
Received November 30, 2021, accepted December 19, 2021, date of publication December 22, 2021,
date of current version January 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3137671

Developing Docker and Docker-Compose
Specifications: A Developers’ Survey
DAVID REIS 1, BRUNO PIEDADE1, FILIPE F. CORREIA 1,2,
JOÃO PEDRO DIAS 1,2, AND ADEMAR AGUIAR 1,2
1Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
2INESC TEC, FEUP Campus, 4200-465 Porto, Portugal

Corresponding author: Filipe F. Correia (filipe.correia@fe.up.pt)

This work was supported in part by FEUP, in part by INESC-TEC, and in part by national funds through the Portuguese funding agency,
Fundação para a Ciência e a Tecnologia (FCT) under Project UIDB/50014/2020. Some of the early results of this research are part of David
Reis’ and Bruno Piedade’s masters theses [1], [2].

ABSTRACT Cloud computing and Infrastructure-as-Code (IaC), supported by technologies such as Docker,
have shaped how many software systems are built and deployed. Previous research has identified typical
issues for some types of IaC specification but not why they come to be, or they have delved into collaboration
aspects but not into technical ones. This work aims to characterize the activities around two particular kinds
of IaC specification—Dockerfiles and docker-compose.yml files. We seek to know how they can be better
supported and therefore study also what approaches and tools practitioners employ. We used an online
questionnaire to gather data. The first part of the study reached 68 graduate students from a study program
on informatics engineering, and the second one 120 professional software developers. The results show that
most of the activities of the process of developing a Dockerfile are perceived as time-consuming, especially
when the respondents are beginners with this technology. We also found that solving issues using trial-
and-error approaches is very common and that many developers do not use ancillary tools to support the
development of Dockerfiles and docker-compose.yml files.

INDEX TERMS Docker, docker-compose, orchestration, cloud computing, survey.

I. INTRODUCTION
The use of IaC [3], namely with container technologies
such as Docker, LXC, and Kubernetes [4], has become
commonplace, gaining prominence with the widespread of
cloud computing and the increasing need for development
and operations teams to collaborate efficiently [5]. Docker is
a popular example of container technology that has become
a de facto standard in software development [6] and played
an important role in shifting the paradigm away from full-
stack virtualization. Docker uses domain-specific languages
for defining contained environments (i.e. containers) and
orchestration specifications for containers [7].
Given the importance gained by these technologies [5],

it is relevant to study how they are used, characterize
current practice when creating and deploying Docker-based
infrastructures and envision improved ways to support these
practices as well as to approach any underlying difficulties.
There are a number of differences between the development
of IaC specifications and programs using general-purpose

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaowen Chu .

programming languages. While some aspects and activities
of the process may be the same, others seem to be
different—from testing to debugging, to the error-proneness
and longer feedback loops [8].

Although there is a fair amount of ancillary tools for
the development of infrastructure specifications [5], [9],
few works try to empirically demonstrate the improvements
they may bring to the development process [10]–[12].
In particular, there is scarce empirical evidence that the issues
that many of these tools address are worth addressing and that
the approaches that they prescribe are addressing such issues
effectively.

In this work, we seek insights on how software profes-
sionals perceive the use they do of Docker and Docker-
Compose and to generate new hypotheses of how best to
address existing challenges.

In the remainder of this paper, Section II overviews works
related to our study, Section III identifies themain goals of the
research and its questions, and Section IV the methodology to
answer them. Sections V and VI then describe, respectively,
the data handling and analysis, offering this work’s main
insights. Section VII overviews the main threats to validity

2318 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3706-3526
https://orcid.org/0000-0002-6653-1598
https://orcid.org/0000-0001-9066-6436
https://orcid.org/0000-0002-4046-4729
https://orcid.org/0000-0001-9745-4372


D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

and, finally, Section VIII provides final remarks and outlines
our research following up on these results.

II. RELATED WORK
There are still few empirical studies exploring the activities
that underlie the development of specifications of containers
and their orchestration, and even fewer proposals of how to
address such problems. In this section, we review some of the
most relevant works on both categories.

Guerriero et al. [8] conducted semi-structured interviews
with 44 professionals and were able to identify bad and
best practices for IaC specifications, and acknowledge that
these are often conflicting and imply trade-offs. They also
found that the available tools hardly offer support for
maintenance and evolution while ensuring quality and
that the most frequent challenges pertain to testability and
understandability.

Dalla Palma et al. [13] identify a set of 46 metrics to
evaluate the quality of IaC specifications and propose
a future study to empirically investigate the relationship
between these metrics and the quality of specifications.

A study using data collected from Stack Overflow1 was
conducted by Haque et al. [14]. The researchers used topic
modelling based on latent Dirichlet allocation and found that
most of the questions asked by developers pertaining to the
use of Docker fit into a few specific categories, in particular
application development, configuration, networking, basic
concepts and debugging. The study suggests that these
categories represent well the topics related to the use
of Docker that are the most challenging to the Stack
Overflow community.

Cito et al. [15] evaluated a sample of 560 open-source
projects from GitHub and revealed thatmore than a third of
the Dockerfiles found in those projects could not be built
without errors. The same study shows that quality issues,
such as the lack of a MAINTAINER tag or the lack of version
pinning of the base image and dependencies, were also
present in a considerable amount ofDockerfiles, including
those in the top 100 repositories according to GitHub’s star
rating. These results show that errors and quality issues are
not uncommon during the Dockerfile development process.

A study by Rahman et al. [16] analyzed more than 2K
IaC scripts, in more than 12K commits, from four different
organizations (Mirantis, Mozilla, Openstack, and Wikimedia
Commons) and showed that approximately half of the IaC
specifications in their sample contained some kind of
syntax and configuration-related defect at one of their
revisions, suggesting that this kind of defects may be more
common in IaC than in non-IaC solutions. In other works,
some of the same authors observe that defects related
with input configuration data are very frequent [17], and
identify five development anti-patterns when developing
IaC specifications [18].

