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ABSTRACT In this article, a new fault-tolerant control (FTC)method is presented for the Lipschitz nonlinear
systems that is capable of handling the actuator faults, sensor faults, unknown external disturbances,
and system uncertainties. An augmented system is first constructed by treating the sensor fault as an
auxiliary state. An adaptive fault estimation scheme with an H∞ performance criterion is then developed
to simultaneously estimate the actuator and sensor faults. To achieve the tracking control, a nonlinear sliding
mode-based state feedback control law is proposed depending on the estimated states and information about
fault from the fault estimating unit. The efficacy of the suggested technique is evaluated using a nonlinear
model of the multirotor unmanned aerial vehicle (UAV) system with six degrees-of-freedom (DoF) motion.
The proposed method is implemented in the inner loop subsystem in order to obtain the attitude and altitude
tracking while the outer-loop control is simply a PID controller. Several simulations on the nonlinear system
are performed to prove the effectiveness of the proposed method compared with the existing methods.

INDEX TERMS Actuator faults, affine nonlinear system, adaptive control, nonlinear adaptive sliding mode
controller, multirotor system.

I. INTRODUCTION
Many advancements in fault detection and diagnosis, as well
as fault-tolerant control (FTC), have been made in the pre-
vious decade, especially for safety-critical systems like air-
planes. The FTC strategies are designed to increase the sta-
bility and security of control systems in the face of faults and
failures. FTC methods for linear systems in [3] have been
well developed to ensure system safety. However, a majority
of systems in the real world are nonlinear, which requires
an erudite FTC structure to ensure consistency of the sys-
tem. Stringent control performance requirements compel the
researchers to explore dominant FTC for generic nonlinear
systems. The FTC strategy, in [4], developed an adaptive
neural FTC approach to nonlinear structures. FTC can ensure
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the flying performance of UAVs if there is an actuator or
sensor fault.

Sensor and actuator faults are the main cause of sys-
tems accidents. To identify the actuator and sensor faults,
the fault detection and isolation (FDI) methods have been
extensively adopted. For identified faults, the controller’s
structure can be modified to provide the system with the
best reaction or halt the system operation in case of an
emergency. Several FTC approaches dealing with the actu-
ator and sensor faults have been developed. For example,
a neural adaptive observer-based sensor and actuator fault
recognition control for an unmanned aerial vehicle (UAV)
in [5], where parameters are restructured using the extended
Kalman filter. A virtual actuator and sensor FTC of the LPV
system is discussed in [6] for a two-tank system. In [7],
a Polynomial Fuzzy Unknown Input Observer (PFUIO) is
proposed to estimate sensor and actuator faults to get the
desired performance and avoid system instability. An active
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FTC technique for wind turbine systemswith sensor and actu-
ator faults is discussed in [8] using robust dynamic inversion
observer and control allocation. Sliding mode control (SMC)
has been employed in a range of nonlinear systems, and it is a
promising option for coping with actuator failures and model
uncertainties. [9], [10].

With the increase in UAV’s practical applications, the main
concern is maneuvering control due to complex weather
conditions as UAVs fly near the earth. The UAVs FDI and
FTC have gained more attention from researchers due to
their critical role in the safety and reliability of the dynamic
system in the last decade. A hybrid control formation for the
quadrotor control is presented in [11] by combining the PID
and integral slidingmode control (ISMC). The authors in [12]
used an unknown input observer (UIO) design to handle the
FDI ambiguity. Robust H∞ observer design is introduced
by [13], whose practical convergence is verified employing
the Euler approximate discrete-time model. Quadrotor, how-
ever, cannot tolerate the complete loss of a single actuator as
it lacks control redundancy. The goal of the FTC approach
for multi-copters with more than four rotors is to preserve
a normal and steady flying path. Additionally, provides a
complete operational power even under the complete failure
condition of one or more rotors. The authors in [14] created
a state feedback control system based on linear-quadratic-
regular (LQR) to assure stable flight. Ref. [15] proposed a
full fault recognition, analysis, and system retrieval strategy
for a coaxial octorotor. In [16], a coaxial octorotor helicopter
controller is developed using a radial base function neural
network and a fuzzy logic control technique. In [17], a PID
controller is designed for UAV system elevation and vectored
thrust, and then a Linear Quadratic controller is developed for
UAV aircraft model predictive control. In earlier work [18],
an SMC law with an adaptive gain is constructed for a
multi-rotor platform that can manage actuator failures. The
adaptive approach is used with the SMC law to ensure that
the system is resistant to unexpected failures. An octorotor
Lipschitz nonlinear model in [19] is developed, and a fault
diagnostic technique for the octorotor with actuator faults was
created using an ISMC.

Though a significant amount of studies have been done on
FTC for UAVs with actuator issues, very few studies have
dealt with sensor errors. Attempts have been made to solve
the sensor error problem by transforming the sensor faults
into actuator faults, such as [20], [21]. A quadrotor Lipschitz
nonlinear model is characterized in [22], and a fault diag-
nostic technique with actuator and sensor faults was created
using Thau’s observer. Ref. [23] looked at a defect diagnosis
challenge for UAV with numerous sensor problems. In sev-
eral papers, time-varying observers are utilized in diagnosing
sensor errors in UAVs. A robust fault detection approach
for UAVs featuring sensor problems was presented in [24].
A Reduced-order time-varying observer was used to solve the
fault diagnostic equivalence for UAVs sensor failures [25].
In reality, a little comprehensive study of the FTC issue for
octorotor having sensor failures has been conducted.

