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ABSTRACT Background: The use of renewable energies is extended due to their valuable features such
as abundant and clarity. The microgrids that include the renewable energies are widely used in various
applications such as power supplying of remote areas, increasing the network reliability, reducing the
greenhouse gas emission, reducing the consumption demand, eliminating the consumption peaks, and
so on. But, energy management in the these systems in an challenging problem. Because, there are
some natural perturbations such as variation output load, grid-side faults and changes of irradiation and
temperature. Aim and Objective: The problem is to design a controller to regulate the output voltage/energy
under aforementioned disturbances. Methods: The paper presents a new approach for energy management
in Photovoltaic (PV)/Battery/Fuel Cells (FC) systems. The uncertainties are compensated by the new
optimization rules based on Immersion and Invariance (I&I) theorem and proposed deep learning type-2
fuzzy logic compensator (T2FLC). The objective function of T2FLC is to minimize the tracking error
in presence of perturbations. The adaptation rules are derived such that the I&I stabilization criterions
are satisfied. Both rules and fuzzy sets (FSs) of T2FLCs are optimized by guaranteed stability rules to
tackle the effect of perturbations and estimation errors. Results and Discussion: It is shown that a well
voltage/energy regulation performance is achieved under variation of temperature, suddenly changes of
load and variation of irradiation. A comparison with similar controllers demonstrates the superiority of the
suggested approach. Conclusion: The suggested regulator do not depend on the mathematical models, and
results in good accuracy under difficult conditions, then it can be used in various applications.

INDEX TERMS Energy management, immersion and invariance, deep learning, fuzzy systems, voltage
control, stability.

I. INTRODUCTION
The energy management in microgrids including renewable
energies has became one of the interesting topics in past
decade. The dynamics of the hybrid systems that contains
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PVs, FCs and batteries are always disturbed by nature factors
such as variation output load, grid-side faults and changes of
irradiation and temperature. The designing of strong control
systems to kept output voltage and power in a desired level is
one of the challenging problems [1]–[4].

Many control systems have been presented for power and
voltage regulation. For example, the power fluctuation is
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studied in [5], and a balancing controller is proposed. In [6],
a predictive controller is presented to cope with the effect of
variation of electricity tariff and irradiation. In [7], an energy
management technique is designed by battery charging con-
trol scheme to reduce the operating cost. In [8], the dynamics
of PV panels and batteries are modeled and then a control
system is suggested for stabilizing output voltage. In [9],
a multi-objective controller is developed to regulate output
voltage under nonlinear output load. The mode-triggered
droop controller is designed in [10] for energy management,
and its energy distribution capability is examined in various
conditions. In [11], a multifunctional controller is developed,
the problem of harmonics mitigation is investigated, and
improvement of the power quality is shown. In [12], a dis-
tributed control method is suggested for power regulation,
and robustness against time delays is studied. The coordi-
nated control scheme is developed in [13], to improve the
battery life.

To tackle the effect of perturbations and dynamic uncer-
tainties, some fuzzy and neural controllers have been devel-
oped [14]. For example, a fuzzy logic controller (FLC) is
introduced in [15], and the superiority of FLC is shown under
fluctuation of PV power. In [16], the fluctuation of the output
load is taken to account, and the efficiency improvement by
FLC is shown. In [17], a FLC is designed to make an energy
balance between PV and FC, and the parameters of FLC are
optimized by genetic algorithm. The energy management is
studied by cuckoo algorithm in [18], to compensate PV power
shortage in necessary times. In [19], a FLC is proposed to
handle the uncertain dynamics of PV and FCs, and by com-
parison with conventional controllers the good proficiency
of FLCs is demonstrated. The effect of fast load variation
is studied in [20] by designing an FLC, and it is shown that
energy consumption is decreased about 19.6%. In [19], the
dynamic perturbation by variation of temperature is studied
and an FLC is designed. The PV and FC dynamic modeling is
studied in [21], and a simple FLC is suggested for application
in electric vehicles. The optimization of hydrogen production
is investigated in [22] by FLC, and the superiority of FLCs in
term of less required expertise is discussed. Compassion of
various approaches in reviewed in [23].

Recently, the better capability of type-2 FLCs and deep
learning algorithms have been shown in various problems
such as internet of things [24], wireless sensor networks [25],
robotics [26], clustering problems [27], power systems [28],
electrical vehicles [29], control systems [30], and so on.
However, this type of FLCs with guaranteed stability have
been rarely studied. In [31], a high-order FLC is presented
for estimation of uncertainties in PV and battery dynamics.
In [32], a T2FLC is developed to cope with irradiation fluc-
tuations. The main drawback of aforementioned studies is
that, only rule parameters are optimized, and the antecedent
parameters are neglected. Also, the online stability guarantee
in the most of presented controllers needs more investigation.
In current paper, we present the novel adaptation laws for
uncertain parameters based on I&I theorem. The effect of

FIGURE 1. The control block diagram.

disturbances such as variation of temperature, fluctuation of
irradiation and changes of output load are compensated by
the suggested deep learning T2FLC by guaranteed stability.
The main contributions and the advantages of the suggested
method are:

• The novel adaptation laws are presented for uncertain
parameters based on I&I theorem.

• The effect of disturbances such as variation of temper-
ature, fluctuation of irradiation and changes of output
load are compensated.

• A deep learning T2FLC by guaranteed stability is
presented.

• Both rules and FS parameters are optimized.
• The superiority of the designed method is examined
under various conditions and comparison with other
conventional approaches.

