxrsin θcosϕ(1+ cos θ )+ x2r (1+ cos θ )2

)√
1+ tan2(θ/2)

(B.7)
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Combining (C.6) and (C.5) yields, after further algebraic
manipulation and simplification,

hfp1 (xr, ct)

=



2

xr
tan−1

√1−
(

ct
xrsin θMAX

)2

tanθMAX

 ,
|ct| < xrsin θMAX

0,

otherwise

(C.7)

and using θMAX from B.1 leads to

hfp1 (xr, ct)

=



2

xr
tan−1

√1−
(

ct
xrsin θMAX

)2 8

16
(
F
D

)
−

(
D
F

)
 ,

|ct| < xrsin θMAX , F ≥ D/
4

0,

otherwise
(C.8)

The ROS and shape of hfp1 (xr , ct)are determined by the
Dynamic Generating Function given by:

9 (xr, t) =

√√√√(1− ( ct
xrsin (θmax)

)2
)

0 < 9 (xr, t) < 1 (C.9)

The more complicated expression in [4] [5] yields the same
ROS.

C.1 DERIVATION OF hfp2
Comparing (B.10) and (B.12), the second-order path differ-
ence approximation contains the additional term x2r /2F , rep-
resenting an additional time delay of x2r /2Fc. Consequently,
the above analysis for hfp1 leading to (C.7), can be repeated
but with this additional delay term to yield the simple relation
that

hfb2(xr, ct) ≈ hfp1

(
xr, ct −

x2r
2F

)
(C.10)
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