Lipschitz nonlinear systems have sparked academics’
interest as a special class of nonlinear systems in recent
years [26]–[29]. In practice, the global or local Lipschitz
characterizes a wide range of physical systems. Therefore,
this study considered a general Lipschitz nonlinear system
in designing an FTC law. The objective is to maintain the
system stability while tolerating the effect of actuator and
sensor faults. Initially, an auxiliary structure is created by
treating the sensor fault as an auxiliary state. Later, an adap-
tive fault estimation scheme integrated with the H∞ perfor-
mance criterion is designed to estimate system faults. The
key feature of the proposed fault estimation method is to
detect the actuator and sensor faults simultaneously, despite
the uncertainty/disturbance effect on the system dynamics.
The proposed FTC law is composed of three components.
The first one is the state feedback control law to stabilize the
system nominally. The second component is FTC law to mit-
igate the fault effect. The third component is nonlinear ISMC
law to recompense the consequence of uncertainty due to
estimation error, model unknown dynamics, and disturbance.
Finally, the theoretical findings are verified using a multirotor
UAV model to show that the proposed FTC technique is
successful. Compared to the existing literature [10], [15],
[18], [33], [34], the main contribution and the benefits of the
proposed approach are as follows
• This work proposed a method for Lipschitz nonlin-
ear system that can tolerate the actuator and sen-
sor faults at the same time, whereas the previous
work [10], and [18], [19] can only deal with the actuators
faults.

• The combination of integral SMC law and adaptive
law with baseline controller provides not only the
tolerance against the faults/failure but also contributes
additional robustness against the unknown/unmodeled
system dynamics and chattering reduction.

• In the existing work [18], the controller is designed
without fault information available to the controller.
However, in this work, the estimated fault (sensor and
actuator) information is fed to the control input, and
estimation error is coped up using nonlinear adaptive
SMC law.

• The effectiveness of the proposed scheme is validated
using nonlinear simulations on the 6-DOF model of
multirotor UAV system with dual rotor redundancy. The
comparison with the existing results [18], [34] shows
that the proposed scheme is more effective in coping
with both actuator and sensor faults while preserving
nominal path tracking.

II. FORMULATION OF PROBLEM
Consider a Lipschitz nonlinear system that is affected by the
actuator and sensor faults, described as

ẋp(t) = Apxp(t)+ Bpup(t)+ Epfa(t)+ fp(xp, t)

+Mpζp(t)

yp(t) = Cpx(t)+ Nsfs(t) (1)
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where, yp(t) ∈ Rp, up(t) ∈ Rm, xp(t) ∈ Rn, fs(t) ∈ Rs,
fa(t) ∈ Rr and ζp(t) ∈ Rq represent the output vector,
input vector, state vector, sensor faults, actuator faults and
disturbance input vector respectively. The function fp(t) ∈
Rn, represents the Lipschitz nonlineartiy and m ≥ p. In (1),
Ap ∈ Rn×n,Bp ∈ Rn×m,Cp ∈ Rp×n,Mp ∈ Rn×q, Ep ∈ Rn×r

and Ns ∈ Rp×s represent all the constant matrices in the
system. The following assumptions are established before the
rest of the analysis.
Assumption 1 [35]: The nonlinear function fp(xp, t) is

assumed to fulfill the Lipschitz condition with respect of xp(t)
for all t ≥ 0 that is ‖fp(xp1 , t)− fp(xp2 , t)‖ ≤ γp‖xp1 − xp2‖,
where γp is the known positive Lipschitz constant.
Assumption 2 [36]: The pair (Ap,Bp) is controllable and

(Ap,Cp) is detectable.
Assumption 3 [37]: The actuator fault, sensor fault, and

disturbance are all considered to be confined in the following
way

‖ζp(t)‖ < ζ̄p, ‖fs(t)‖ ≤ f̄s, ‖ḟs(t)‖ ≤ f̄s1
‖fa(t)‖ ≤ f̄a, and ‖ḟa(t)‖ ≤ f̄a1 (2)

Lemma 1 [30]: The following inequality holds for a scalar
µ and a positive definite matrix P > 0

2xT y ≤
1
µ
xTPx + µyTP−1y x, y ∈ Rn (3)

A filtered version of sensor faulty signal yp(t) is defined as

ω̇p(t) = −Af ωp(t)+ Af yp(t)

= −Af ωp(t)+ Af Cpxp(t)+ Af Nsfs(t) (4)

where, Af ∈ Rp×p is a stable filter matrix and ωp(t) ∈ Rp.
Next define an augmented system of order n + p that is
obtained by combining Lipschitz nonlinear system (1) and
filtered version (4) as[
ẋp(t)
ω̇p(t)

]
︸ ︷︷ ︸

x(t)

=

[
Ap 0
Af Cp −Af

]
︸ ︷︷ ︸

A

[
xp(t)
ωp(t)