II. PROBLEM FORMULATION
A. GENERAL VIEW
The designed control scheme is depicted in Fig. 1. The
dynamics are considered to be uncertain. The adaptation
rules are derived by the I&I stabilization approach. The
perturbations are compensated by the suggested T2FLC. As
shown in Fig. 1, unlike the conventional studies [33]–[35], the
adaptation laws are derived form I&I stabilization approach.
The main uncertain parameters are estimated by the extracted
adaptation laws. Then, the estimation error is taken into
account, and a T2FLC is designed. The rules of T2FLC
are optimized such that the effect of estimation error is
eliminated.

B. FUEL CELL
Today, the role of new and renewable energy sources in the
production of electricity is not hidden from anyone. In addi-
tion to solar, wind, geothermal and biomass energy, fuel cell
energy has also become very important. A fuel cell (FC) is a
device that generates electricity through a chemical reaction.
All fuel cells have two electrical poles (electrodes) called
anodes and cathodes. In fact, chemical reactions take place
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FIGURE 2. Boost convertor: switching mode #1.

FIGURE 3. Boost convertor: switching mode #2.

FIGURE 4. Boost convertor: switching mode #3.

in these electrodes, leading to the generation of electricity.
In addition, each FC has an electrolyte and a catalyst; The
role of the electrolyte is to move charged particles between
the electrodes, while the catalyst speeds up the reactions at
the electrodes. Although hydrogen is the main fuel, oxy-
gen is also needed to form the reaction. One of the biggest
superiorities of an FC is that it generates electricity with the
least amount of pollution. In fact, most of the oxygen and
hydrogen entering the cell is eventually released as a harmless
by-product, water. An FC generates a very small amount
of direct current, which is why a large number of cells are
used to generate electricity in large batches called stacks. The
dynamics of FC are given as:

VFC = −ιIFC

+

(
ln
(
ξH2 · ξ

0.5
O2
/ξH2O

)
· (T</2F)+ E0

)
N0 (1)

QH2 = 2IFCτι/
[
Uopt

(
κf · s+ 1

)]
(2)

QOin2
=

QH in
2

ιHO
(3)

ξH2 =

QH in
2
− 2τιIFC

kH2

(
sκH2 + 1

) (4)

ξO2 =

(
QOin2
− τιIFC

)
/kO2

(
sκO2 + 1

)
(5)

ξH2O = 2τιIFC/
[(
s · κH2O + 1

)
· kH2O

]
(6)

where, the parameters and variables are described Tables 3- 4,
in Appendix.

C. CONVERTERS
The switchingmechanism between units is constructed by the
use of Boost converters. As shown in Figs. 2-5, we have four
switching modes. By averaging the four state space models,

FIGURE 5. Boost convertor: switching mode #4.

we obtain:

µ̇1 =
(
−µ2 + Vp (µ1)+ µ2up

)
/Lp

µ̇2 =
1
C

(
µ1 − µ2/R+ µ3ub − µ1up

)
µ̇3 = (−µ2ub + Vb (µ3)) /Lb (7)

where, Ip/Ib denotes PV/battery currents andVc represents the
load voltage.

D. PV MODELING
By the use of single-diode method [36], the dynamics of PV
are given as:

iph = s (ki (T − Tι)+ isc) (8)

Ip = G · Iphg
− exp

(
Q
(
Vp + Ip<sg

)
/nTkb − 1

)
io

−
(
Ip<sg + Vp

)
/<shg (9)

i0 = e

[
QEg

(
1

Tι+273
−

1
T+273

)
/kbA

](
T + 273
Tι + 273

)3

iι (10)

where, all parameters descriptions are given in Table 5 in
Appendix.

E. BATTERY MODELING
The dynamics of battery are written as [36]:

E (t) = −
∫
αVbocIb + ELossdt (11)

α =

{
α1 Ib ≥ 0
α2 Ib < 0,

(12)

Vb = Vboc − Ib · ιb (13)

SoC (t) = E (t) /EMax (14)

The parameter descriptions are given in Table 6, in Appendix.

III. TYP-2 FLC
The type-2 FLSs are the generalization of type-1 counterparts
which can support more level of uncertainties. A type-2 fuzzy
set has three dimensions, which its third dimension represents
the secondary membership. In other words, in type-2 fuzzy
sets, the memberships are not crisp values but they are fuzzy
numbers. As mentioned earlier, in the power/voltage control
problem of microgrids, we face a large number of perturba-
tions, and we need a strong tool to tackle the effect of var-
ious disturbances such as dynamic uncertainties, estimation
errors of adaptation rules, variation of output load, grid-side
faults and changes of irradiation and temperature. Then we
formulate a type-2 fuzzy compensator. The structure is given
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FIGURE 6. Type-2 fuzzy compensator.

in Fig. 6. The computations are as: 1) The inputs are tracking
error (χ (t)), derivative of tracking error dχ(t)dt and integral of
tracking error

∫ t
0 χ (y) dy.

2) The memberships for are obtained as:

9̄ϑ̄χ (χ (t)) = exp

−
(
χ (t)−Mϑ̄χ

)2
σ̄ 2
ϑ̄χ


9 ϑ̄χ (χ (t)) = exp

−
(
χ (t)−Mϑ̄χ

)2
σ 2
ϑ̄χ

 (15)

9̄ϑχ (χ (t)) = exp

−
(
χ (t)−Mϑχ

)2
σ̄ 2
ϑχ


9ϑχ

(χ (t)) = exp

−
(
χ (t)−Mϑχ

)2
σ 2
ϑχ

 (16)

where, Mϑ̄χ
and Mϑχ

are the centers of MFs ϑ̄χ and
ϑχ , respectively. σ̄ϑ̄χ /σ ϑ̄χ is the upper/lower width of ϑ̄χ .
σ̄ϑχ /σϑχ is the upper/lower width of ϑχ . Similarly for the

input dχdt we have:

9̄ϑ̄ dχ
dt

(
dχ
dt
(t)
)
= exp

−
(
dχ
dt (t)−Mϑ̄ dχ

dt

)2

σ̄ 2
ϑ̄ dχ
dt



9 ϑ̄ dχ
dt

(
dχ
dt
(t)
)
= exp

−
(
dχ
dt (t)−Mϑ̄ dχ

dt

)2

σ 2
ϑ̄ dχ
dt

 (17)

9̄ϑ dχ
dt

(
dχ
dt
(t)
)
= exp

−
(
dχ
dt (t)−Mϑ dχ

dt

)2

σ̄ 2
ϑ dχ

dt



9ϑ dχ
dt

(
dχ
dt
(t)
)
= exp

−
(
dχ
dt (t)−Mϑ dχ

dt

)2

σ 2
ϑ dχ

dt

 (18)

where,Mϑ̄ dχ
dt

andMϑ dχ
dt

are the centers of MFs ϑ̄ dχ
dt

and ϑ dχ
dt
,

respectively. σ̄ϑ̄ dχ
dt

and σ ϑ̄ dχ
dt

are the upper and lower width

of ϑ̄ dχ
dt
. σ̄ϑ dχ

dt

/σϑ dχ
dt

is the upper/lower width of ϑ dχ
dt
. Finally,

for input
∫ t
0 χ (y) dy, the memberships are:

9̄ϑ̄∫ t
0 χ(y)dy

(∫ t

0
χ (y) dy

)

= exp

−
(∫ t

0 χ (y) dy (t)−Mϑ̄∫ t
0 χ(y)dy

)2

σ̄ 2
ϑ̄∫ t

0 χ(y)dy


9 ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)

= exp

−
(∫ t

0 χ (y) dy (t)−Mϑ̄∫ t
0 χ(y)dy

)2

σ 2
ϑ̄∫ t

0 χ(y)dy

 (19)

9̄ϑ∫ t
0 χ(y)dy

(∫ t

0
χ (y) dy

)

= exp

−
(∫ t

0 χ (y) dy (t)−Mϑ∫ t
0 χ(y)dy

)2
σ̄ 2
ϑ∫ t

0 χ(y)dy


9ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)

= exp

−
(∫ t

0 χ (y) dy (t)−Mϑ∫ t
0 χ(y)dy

)2
σ 2
ϑ∫ t

0 χ(ω)dω

 (20)

where, Mϑ̄∫ t
0 χ(ω)dω

and Mϑ∫ t
0 χ(ω)dω

are the centers of MFs

ϑ̄∫ t
0 χ(ω)dω

and ϑ∫ t
0 χ(ω)dω

, respectively. σ̄ϑ̄∫ t
0 χ(ω)dω

/σ ϑ̄∫ t
0 χ(ω)dω

is the upper/lower width of ϑ̄∫ t
0 χ(ω)dω

. σ̄ϑ∫ t
0 χ(ω)dω

/σϑ∫ t
0 χ(ω)dω

is the upper/lower width of ϑ∫ t
0 χ(ω)dω

.

3) The rules firing are obtained as:

θ̄1

= 9̄ϑ̄χ (χ (t)) · 9̄ϑ̄ dχ
dt

(
dχ
dt
(t)
)
· 9̄ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ̄2

= 9̄ϑ̄χ (χ (t)) · 9̄ϑ̄ dχ
dt

(
dχ
dt
(t)
)
· 9̄ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
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θ̄3

= 9̄ϑ̄χ (χ (t)) · 9̄ϑ dχ
dt

(
dχ
dt
(t)
)
· 9̄ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ̄4

= 9̄ϑ̄χ (χ (t)) · 9̄ϑ dχ
dt

(
dχ
dt
(t)
)
· 9̄ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ̄5

= 9̄ϑχ (χ (t)) · 9̄ϑ̄ dχ
dt

(
dχ
dt
(t)
)
· 9̄ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ̄6

= 9̄ϑχ (χ (t)) · 9̄ϑ̄ dχ
dt

(
dχ
dt
(t)
)
· 9̄ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ̄7

= 9̄ϑχ (χ (t)) · 9̄ϑ dχ
dt

(
dχ
dt
(t)
)
· 9̄ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ̄8

= 9̄ϑχ (χ (t)) · 9̄ϑ dχ
dt

(
dχ
dt
(t)
)
· 9̄ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
(21)

θ1

=9 ϑ̄χ (χ (t)) ·9 ϑ̄ dχ
dt

(
dχ
dt
(t)
)
·9 ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ2

=9 ϑ̄χ (χ (t)) ·9 ϑ̄ dχ
dt

(
dχ
dt
(t)
)
·9ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ3

=9 ϑ̄χ (χ (t)) ·9ϑ dχ
dt

(
dχ
dt
(t)
)
·9 ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ4

=9 ϑ̄χ (χ (t)) ·9ϑ dχ
dt

(
dχ
dt
(t)
)
·9ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ5

=9ϑχ
(χ (t)) ·9 ϑ̄ dχ

dt

(
dχ
dt
(t)
)
·9 ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ6

=9ϑχ
(χ (t)) ·9 ϑ̄ dχ

dt

(
dχ
dt
(t)
)
·9ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ7

=9ϑχ
(χ (t)) ·9ϑ dχ

dt

(
dχ
dt
(t)
)
·9 ϑ̄∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
θ8

=9ϑχ
(χ (t)) ·9ϑ dχ

dt

(
dχ
dt
(t)
)
·9ϑ∫ t

0 χ(y)dy

(∫ t

0
χ (y) dy

)
(22)

4) The output is computed as:

uc (z|X) =

N∑
i=1

zi
(
θ̄i + θ i

)
N∑
i=1
θ̄i + θ i

(23)

where, N represents number of rules and:

zT = [z1, . . . , zN ] (24)

XT =
[
χ (t) ,

dχ
dt
(t) ,

∫ t

0
χ (y) dy

]
(25)