]
︸ ︷︷ ︸

x(t)

+

[
Bp
0

]
︸ ︷︷ ︸
B

up(t)

+

[
Ep 0
0 Af Ns

]
︸ ︷︷ ︸

E

[
fa(t)
fs(t)

]
︸ ︷︷ ︸
ff (t)

+

[
fp(x, t)

0

]
︸ ︷︷ ︸

f (x,t)

+

[
Mp
0

]
︸ ︷︷ ︸
M

ζp(t)

(5)

The augmented system (5) can generally be written as

ẋ(t) = Ax(t)+ Bup(t)+ Eff (t)+ f (x, t)+Mζp(t)

y(t) = Cx(t) (6)

where f (x, t) ∈ Rn+p represent the Lipschitz nonlinear
function of augmented system, x(t) ∈ Rn+p is a new state
vector, y(t) ∈ Rp+p denotes the new output vector, ff (t) ∈
Rr+s shows the sensor and actuator fault, A ∈ R(n+p)×(n+p),
B ∈ R(n+p)×m, C ∈ R(p+p)×(n+p), E ∈ R(n+p)×(r+s) and
M ∈ R(n+p)×q shows the matrices of augmented system.
Assumption 4 [37]: The augmented fault signal ff (t) and

the rate are also assumed to be bounded, i.e. ‖ff (t)‖ ≤ f̄f and
ḟf (t) ≤ f̄f1 .

III. FAULT TOLERANT CONTROLLER DESIGN
This section developed FTC strategy for the Lipschitz non-
linear system (1) that can compensate for the actuator fault
and sensor fault while maintaining the system response to the
desired path. First, an adaptive observer is created to estimate
sensor failures, and actuator faults. Then, an ISMC law is
developed that utilizes fault data to reconfigure nominal law
such that the closed-loop system stability is ensured. The
control architecture of the proposed FTC law is provided
in Figure 1.

A. ADAPTIVE OBSERVER-BASED FAULT ESTIMATION
SCHEME
For the augmented nonlinear system (5), the structure of
adaptive observer is defined as

˙̂x(t) = Ax̂(t)+ Bup(t)+ f (x̂, t)+ GLey(t)+ Ef̂f (t)
˙̂y(t) = Cx̂(t) (7)

where x̂(t) and ŷ(t) represent the estimated state and output
vectors, f (x̂, t) denotes the Lipschitz nonlinear function with
respect to estimated states x̂(t), GL ∈ R(n×p)×(p+p) is the
observer gain, e(t) = x(t)− x̂(t) defines the state estimation
error and f̂f (t) constitutes of estimation of fault. Next, taking
error function e(t) time derivative and substitute (1) and (7)
which yields

ė(t) = (A− GLC)e(t)+ Eef (t)+ f (x, t)− f (x̂, t)

+Mζp(t) (8)

where ef (t) = ff (t)− f̂f (t).
Theorem 1: Under the assumptions 1-4, if we apply the

state observer (7) to the system (6) and there exists a constant
εp > 0, and symmetric positive definite matrix P1 = PT1 > 0,
the matrices Y1 ∈ R and G1 > 0 such that the following
conditions hold

Acl ∗ P1M P1
∗ G1 + I ∗ ∗

∗ ∗ −ε̄pI ∗

∗ ∗ ∗ −γ̄pI

 < 0 (9)

ETP1 = R1C (10)

where Acl = ATP1 − CTY T + P1A − Y1C + CTC + Ip,
R1 ∈ R(r+s)×(p+p), ε̄p = ε2p , γ̄p = γ 2

p , and ηp = f̄ 2f1
λmax(0−1G

−1
1 0−1), then the fault estimation algorithm f̂f (t)

˙̂ff (t) = 0R1ey(t) (11)

can guarantee e(t) and ef (t) as uniformly ultimately bounded,
where ey(t) = C(x(t) − x̂(t)) and 0 ∈ R(r+s)×(r+s) is
symmetric positive definite matrix defined as learning rate.
Proof: Consider the Lyapunov function

V (t) = eT (t)P1e(t)+ eTf (t)0
−1ef (t) (12)

The time derivative of Lyapunov function (12) after substitut-
ing the dynamics of error system (8) gives

V̇1(t) = ėT (t)P1e(t)+ eTP1ė(t)+ 2eTf (t)0
−1ėf (t)
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FIGURE 1. Architecture of FTC strategy.

= eT (t)[(A− GLC)TP1 + P1(A− GLC)]e(t)

+2eT (t)P1Eef (t)+ 2eT (t)(f (x, t)− f (x̂, t))

+2eT (t)P1Mζp(t)+ 2eT (t)0−1ėf (t) (13)

Next, substituting the adaptive law (11) into (13), we get

V̇1(t) = eT (t)[(A− GLC)TP1 + P1(A− GLC)]e(t)

+2eT (t)P1Eef (t)+ 2eT (t)P1(f (x, t)− f (x̂, t))

+2eT (t)P1Mζp(t)+ 2eTf (t)0
−1 ḟf (t)

−2eTf (t)0
−10R1ey(t) (14)

It follows from Eq(10)

2eTP1Eef (t)− 2eTf (t)R1Ce(t) = 0 (15)