IV. I&I ADAPTATION LAWS
In this section the main tuning rules are presented and the
stability is investigated. Unlike the most conventional studies,
the tuning rules are extracted from I&I stability analysis. The
tuning rules for uncertain parameters are considered such that
all criteria of I&I theorem are satisfied. Following, the details
are given in Theorem 1. Before, the presenting the Theorem 1,
the main I&I Lemma is given as:
Lemma 1 (I&I Stabilization [37]): Consider the dynam-

ics of under control plant as:

µ̇ = F (µ)+ H (µ) u (26)

where, F (µ) and H (µ) are nonlinear functions with
unknown parameters w and equilibrium point µ∗. The
system (26) is I&I stabilizable, if there is α1 and α2 such that
all trajectories of (27):

ẋ = F (µ)+ H (µ) u
(
µ, ŵ+ α1 (µ)

)
dŵ
dt
= α2

(
µ, ŵ

)
(27)

are staying on:

ϕ =
{
(µ,w) |ŵ−w+ α1 (µ) = 0

}
(28)

Our results are given in the Theorem 1.
Theorem 1: By the controllers (29-30) and adaptation

rules (31-33) the stability is ensured.

up =
1
µ2

[
(ṙ1 + λ1χ1)

(
L̂P + ηL̃P (χ)

)
+ µ2 − Vp (µ1)

]
(29)

ub =
1
µ3

[
(ṙ2 + λ2χ2)

(
Ĉ + ηC̃ (χ)

)
− µ1

+µ2/
(
R̂+ ηR̃ (χ)

)
+ µ1up

]
(30)

˙̂LP = η
∂L̃P (χ)
∂χ1

λ1χ1 + η
∂L̃P (χ)
∂χ2

λ2χ2 (31)

˙̂R = η
∂R̃ (χ)
∂χ1

λ1χ1 + η
∂R̃ (χ)
∂χ2

λ2χ2 (32)

˙̂C = η
∂C̃ (χ)
∂χ1

λ1χ1 + η
∂C̃ (χ)
∂χ2

λ2χ2 (33)

where, ri represents the reference signal for outputs µi and:

∂L̃P (χ)
∂χ1

= ṙ1 + λ1χ1 (34)

∂L̃P (χ)
∂χ2

= 0 (35)

∂R̃ (χ)
∂χ1

= 0 (36)
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∂R̃ (χ)
∂χ2

= −

(
R̂+ ηR̃ (χ)

)
(37)

∂C̃ (χ)
∂χ1

= 0 (38)

∂C̃ (χ)
∂χ2

= ṙ2 + λ2χ2 (39)

where, λi and η are constant and χi i = 1, 2 are defined as:

χ1
1
= r1 − µ1

χ2
1
= r2 − µ2 (40)

Proof: The dynamics are estimated as:

µ̇1 =
(
−µ2 + Vp (µ1)+ µ2up

)
/L̂p

µ̇2 =
1

Ĉ

(
µ1 − µ2/R̂+ µ3ub − µ1up

)
µ̇3 = (−µ2ub + Vb (µ3)) /L̂b (41)

The reference dynamics are assumed to be:

χ̇1 = −λ1χ1

χ̇2 = −λ2χ2 (42)

Time derivative of (40), gives:

χ̇1 = ṙ1 − µ̇1

χ̇2 = ṙ2 − µ̇2 (43)

By substituting of µ̇i, equation (43) becomes:

χ̇1 = ṙ1 −
(
−µ2 + Vp (µ1)+ µ2up

(
χ,Lp

))
/Lp

χ̇2 = ṙ2 −
1
C

(
µ1 − µ2/R+ µ3ub (χ,C,R)− µ1up

)
(44)

Considering Lemma 1, (44) is extended as:

χ̇1 = ṙ1

−

(
−µ2 + Vp (µ1)+ µ2up

(
χ, L̂p + ηL̃p (χ)

))
/Lp

χ̇2 = ṙ2

−
1
C

(
µ1 − µ2/R+

µ3ub
(
χ, Ĉ + ηC̃ (χ) , R̂+ ηR̃ (χ)

)
− µ1up

)
(45)

where,

˙̂Lp = ψL
(
χ, L̂p

)
(46)

˙̂R = ψR
(
χ, R̂

)
(47)

˙̂C = ψC
(
χ, Ĉ

)
(48)

χ = [χ1, χ2]T (49)

where, L̂P, R̂ and Ĉ are the estimation of LP, R and C . The
system (45), is I&I stabilizable if there exist L̃p, R̃, C̃ , ψR,
ψLP and ψC , such that:

ϕL =
{
(χ,LP) ∈ <n+1|L̂P + ηL̃P (χ)− L̂P = 0

}
(50)

ϕR =
{
(χ,R) ∈ <n+1|R̂+ ηR̃ (χ)−R = 0

}
(51)

ϕC =
{
(χ,C) ∈ <n+1|Ĉ + ηC̃ (χ)−C = 0

}
(52)

where, n = 2 and η is a constant. To satisfy (50-52), the
stability of the following errors should be ensured:

eP = L̂P + ηL̃P (χ)− LP (53)

eR = R̂+ ηR̃ (χ)− R (54)

eC = Ĉ + ηC̃ (χ)− C (55)

Form (53-55), the equation (44) is rewritten as:

χ̇1 = ṙ1

−
(
−µ2 + Vp (µ1)+ µ2up

)
/
(
L̂P + ηL̃P (χ)− eP

)
χ̇2 = ṙ2 −

1(
Ĉ + ηC̃ (χ)− eC

)
×

(
µ1 − µ2/

(
R̂+ ηR̃ (χ)− eR

)
+µ3ub − µ1up

)
(56)

By applying controllers (29-30) on (56), we have:

χ̇1 = ṙ1 −
(ṙ1 + λ1χ1)