Using the assumption 1, we have

2eT (t)P1(f (x, t)− f (x̂, t)) ≤ γ 2
p e

T (t)PT1 P1e(t)+ e
T (t)e(t)

(16)

Based on the Lemma 1 and assumption 4, it can be deduced
as

2eTf (t)0
−1 ḟf (t) ≤ eTf (t)G1ef (t)+ ḟ Tf (t)(0−1G−11 0−1)ḟ (t)

≤ eTf (t)G1ef (t)+ f̄ 2f1λmax(0
−1G−11 0−1)︸ ︷︷ ︸
ηe

(17)

Next substituting (15-17) into (14), we get

V̇1(t) ≤ eT (t)[(A− GLC)TP1 + P1(A− GLC)]e(t)

+γ 2
p e

T (t)PT1 P1e(t)+ e
T (t)e(t)+ 2eTP1Mζp(t)

+eTf (t)G1ef (t)+ ηe + eTf (t)ef (t) (18)

To induce the robustness against the external disturbance, the
H∞ tracking index is selected as

J =
∫
∞

0
eTy (t)ey(t)− ε

2
1ζ

T
p (t)ζp(t)dt (19)

for initial condition V (0) = 0,V (∞) > 0, we obtain

J =
∫
∞

0
[eTy (t)ey(t)− ε

2
1ζ

T
p (t)ζp(t)

+V̇1(t)]dt + V (0)− V (∞)

≤

∫
∞

0
eT (t)CTCe(t)− ε21ζ

T
p (t)ζp(t)+ V̇1(t)dt (20)

The term inside the integral in (20) is defined as

N = eT (t)CTCe(t)− ε21ζ
T
p (t)ζp(t)+ e

T (t)[(A− GLC)P1

+P1(A− GLC)+ γ 2
p P

T
1 P1 + I ]+ e

T
f (t)G1ef (t)

+2eT (t)P1Mζp(t)+ ηe + ef (t)ef (t)

=

 e(t)
ef (t)
ζp(t)

T
︸ ︷︷ ︸

γ Tf (t)

Acl 0 P1M
0 G1 + I 0
0 0 −ε21 I


︸ ︷︷ ︸

4

 e(t)
ef (t)
ζp(t)


︸ ︷︷ ︸
γf (t)

+ηe (21)

where Acl = (A − GLC)TP1 + P1(A − GLC) + γ 2
p P1P1 +

CTC + I . Finally (21) is obtained as

N = γ Tf (t)4γf (t)+ ηe (22)

When4 < 0 we can obtain V̇1(t) < −εo‖γf ‖2+ηe, where
εo = λmax(−4). As a consequence, V̇1(t) < 0 for εo‖γf ‖2 >
ηe that is to say (e(t), ef (t)) coheres to a finite set accordingly
to Lyapunov stability theorem. As a result, the fault and
state estimation errors (e(t), ef (t)) are uniformly bounded.
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This ends the proof. Next it is not possible to solve (9)
and (10) simultaneously, therefore eq(10) is transformed into
LMI defined as [38].

Minimize η subject to the following∣∣∣∣ ηI ETP1 − R1C
(ETP1 − R1C)T ηI

∣∣∣∣ > 0 (23)

B. DEVELOPMENT OF FTC LAW
The estimated states and fault information from the fault
estimation unit, proposed in the last subsection, are utilized
to design FTC law for nonlinear system (1). The control law
for the nonlinear system (1) is defined as

up(t) = upl (t)+ upc (t)+ upn (t) (24)

where upl (t) = −Fpxp(t) is the linear control law and Fp ∈
Rm×n denotes the gain in feedback path. The gain is selected
by adopting the LMI synthesis procedure in order to make the
dynamics of CLS

ẋp(t) = (Ap − BpFp)xp(t)+ fp(x, t) (25)

stable, where upc (t) = −Ep f̂a(t) is the fault compensator
term and upn (t) is the nonlinear ISMC law that provide the
robustness to the closed-loop system.
Proposition 1: For the nominal system (no external distur-

bance ζp(t) = 0) with the feedback control law upl (t). The
origin is exponential stable if there exist a constant λ > 0,
a matrix W2 ∈ Rm×n, and a symmetric positive definite
matrix Q2 ∈ Rn×n such thatApQ2 + Q2Ap −W T

2 B
T
p

−BW2 +
1
λp
In Q2

Q2 −
1

γpλp
In

 < 0 (26)

where the feedback gain Fp is obtained from Fp = W2Q
−1
2 .

Proof: Choosing a Lyapunov function defined as

Vp(t) = xTp (t)P2xp(t) (27)

where P2 ∈ Rn×n is positive definite matrices. The derivative
of Lyapunov function (27) after substituting (25) is written as

V̇p(t) = xTp
[
(Ap − BpFp)TP2 + P(Ap − BpFp)

]
xp(t)

+2fp(xp, t)P2xp(t) (28)

Finally using the Lemma 1, the above equation can be written
as

V̇p(t) ≤ xTp (t)
[
(Ap − BpFp)TP2 + P2(Ap − BpFp)

]
xp(t)

+γ 2
p λpIn +

1
λp
PT2 P2 (29)

The negative definiteness of Lyapunov function V̇p(t) implies

(Ap − BpFp)TP2 + P2(Ap − BpFp)+ γ 2
p λpP

T
2 P2

+λ−1p In < 0 (30)

If we substitute Qp = P−12 , W2 = FpQ2 and apply the Schur
complement, the inequality (30) is equivalent to (26). This
complete the proof.

In the control law (24), the term upn (t) is designed using
ISMC technique and is as follows

un(t) = −ρ(t, x̂p)
δp(t)
‖δp(t)‖

(31)

where the switching function δp(t) is defined as

δp(t) = Gpx̂p(t)− Gpxp(0)− Gp

∫ t

0

(
Apx̂p(τ )

+Bpupl (τ )+ f (x̂, t)+Mpζp(t)
)
dt (32)

where Gp ∈ Rm×n is the design freedom matrix selected as

Gp = (BTp Bp)
−1BTp (33)

In (31), ρ(t, x̂p(t)) varies according to the following adaptive
law

ρ(t, x̂p) = ‖Fp‖‖x̂p(t)‖ρ̄(t, x̂p)+ ηs
˙̄ρ(t, x̂p) = ‖Fp‖‖x̂p(t)‖‖δp(t)‖ (34)

where ρ̄(t, x̂p(t)) denotes the positive adaption gain, ηs is the
positive define scalar and x̂p(t) denotes the estimated state
error for system (1) defined as

˙̂xp(t) = Apx̂p(t)+ Ep f̃a(t)+ fp(x̂p, t)+ GLpeyp (t) (35)

where GLp ∈ Rn×p, and eyp (t) = Cp(xp(t)− x̂p(t)).
Proposition 2: The control law (24) along with the sliding

mode component defined in (31) will maintain the sliding
onto the sliding surface {Sp = x̂p(t) ∈ Rn

: δp(t) = 0},
if the adaption gain ρ(t, x̂p(t)) is selected according to (34)
and maximum gain ρ∗ is chosen as (see appendix A)

ρ∗ ≥
‖GpEp f̂a(t)‖+‖GLpeyp (t)‖−‖Ep f̂a(t)‖−‖GpMpζp(t)‖

‖Fp‖‖x̂p(t)‖
(36)

Proof: First, we calculate the switching function (32)
derivatives as

δ̇p(t) = Gp ˙̂xp(t)− GpApx̂p(t)− GpBpupl (t)− GpMpζp(t)

(37)

Next, substituting ˙̂xp(t) from (35), we will get,

δ̇p(t) = GpBpup(t)+ GpEp f̂a(t)+ GpGlpeyp (t)

+GpBpFpupl (t)− GpMpζp(t) (38)

Using Gp defined in (33), we can evaluate GpBp = I . Insert
the design freedommatrix gain defined in (33) and the control
law given in (24) into (38) we get,

δ̇p(t)

= uc(t)+ un(t)+ GpEp f̂a(t)+ GpGlpeyp (t)− GpMpζp(t)

= −Ep f̂a(t)− ρ(t, x̂p)
δp(t)
‖δp(t)‖

+ GpEp f̂a(t)+ GpGlpeyp (t)

−GpMpζp(t) (39)

Defining a Lyapunov function as

V2(t) =
1
2
δTp (t)δp(t)+

1
2
ρe(t, x̂p)2 (40)

630 VOLUME 10, 2022



M. A. Ashraf et al.: Robust Sensor and Actuator Fault Tolerant Control Scheme for Nonlinear System

FIGURE 2. Octorotor configuration.

where ρe(t, x̂p) = ρ̄(t, x̂p) − ρ∗ denotes the adaptive gain
error and ρ∗ denotes the bound on the modulation gain. Next
substituting switching function derivative (39) and adaptive
law (34) into the derivative of Lyapunov function (40), we get

V̇2(t)

= δTp (t)δ̇p(t)+ ρe(t, x̂p)ρ̇e(t, x̂p)

= δTp (t)
(
GpEp f̂a(t)− Ep f̂a(t)−ρ(t, x̂p)

δp(t)
‖δp(t)‖

+ GpGlp

×eyp (t)−GpMpζp(t)
)
+(ρ̄(t, x̂p)−ρ∗)‖Fp‖‖x̂p(t)‖‖δp(t)

≤ ‖δTp (t)‖
(
‖GpEp f̂a(t)‖ − ‖Ep f̂a(t)‖ − ρ∗‖Fp‖‖x̂p(t)‖

−ηs + ‖GpGlpeyp (t)‖ − ‖GpMpζp(t)‖
)

(41)

Next if we choose the bound on the modulation gain (36), the
Lyapunov function (41) is finally obtained as

V̇2 ≤ −ηs‖δp(t)‖2 (42)

The proof is valid since it is equal to the ηs reachability
criteria.
Remark: The discontinuity in SMC law in (31) may cause

chattering in practical implementations. To avoid such situa-
tion, we utilized the sigmoidal approximation of the discon-
tinuous function that replaced the unit vector term in (31) by

sign(δp(t)) =
δp(t)

‖δp(t)‖ + ρp
(43)

where ρp is chosen to be small scalar.