(
L̂P + ηL̃P (χ)

)
(
L̂P + ηL̃P (χ)− eP

) (57)

χ̇2 = ṙ2

−
1(

Ĉ + ηC̃ (χ)− eC
)
−µ2/

(
R̂+ ηR̃ (χ)− eR

)
+µ2/

(
R̂+ ηR̃ (χ)

)
+ (ṙ2 + λ2χ2)

(
Ĉ + ηC̃ (χ)

)]
(58)

Equations (57-58), can be simplified as:

χ̇1 = ṙ1 − (ṙ1 + λ1χ1)
[
1+

eP
L̂P + ηL̃P (χ)− eP

]
(59)

χ̇2 = ṙ2

−
1(

Ĉ + ηC̃ (χ)− eC
)
 −µ2/

(
R̂+ ηR̃ (χ)− eR

)
+µ2/

(
R̂+ ηR̃ (χ)

) 
− (ṙ2 + λ2χ2)

(
1+

eC
Ĉ + ηC̃ (χ)− eC

)
(60)

From (59-60), we have:

χ̇1 = −λ1χ1 −
(ṙ1 + λ1χ1) eP

L̂P + ηL̃P (χ)− eP
(61)

χ̇2 = −λ2χ2

−1(
Ĉ + ηC̃ (χ)− eC

)
−µ2/

(
R̂+ ηR̃ (χ)− eR

)
+µ2/

(
R̂+ ηR̃ (χ)

)
+ (ṙ2 + λ2χ2) eC ] (62)

Form (53-55), time derivative of eP, eR and eC are computed
as:

ėP =
˙̂LP + η

∂L̃P (χ)
∂χ1

χ̇1 + η
∂L̃P (χ)
∂χ2

χ̇2 (63)
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ėR =
˙̂R+ η

∂R̃ (χ)
∂χ1

χ̇1 + η
∂R̃ (χ)
∂χ2

χ̇2 (64)

ėC =
˙̂C + η

∂C̃ (χ)
∂χ1

χ̇1 + η
∂C̃ (χ)
∂χ2

χ̇2 (65)

Substituting χ̇1 and χ̇2, yields:

ėP

=
˙̂LP + η

∂L̃P (χ)
∂χ1

[
−λ1χ1 −

(ṙ1 + λ1χ1) eP
L̂P + ηL̃P (χ)− eP

]

+ η
∂L̃P (χ)
∂χ2


−λ2χ2−

1(
Ĉ+ηC̃(χ)−eC

)
[

−µ2eR(
R̂+ηR̃(χ)−eR

)(
R̂+ηR̃(χ)

)
+ (ṙ2 + λ2χ2) eC ]


(66)

ėR

=
˙̂R+ η

∂R̃ (χ)
∂χ1

[
−λ1χ1 −

(ṙ1 + λ1χ1) eP
L̂P + ηL̃P (χ)− eP

]

+ η
∂R̃ (χ)
∂χ2


−λ2χ2−

1(
Ĉ+ηC̃(χ)−eC

)
[

−µ2eR(
R̂+ηR̃(χ)−eR

)(
R̂+ηR̃(χ)

)
+ (ṙ2 + λ2χ2) eC ]


(67)

ėC

=
˙̂C + η

∂C̃ (χ)
∂χ1

[
−λ1χ1 −

(ṙ1 + λ1χ1) eP
L̂P + ηL̃P (χ)− eP

]

+ η
∂C̃ (χ)
∂χ2


−λ2χ2−

1(
Ĉ+ηC̃(χ)−eC

)
[

−µ2eR(
R̂+ηR̃(χ)−eR

)(
R̂+ηR̃(χ)

)
+ (ṙ2 + λ2χ2) eC ]


(68)

From (66-68), ˙̂LP, and
˙̂R and ˙̂C are considered as given in

(31-33). From (31-33), ėP, ėR and ėC in (66-68), become:

ėP = η
∂L̃P (χ)
∂χ1

[
−

(ṙ1 + λ1χ1) eP
L̂P + ηL̃P (χ)− eP

]
+ η

∂L̃P (χ)
∂χ2− 1(

Ĉ+ηC̃(χ)−eC
)
[

−µ2eR(
R̂+ηR̃(χ)−eR

)(
R̂+ηR̃(χ)

)
+ (ṙ2 + λ2χ2) eC ]

 (69)

ėR = η
∂R̃ (χ)
∂χ1

[
−

(ṙ1 + λ1χ1) eP
L̂P + ηL̃P (χ)− eP

]
+ η

∂R̃ (χ)
∂χ2− 1(

Ĉ+ηC̃(χ)−eC
)
[

−µ2eR(
R̂+ηR̃(χ)−eR

)(
R̂+ηR̃(χ)

)
+ (ṙ2 + λ2χ2) eC ]

 (70)

ėC = η
∂C̃ (χ)
∂χ1

[
−

(ṙ1 + λ1χ1) eP
L̂P + ηL̃P (χ)− eP

]
+ η

∂C̃ (χ)
∂χ2− 1(

Ĉ+ηC̃(χ)−eC
)
[

−µ2eR(
R̂+ηR̃(χ)−eR

)(
R̂+ηR̃(χ)

)
+ (ṙ2 + λ2χ2) eC ]

 (71)

From (69-71), L̃P (χ), R̃ (χ) and C̃ (χ) should be determined
such that the dynamics of ėP, ėR and ėC to be stable. Then we
have:

∂L̃P (χ)
∂χ1

= ṙ1 + λ1χ1 (72)

∂L̃P (χ)
∂χ2

= 0 (73)

∂R̃ (χ)
∂χ1

= 0 (74)

∂R̃ (χ)
∂χ1

= −

(
R̂+ ηR̃ (χ)

)
(75)