IV. APPLICATION TO MULTIROTOR UAV SYSTEM
The efficiency of the projected method is authenticated on
the nonlinear model of the multirotor system. As depicted
in Fig. 2, a star-shaped multirotor serves as a test platform
to endorse the presented theoretical results in the previous
section. Eight rotors formation is spaced equally at 45◦.
Some suitable assumptions for creating the multirotor model
are adopted from [31] for ensuing control design. The drag
and thrust coefficients are constants while hub forces and
rolling moments are assumed negligible. The multirotor, like

the inertia matrix, is symmetric. The nonlinear model of a
multirotor system is presented in [14] as,Ẍx

Ẍy

Ẍz

 =
 bx 1

mτz

by 1
mτz

bz 1mτz−g


ẌφẌθ
Ẍψ

 =
c1XqXr − c2Xq�d + c3τφ
c4XpXr − c5Xp�d + c6τθ

c7XpXq + c8τψ

 (44)

where the terms

bx = SφSψ + CφSθCψ ,

by = −SφCψ + SψSθCφ
bz = CθCφ

and

c1 =
Iyy − Izz
Ixx

, c2 =
Jr
Ixx
, c3 =

1
Ixx
, c4 =

Izz − Ixx
Iyy

,

c5 =
Jr
Iyy
, c6 =

1
Iyy
, c7 =

Ixx − Iyy
Izz

, c8 =
1
Izz

The parameter descriptions are provided in Table 1. The
model parameters are listed in Table 2. Furthermore, the
residual propeller speed of unbalanced rotors is represented
as [32].

�d = −�d1 −�d2 −�d5 −�d6+�d3+�d4+�d7+�d8

(45)

The nonlinear model (44) may be expressed in the following
affine nonlinear form:

ẋp(t) = f (xp)+ g(xp)Uτ (t) (46)

where

xp = [Xx Xy Xz Xφ Xθ Xψ Ẋx Ẋy Ẋz Xp Xq Xr ]T (47)

and

Uτ =


τz
τφ
τθ
τψ

 =

Total thrust
Roll torque
Pitch torque
Yaw torque

 (48)
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TABLE 1. Definition of multirotor UAV system parameters.

TABLE 2. Parameter values.

Furthermore, the torque input Uτ is generated by varying
the individual rotor speeds and is specifically defined by the
following relationship

Uτ = B�u�d (49)

where u�d = [�2
d1
, �2

d2
, · · · , �2

d8
]T and

B� =


bo bo bo bo bo bo bo bo
0 0 −bohl −bohl 0 0 bohl bohl

bohl bohl 0 0 −bohl −bohl 0 0
−hd −hd hd hd −hd −hd hd hd


where bo and hd are the thrust and drag coefficients and
hl represents the distance between the center of mass and
rotor of multirotor UAV system. The multirotor nonlinear
model parameters specified in (44) are derived from [33]. The
dynamics of the multirotor UAV system are partitioned into
two control loops in order to govern both the translational and
attitude states [19]. Firstly, the inner loop, which is linked
with the quicker system dynamics of altitude and rotating
motion states, i.e.,

xp =
[
Xz Xφ Xθ Xψ Ẋz Xp Xq Xr

]T
(50)

The second is the outer loop, i.e.

xout =
[
Xx Xy Ẋx Ẋy

]T
(51)

The inner-loop structure is over-actuated, which can be seen
in the nonlinear model (44).

V. SETTLING OF CONTROLLER PARAMETERS AND
NONLINEAR SIMULATIONS
A. SETTLING OF CONTROLLER PARAMETERS
The efficacy of the proposed fault estimation and
fault-tolerant control structure is verified via nonlinear sim-
ulations on octorotor UAV system. Based on the previous

research [19], the nonlinear model of multirotor UAV can be
expressed in Lipschitz nonlinear form defined as

ẋp(t) = Apxp(t)+ Bpup(t)+ Epfa(t)+ fp(xp, t)+Mpζp(t)

y(t) = Cpx(t)+ Nsfs(t) (52)

where

Ap =
[
0 I4
0 0

]
, Bp =

[
04×4
Bτ

]
B�, Cp = I8

Bτ =


1 0 0 0
0 1/Ixx 0 0
0 0 1/Iyy 0
0 0 0 1/Izz

 , Ep =
[
04×4
Bτ

]

fp(xp, up, t) =


04×4

1
m (bz − 1)τz

c1qr
c4pr
c7pq

 , Ns =
[
04×4
I4

]

Mp =
[
04×1 c2q c5r 0

]T
,

up(t) = col(uz, τφ, τθ , τψ ),

uz = τz/m− g

and ζp(t) = �d . The LMI’s given in (9), (23), and (26) are
solved using the CVX toolbox inMATLAB and the controller
and observer gains are computed as (53) and (54), shown at
the bottom of the next page.