∂C̃ (χ)
∂χ1

= 0 (76)

∂C̃ (χ)
∂χ2

= ṙ2 + λ2χ2 (77)

From (72-77), the dynamics of ėP, ėR and ėC in (69-71),
become:

ėP = −η
(ṙ1 + λ1χ1)2

L̂P + ηL̃P (χ)− eP
eP (78)

ėR = −η
1

Ĉ + ηC̃ (χ)− eC
·

1

R̂+ ηR̃ (χ)− eR
µ2eR

+ η
1

Ĉ + ηC̃ (χ)− eC

(
R̂+ ηR̃ (χ)

)
(ṙ2 + λ2χ2) eC

(79)

ėC = −η
1

Ĉ + ηC̃ (χ)− eC
· (ṙ2 + λ2χ2)2eC

+ η
1

Ĉ + ηC̃ (χ)− eC
·

1

R̂+ ηR̃ (χ)− eR

·
(ṙ2 + λ2χ2) µ2eR
R̂+ ηR̃ (χ)

(80)

To show that the dynamics of ėP, ėR and ėC in (78-80) are
stable, the following Lyapunov is considered:

V =
1
2
e2P +

1
2
e2R +

1
2
e2C (81)

Time derivative of (81), gives:

V̇ = ePėP + eRėR + eC ėC (82)

substituting from (78-80), V̇ in (82), becomes:

V̇ = −η
(ṙ1 + λ1χ1)2

L̂P + ηL̃P (χ)− eP
e2P

− η
1

Ĉ + ηC̃ (χ)− eC
·

1

R̂+ ηR̃ (χ)− eR
µ2e2R

+ η
1

Ĉ + ηC̃ (χ)− eC

(
R̂+ ηR̃ (χ)

)
(ṙ2 + λ2χ2) eCeR

+ − η
1

Ĉ + ηC̃ (χ)− eC
· (ṙ2 + λ2χ2)2e2C

+ η
1

Ĉ + ηC̃ (χ)− eC
·

1

R̂+ ηR̃ (χ)− eR

·
(ṙ2 + λ2χ2) µ2eReC

R̂+ ηR̃ (χ)
(83)

74 VOLUME 10, 2022



M. H. Sabzalian et al.: New Immersion and Invariance Control and Stable Deep Learning Fuzzy Approach

V̇ is rewritten as:

V̇ = −
[
eP eR eC

]
9

 eP
eR
eC

 (84)

where,

911 = η
(ṙ1 + λ1χ1)2

L̂P + ηL̃P (χ)− eP
(85)

912 =
1

Ĉ+ηC̃ (χ)− eC

1

R̂+ ηR̃ (χ)− eR
·
(ṙ2 + λ2χ2) µ2

R̂+ ηR̃ (χ)

+
1

Ĉ + ηC̃ (χ)− eC

(
R̂+ ηR̃ (χ)

)
(ṙ2 + λ2χ2) (86)

922 = η
1

Ĉ + ηC̃ (χ)− eC
· (ṙ2 + λ2χ2)2 (87)

From the fact that:

C = Ĉ + ηC̃ (χ)− eC > 0 (88)

R = R̂+ ηR̃ (χ)− eR > 0 (89)

LP = L̂P + ηL̃P (χ)− eP > 0 (90)

It is concluded that by properly choosing λ1 and λ2, 9 is
positive definite and then the dynamics of ėP, ėR and ėC are
stable.

V. DEEP LEARNED TYPE-2 FUZZY COMPENSATOR
To ensure the stability in versus of I&I approximation error an
AT2FLC is presented. The outcomes are given in Theorem 2.
Theorem 2: The stability of the tracking error dynam-

ics (61-62) is ensued in versus of I&I approximation error and
dynamic perturbation by the following modified controllers
and tuning rules of AT2FLCs:

up =
1
µ2

[
(ṙ1 + λ1χ1)

(
L̂P + ηL̃P (χ)

)
+µ2 − Vp (µ1)+ ucp

(
zp|Xp

) ] (91)

ub =
1
µ3

 (ṙ2 + λ2χ2) (Ĉ + ηC̃ (χ))− µ1+

µ2/
(
R̂+ ηR̃ (χ)

)
+ µ1up + ucb (zb|Xb)

 (92)

żp = γπpχ1 (93)

żb = γπbχ2 (94)

where, ucp
(
zp|Xp

)
and ucb (zb|Xb) are AT2FLCs. γ is a

constant.
Proof: To deeply train the fuzzy compensator by

Lyapunov approach, the outputs ucp
(
zp|Xp

)
and ucb (zb|Xb)

(see (23)) are written as:

ucp
(
zp|Xp

)
= zTp πp

ucb (zb|Xb) = zTb πb (95)

where, zTp and zTb are vector of tuneable parameters which
include both rule (consequent) parameters (zTpc, z

T
bc) and cen-

ters of FSs (antecedent parameters: zTpa, z
T
ba):

zTp =
[
zTpa z

T
pc

]
zTb =

[
zTba z

T
bc

]
(96)

πTp and πTb are written as:

πTp =
[
πTpa π

T
pc

]
πTb =

[
πTba π

T
bc

]
(97)

where,

πTpc =
1

N∑
i=1
θ̄pi + θpi

[
θ̄p1 + θp1, . . . , θ̄pN + θpN

]T

πTbc =
1

N∑
i=1
θ̄bi + θbi

[
θ̄b1 + θb1, . . . , θ̄bN + θbN

]T (98)

where, θ̄pi and θ̄bi are upper rule firing and θpi and θbi are
lower rule firings. The other terms πTpa and π

T
ba are derivative

of ucp
(
zp|Xp

)
and ucb (zb|Xb) with respect to the centers of

FSs. For instance, the derivatives forMϑ̄χ
can be obtained as:

∂ucp
(
zp|Xp

)
∂Mϑ̄χ

=


2
(
χ(t)−Mϑ̄χ

)
σ̄ 2
ϑ̄χ

N/2∑
i=1

θ̄pi

+
2
(
χ(t)−Mϑ̄χ

)
σ 2
ϑ̄χ

N/2∑
i=1

θpi

 zpi/
N∑
i=1

θ̄bi + θbi

−

N∑
i=1

zpi
(
θ̄pi + θpi

)

·


2
(
χ(t)−Mϑ̄χ

)
σ̄ 2
ϑ̄χ

N/2∑
i=1

θ̄pi

+
2
(
χ(t)−Mϑ̄χ

)
σ 2
ϑ̄χ

N/2∑
i=1

θpi

 /
(

N∑
i=1

θ̄bi + θbi

)2

(99)

By applying controllers (91-92), the error dynamics become:

χ̇1 = −λ1χ1 −

(
ṙ1 + λ1χ1 + ucp

(
zp|Xp

))
eP

L̂P + ηL̃P (χ)− eP
(100)

χ̇2 = −λ2χ2 −
1(

Ĉ + ηC̃ (χ)− eC
)

× [
−µ2eR(

R̂+ ηR̃ (χ)− eR
) (

R̂+ ηR̃ (χ)
)

+ (ṙ2 + λ2χ2 + ucb (zb|Xb)) eC ] (101)

By adding and subtracting optimal AT2FLCs ucp
(
z∗p|Xp

)
and

ucb
(
z∗b|Xb

)
, the dynamics (100-101) are rewritten as:

χ̇1 = −λ1χ1 + ucp
(
z∗p|Xp

)
− ucp

(
zp|Xp

)
−

(
ṙ1 + λ1χ1 + ucp

(
zp|Xp

))
eP

L̂P + ηL̃P (χ)− eP
− ucp

(
z∗p|Xp

)
(102)

χ̇2 =−λ2χ2+ucb
(
z∗b|Xb

)
−ucb (zb|Xb)−

1(
Ĉ+ηC̃ (χ)−eC

)
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× [
−µ2eR(

R̂+ ηR̃ (χ)− eR
) (

R̂+ ηR̃ (χ)
)

+ (ṙ2 + λ2χ2 + ucb (zb|Xb)) eC ]− ucb
(
z∗b|Xb

)
(103)

From (23), we have:

ucb
(
z∗b|Xb

)
− ucb (zb|Xb) = z̃bπb (104)

ucp
(
z∗p|Xp

)
− ucp

(
zp|Xp

)
= z̃pπp (105)

where,

z̃b = z∗b − zb (106)

z̃p = z∗p − zp (107)

From (104-105), the equations (102-103), are written as:

χ̇1 = −λ1χ1 + z̃pπp

−

(
ṙ1 + λ1χ1 + ucp

(
zp|Xp

))
eP

L̂P + ηL̃P (χ)− eP
− ucp

(
z∗p|Xp

)
(108)

χ̇2 = −λ2χ2 + z̃bπb −
1(

Ĉ + ηC̃ (χ)− eC
)

× [
−µ2eR(

R̂+ ηR̃ (χ)− eR
) (

R̂+ ηR̃ (χ)
)

+ (ṙ2 + λ2χ2 + ucb (zb|Xb)) eC ]− ucb
(
z∗b|Xb

)
(109)

Consider the following definitions:

ε∗p =−

(
ṙ1 + λ1χ1 + ucp

(
zp|Xp

))
eP

L̂P + ηL̃P (χ)− eP
− ucp

(
z∗p|Xp

)
(110)

ε∗b =
1(

Ĉ+ηC̃ (χ)−eC
) [

−µ2eR(
R̂+ηR̃ (χ)− eR

) (
R̂+ ηR̃ (χ)

)
+ (ṙ2 + λ2χ2 + ucb (zb|Xb)) eC ]− ucb

(
z∗b|Xb

)
(111)

Considering definitions (110-111), equations (108-109),
become:

χ̇1 = −λ1χ1 + z̃pπp + ε∗p (112)

χ̇2 = −λ2χ2 + z̃bπb + ε∗b (113)

To investigate the stability, the following Lyapunov is taken
to account:

V =
1
2
χ2
1 +

1
2
χ2
2 +

1
2γ

z̃2p +
1
2γ

z̃2b (114)

From (114), V̇ is obtained as:

V̇ = χ1χ̇1 + χ2χ̇2 −
1
γ
z̃pżp −

1
γ
z̃bżb (115)

By substituting (112-113), V̇ becomes:

V̇ = χ1
(
−λ1χ1 + z̃pπp + ε∗p

)
+ χ2

(
−λ2χ2 + z̃bπb + ε∗b

)
−
1
γ
z̃pżp −

1
γ
z̃bżb (116)

TABLE 1. Simulation condition.

Equation (116), can be written as:

V̇ = −λ1χ2
1 − λ2χ

2
2 + z̃pπpχ1 + z̃bπbχ2

+χ1ε
∗
p + χ2ε

∗
b

−
1
γ
z̃pżp −

1
γ
z̃bżb (117)

The equation (117) is simplified as:

V̇ = −λ1χ2
1 − λ2χ

2
2

+z̃p

(
πpχ1 −

1
γ
żp

)
+ z̃b

(
πbχ2 −

1
γ
żb

)
+χ1ε

∗
p + χ2ε

∗
b (118)

From tuning rules of AT2FLCs (93-94), V̇ is written as:

V̇ = −λ1χ2
1 − λ2χ

2
2 + χ1ε

∗
p + χ2ε

∗
b (119)

From (119), we have:

V̇ ≤ −λ1χ2
1 − λ2χ

2
2 + χ

2
1 ε̄
∗
p + χ

2
2 ε̄
∗
b (120)

The ε̄∗p and ε̄
∗
b are the upper bounds of ε

∗
p and ε

∗
b . Then if:

λ1 > ε̄∗p

λ2 > ε̄∗b (121)

The asymptotically stability is ensured.