The actuator fault signal is considered as fa(t) = wpi (t)ui(t)
where wpi (t) is the magnitude of the actuator fault with
range 0 < wpi (t) < 1, i = 1, .., 4, and upi (t) denotes
the torque input to the system. In this paper, two types of
sensor faults are taken into account; one is bias fault and other
is sinewave sensor fault. The sensor fault signal is defined
as

fs(t) =

{
0 if t ≤ 5
aosin(2π ft) otherwise

(55)

where, ao denotes the magnitude of sensor fault and f shows
the frequency. Here we choose ao = 0.5 and f = 0.5rad/s.
The selection of amplitude and frequency are based on the
operating frequency of the system. In this paper, an outer
loop control is achieved using a PID controller design that
generates the required pitch and roll tracking path to the
multirotor inner loop subsystem. The value of PID gains is
obtained from [31].

B. NONLINEAR SIMULATIONS
The simulations are carried out on the 6-DOF UAV system
under the influence of external disturbance, sensor fault,
and actuator faults. In this regard, three situations are mea-
sured to test the presentedmethod performance. Furthermore,
to demonstrate the efficiency of the newmethod, comparative
simulations are performed with the existing methods given
in [18] and [34].

In the existing FTC method (FTC-I) [18], an adaptive
SMC strategy is designed to deal with the actuator faults in
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the octorotor UAV system. The adaptive gain is utilized to
cope with actuator faults without acquiring the fault infor-
mation. As a result, it can only manage a limited num-
ber of actuator faults and failures. However, the sensor
faults can not be addressed by the proposed scheme. In the
existing FTC scheme (FTC-II) [34], a sensor and actuator
FTC scheme is proposed that first designed an observer
to estimate the fault information. Based on the estimated
information, an H∞ observer-based FTC is designed to han-
dle the actuator faults. To compare the performance with
the proposed scheme, this scheme is applied to multirotor
UAV system.

1) FAULT-FREE CONDITION
In this condition, three distinct commanded reference trajec-
tories are applied to the translational axes states (x, y, and z)
where the system is operating under the fault-free situation.
The outer loop delivers the anticipated roll, pitch, and yaw
commands. The tracking results are provided in Figure 3,
which clearly shows the precise reference tracking of the
proposed scheme during the nominal condition. However,
the results of existing methods [18], [34] are comparable
with the proposed method. The control input torques plots

are provided in Figure. 4a. The sliding action is still intact,
as seen by the switching function in Figure. 4b.

2) ACTUATOR FAULT
In this subsection, the performance of the proposed FTC
method is analyzed under faulty conditions, while introduc-
ing actuator fault to the nonlinear system. Here, we consid-
ered wp1 = 0.8,wpj = 0, and j = 2, 3, 4. The plots of
the octorotor attitude and translational axes states are pre-
sented in Figure 5. In the instance of the suggested technique,
the UAV system remained following the planned trajectory
despite the loss-of-effectiveness (LOE) of one control input.
Whereas, in the case of existing schemes [18], [34], the track-
ing response has slightly deteriorated from nominal set-point
tracking while attaining the desired attitude states. Figure 6a
depicts the plot of input torque. Despite LOE the τz, and upc (t)
provided an extra control input according to the estimated
fault data. The switching function and estimated value of fault
are plotted in Figure 6b. The fault estimation unit passes the
estimated information to the control input and the estimation
plot is provided in Figure 6b. The ISMC provides strength
counter to the disorder and uncertainties in the system that
occurred due to nonlinear dynamics and fault estimation
error.

Fp =



2.5767 −4.4457 −4.5627 −5.2705 1.0274 −0.3841 −0.4356 −0.5637
1.3314 −3.1666 3.2284 −2.6352 0.5188 −0.3404 0.3665 −0.2818
2.3098 1.0256 0.9139 −1.0541 1.0065 0.1382 0.0873 −0.1127
1.1463 0.7016 −0.6450 −0.5270 0.5022 0.0988 −0.0732 −0.0564
2.5767 −4.4457 −4.5627 5.2705 1.0274 −0.3841 −0.4356 0.5637
1.3314 −3.1666 3.2284 2.6352 0.5188 −0.3404 0.3665 0.2818
2.3098 1.0256 0.9139 1.0541 1.0065 0.1382 0.0873 0.1127
1.1463 0.7016 −0.6450 0.5270 0.5022 0.0988 −0.0732 0.0564


(53)

GL =



2.2033 0.0000 0.0000 0.0000
−0.0000 2.2033 0.0000 0.0000
−0.0000 −0.0000 2.2033 0.0000
−0.0000 −0.0000 −0.0000 2.2033
1.3523 −0.0000 −0.0000 −0.0000
−0.0000 1.3523 −0.0000 −0.0000
−0.0000 −0.0000 1.3523 −0.0000
−0.0000 −0.0000 −0.0000 1.3523
1.1059 0.0000 0.0000 0.0000
−0.0000 1.1059 0.0000 0.0000
−0.0000 −0.0000 1.1059 0.0000
−0.0000 −0.0000 −0.0000 1.1059



F2 =



−0.4601 0.0000 0.0000 0.0000
0.0000 −39.8775 0.0000 0.0000
0.0000 0.0000 −39.8775 0.0000
0.0000 0.0000 0.0000 −230.0625
2.1322 −0.0000 −0.0000 −0.0000
−0.0000 2.1322 −0.0000 −0.0000
−0.0000 −0.0000 2.1322 −0.0000
−0.0000 −0.0000 −0.0000 2.1322


(54)
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FIGURE 3. Set point tracking during fault-free condition (a) height, roll,
pitch and yaw and (b) x-y position.