VI. SIMULATION STUDIES
Several examinations are presented in this section. Simulation
condition is described in Table 1.

A. SCENARIO 1
For first evaluation, the irradiation is considered to be varied
from 250 to 650 (w/m2) at time t = 50s. Fig. 7, shows that
the PV current is well converged to its target level. Fig. 8
demonstrates that the voltage Vc is kept fixed at its desired
level under irradiation disturbances. Fig. 9 shows the well
power regulation and finally Figs. 10-11 show the control
signals with good shapes and lack of fluctuations.
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FIGURE 7. Scenario 1: PV current (IP ).

FIGURE 8. Scenario 1: Output voltage (VC ).

FIGURE 9. Scenario 1: PV power (P).

FIGURE 10. Scenario 1: Control signal (up).

FIGURE 11. Scenario 1: Control signal (ub).

B. SCENARIO 2
For second evaluation, the irradiation is fixed at 400 (w/m2)
and the temperature disturbances is changed from T =

15 into T = 38 (◦C) at time t = 65s. Fig. 12 shows that the
PV current well tracks the reference trajectory. Fig. 13 shows
a well resistance in versus of temperature variation. Fig. 14
shows the power regulation, and Figs. 15-16 show the control
trajectories.

C. SCENARIO 3
For scenario 3, in the difficult examination situation, the
temperature, load and irradiation are changed from T = 13 to

FIGURE 12. Scenario 2: PV current (IP ).

FIGURE 13. Scenario 2: Output voltage (VC ).

FIGURE 14. Scenario 2: PV power (P).

FIGURE 15. Scenario 2: Control signal (up).

FIGURE 16. Scenario 2: Control signal (ub).

T = 48 (◦C), 60 into 40 (�) from 450 into 150 (w/m2),
respectively. The disturbances are depicted in Fig. 17. Fig. 18
shows that PV current tracks its optimal trajectory in versus of
different perturbations. Fig. 19 reveals that the output vorlage
strongly tackles the effect of disturbances. Fig. 20 shows a
desired power regulation, and finally Figs. 21-22 show the
control signal with implementable shapes.

D. COMPARISON
In this section, a comparison is presented with Fractional-
order-PID (FO-PID) [38], integral sliding mode controller
(SMC) [39], fuzzy PID [40] and intelligent controller by Levy
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TABLE 2. RMSE comparison.

FIGURE 17. Scenario 3: Variation of temperature, load and irradiation.

FIGURE 18. Scenario 3: PV current (IP ).

FIGURE 19. Scenario 3: Output voltage (VC ).

FIGURE 20. Scenario 3: PV power (P).

Whale Optimization (ILWO) [41]. The values of root-mean-
square-errors (RMSEs) are depicted in Table 2. We see that,
the presented I&I method outperforms than other conven-
tional approaches.
Remark 1: The main properties of the designed control

technique are that: (1) there is no strong dependency on
the mathematical models of units, (2) the new adaptation
rules which are extracted form I&I stability theorem, well
ensure the stability, (3) the designed T2FLC well compensate
the approximation error and perturbations, (4) the designed
controller shows a good robust efficiency. To examine the

FIGURE 21. Scenario 3: Control signal (up).

FIGURE 22. Scenario 3: Control signal (ub).

robustness, in various scenarios, the irradiation is considered
to be varied from 250 to 650 (w/m2), the temperature dis-
turbances is changed from T = 15 into T = 38 (◦C),
the output load is changed from 60 into 40 (�), and output
power/voltage regulation is evaluated. Simulations show that
a good regulation is achieved under aforementioned distur-
bances and unknown dynamics. Furthermore, a comparison
with other conventional approaches such as FO-PID [38],
Integral SMC [39], Fuzzy PID [40], and ILWO [41], better
reveals the superiority of the suggested I&I-based controller.
Remark 2: It should be noted that, in the most of previous

conventional learning approaches, it is needed that the learn-
ing algorithms to be repeated in some epochs. However, in the
suggested approach, T2FLCs are online updated based on the
learning laws that are extracted from I&I theorem, and there is
no need to any iterations. In other words, at each sample time,
both rules and FS parameters are updated at once. At each
sample time, the parameters of rules and FSs are obtained
by taking the integral form adaptation rules (93- 94). Then,
there is no huge computations and its implementation is quite
feasible.

VII. CONCLUSION
In this paper a new strategy is developed based on I&I
approach for voltage regulation in PV/FC/Battery systems.
Some tuning rules are presented for uncertain parameters
such that the I&I stabilization criterions are satisfied. The per-
turbations are compensated by the a suggested deep learning
T2FLC. In three faulty conditions the performance is eval-
uated. For first one, irradiation is suddenly changed from its
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nominal level, it is shown the PV powerwell tracks its optimal
target, and the output voltage is also well regulated on its
reference set point. For the second examination, the effect of
variation of temperature is taken to account, and temperature
is considered to be time-varying. The simulations show a
good resistance against temperature disturbance. Finally, for
the last examination, beside variation of temperature and irra-
diation, the output load is also considered to be time-varying.
Simulation results and comparison with other new controllers
demonstrates that the suggested control scenario results in
better regulation proficiency under uncertain dynamics and
difficult faulty conditions.

APPENDIX
PARAMETERS DESCRIPTIONS

TABLE 3. Parameter definition, see equation (1).

TABLE 4. Parameter definition, see equations (2-6).

TABLE 5. PV parameter definition, see equation (8).

TABLE 6. Battery parameters definition, see equation (11).
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