FIGURE 4. Fault free condition: (a) control inputs plots (b) Sliding mode
switching function.

3) SIMULTANEOUS ACTUATOR AND SENSOR FAULT
The actuator and sensor faults are applied to the UAV system,
and tracking performance is evaluated under the effect of the
proposed FTC method in this scenario, as shown in Figure 7.

FIGURE 5. Set point tracking under actuator faults (a) height, roll, pitch
and yaw tracking and (b) x-y tracking.

FIGURE 6. Actuator fault condition (a) control input torques and
(b) switching function and actuator fault estimation.

The actuator faults are considered to have 80% LOE of
the control input associated with the roll angle rate τφ and
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FIGURE 7. Set point tracking under actuator and sensor faults (a) height,
roll, pitch and yaw tracking and (b) x-y tracking.

FIGURE 8. Actuator and sensor fault condition (a) control input torques
and (b) sensor and actuator fault estimation.

50% LOE in control input associated with pitch angular
rate τθ . A sensor fault input signal (55) of amplitude ao is

FIGURE 9. Actuator fault condition; adaptive gain and switching function.

applied to the altitude state, and a bias fault signal of ampli-
tude 0.25 is applied to the roll measurement. The tracking
performance results are provided in Figure 7. The existing
scheme given in [18] is not capable of handling the sensor
and actuator faults simultaneously, therefore, the nonlinear
simulations are only compared with the existing FTC-II given
in [34]. It can be verified that despite the sensor fault and
actuator failure, the suggested FTC method is able to follow
the desired reference. On the other hand, the existing FTC-II
scheme is not precisely following the desired reference input.
This demonstrates the effectiveness of the suggested sys-
tem when compared to other approaches in the literature.
In the case of the suggested technique, the coupling of SMC
law with the baseline state feedback controller gives better
resilience against faults, external disturbances, and model
uncertainty than utilizing simply H∞ based controllers. The
fault estimation plot, shown in Figure 8, provides a good
estimation of both the actuator and sensor fault input. It can
be seen in Figure. 9 that the adaptive law updates the gain to a
higher level when the sliding motion jumps out of the sliding
manifold. The switching function is plotted in Figure 9 which
shows that despite the actuator and sensor fault in the system,
the sliding motion is still closer to the setpoint value.

VI. CONCLUSION
In this paper, a fault estimation and fault-tolerant control
scheme is proposed for the class of Lipschitz nonlinear
uncertain system that is subjected to actuators fault, sensor
fault, external disturbance, and uncertainty. An adaptive fault
estimation scheme, integrated with H∞ performance criteria,
is first intended to simultaneously estimate the sensor and
actuator fault in the nonlinear system. A state feedback-
based sliding mode control law is then designed based on the
fault data to provide accurate tracking performance in both
nominal and faulty conditions. The nonlinear simulations on
the full six degrees of freedom model of the multirotor UAV
system are performed to validate the efficiency of the pro-
jected approach. The performance is evaluated by inducing
the fault signal both in the actuator and sensor inputs. Results
clearly show that the desired trajectory, even during the faulty
condition, remains closer to the nominal system. In future
work, the neuroadaptive fuzzy scheme and adaptive fuzzy
control scheme [39], [40] will be utilized to achieve tolerance
against the uncertain dynamics due to faults and external
disturbance. The actuator saturation will also be taken into
account in the controller design part.
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APPENDIX A
In order to create the bound on the adaptive gain ρ(t, x̂p),
define Lyapunov candidate function as

V3(t) =
1
2
δTp (t)δp(t) (56)

and the time-derivative, after substituting (39), is obtained as

V̇3(t) = δTp (t)(−Ep f̂a(t)− ρ(t, x̂p)
δp(t)
‖δp(t)‖

+ GpEp f̂a(t)

−GpMpζp(t)+ GpGLpeyp (t))

≤ −‖Ep f̂a(t)‖ − ρ(t, x̂p)+ ‖GpEp f̂a(t)‖

+‖GpMpζp(t)‖ + ‖GpGLpeyp (t)‖ (57)

Next in order to make the derivative of Lyapunov function
negative-definite (i.e. V̇3(t) < 0), we select ρ(t, x̂p(t)) as

ρ(t, x̂p(t)) ≥ ‖GpMpζp(t)‖ + ‖GpEp f̂a(t)‖

−‖Ep f̂a(t)‖ + ‖GpGLpeyp (t)‖ + ηs (58)

which satisfies the ηs-reachability condition

δp(t)δ̇p(t) ≤ −ηs‖δp(t)‖ (59)

Hence the finite-time convergence towards the sliding mani-
fold is attained.
The inequality (59) can also be interpreted from the Lyapunov
prospective. Define V3(t) as in (56), then V̇3(t) = δTp (t)δ̇p(t).
From the inequalities in (57-59), it follows

V̇3(t) ≤ −ηs‖δp(t)‖ = −ηs
√
2V3(t) (60)

Integration (60) on both sides we get√
2V3(t)−

√
2V3(0) ≤ −ηst (61)

which implies V3(t) is less than
ηs

2V3(0)
unit of time.
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