1Q&A website for developers, available at https://stackoverflow.com.

Ibrahim [19] studied more than 4K open-source Github
projects that use Docker-Compose and concluded that more
than a quarter of the projects analyzed needlessly used
Docker-Compose, as they used one single component. They
also found that the remainingmulti-component specifications
mostly use the basic features of Docker-Compose, ignoring
advanced configurations such as the ones related to security
and monitoring.

Some other works exist that attempt to improve the
existing tools to develop and maintain IaC specifications,
including the works by Harter et al. [20], Huang et al. [21],
and Piedade et al. [12]. These works identify some opportu-
nities for improving the efficiency of developing Docker
and Docker-Compose specifications and for tools able
to reduce the time spent in the development of these
specifications.

Considering the reviewed literature, we observe that, as far
as we could find, there are a few research questions that have
been overlooked by the scientific community.

Most of these works do not study how the development
of container and orchestration specifications is tackled
from a technical standpoint—what activities play the most
relevant part in the process, which ones are surrounded by
more difficulties, and which practices developers employ to
address them.

Finding which topics around the use of Docker raise
the most concerns can help to steer further research [14].
Existing works show that it is common for faulty container
specifications to be produced [15] and that many of these
faults are due to incorrect configuration data [17]. The work
by Guerriero et al. [8] is one of the few that gathers insights
from the industry regarding how the development of IaC
is perceived. There is still very little empirical evidence
specifically on the technical activities that the development
of containers entails and how variables such as developer
experience influence them.

The anti-patterns identified by Rahman et al. [18] capture
some understanding of practices that lead to defective con-
tainer specifications. Still, they focus most on collaboration
aspects and not on technical ones.

Studies on orchestration specifications are even fewer than
those on container specifications. Ibrahim [19] found that
some Docker-Compose features are rarely used but also did
not seek to explain why that may be so.

In sum, there seem to exist severe limitations regarding
the maintenance and evolution while ensuring quality of
IaC specifications, as observed by Guerriero et al. [8] and
supported by works such as those of Rahman et al. [18]
and Cito et al. [15], even though the latter focuses on the
produced artifacts and in their analysis and not so much on
how developers perceive the process of developing them.
From an empirical point of view, no study focuses on the
IaC development activities that are most time-consuming for
developers. This knowledge could guide future research on
IaC development tools and processes, including those that are
the most time-consuming for Docker and Docker-Compose.

VOLUME 10, 2022 2319



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

III. GOALS OF THE STUDY
We hypothesize that the workflow of a developer configuring
a Docker environment is often winding and based on trial-
and-error. Creating a Docker container implies editing a spec-
ification (e.g., aDockerfile), build it into an image, instantiate
the image into a container, understand if it is working as
expected, identify the causes when it is not, and return to the
first step to improve the specification. Next, often, developers
need to orchestrate a set of created images, along with other
services (e.g., databases or message queues) writing another
specification file (e.g., a docker-compose.yml) to deploy the
system to a host. This, too, is frequently an exploratory
endeavor. Therefore, we postulate that there is a need to study
and improve these development activities.

This study seeks to characterize the activities when
specifying Docker containers and their orchestrations and
contribute to understanding the most relevant concerns better.
Namely, it aims to understand which parts of the process
are more troublesome and take significant time to perform
and what, in practice, the difficulties may be. We also try to
identify approaches and tools developers use to support their
work, particularly diagnosing and correcting common issues.

For a high-level illustration of what such a process may
look like, Figure 1 shows one of the possible sequences of
steps used when developing a Dockerfile. These steps and
their associated activities are subjects of our study. Some of
them warrant a close look; in particular, regarding the writing
of the specification itself—theDockefile in this example—we
study activities such as the use of external documentation, the
selection of an appropriate base image, or finding what the
required dependencies are, among others.

This study answers three research questions in the context
of working with Dockerfiles and docker-compose.yml files,
as enumerated below. The first one is the primary question of
our study (RQ1) and is the one that leads us to characterize
the activities inherent to the development of container and
orchestration specifications. Our secondary questions (RQ2
and RQ3) seek to identify possible approaches and tools for
supporting such improvements.

RQ1.Which activities are regarded as time-consuming?
By looking for activities that are time-consuming—i.e.,
we aim to find those where there is some developer
efficiency to be gained and where the biggest needs may
lie for improved approaches and tools.

RQ2. Which approaches are used to diagnose and
correct problems?
Identifying some of the current approaches for existing
issues can provide insights on how such approaches can
be better supported or even which new alternatives could
be proposed.

RQ3. What role is played by ancillary software tools?
Ancillary tools are those used with the containeriza-
tion platforms—Docker and Docker-Compose in this
research—but that are not a constituent part of them.
We expect that identifying these tools may help to frame

the needs most felt when developing specifications for
these platforms, as well as possible gaps in the support
that they provide out-of-the-box.

By searching for the answers to these RQs, we aim
to provide evidence on current issues when developing
these particular IaC specifications—i.e., for Docker and
Docker-compose—to guide future research.

IV. METHODOLOGY
We used an online survey to reach software developers
with some level of experience with Docker technologies.
The survey allowed us to gather data from a number of
developers, which would be difficult to match with other
exploratory researchmethods, such as interviews, that require
a considerable investment of time from the researchers. The
checklist by Molléri et al. [22] was used to guide and assess
the planning, execution, and reporting of the survey.

A. SAMPLING AND RECRUITMENT
Docker is one of the technologies supporting DevOps
and operational agility; therefore, we distributed this ques-
tionnaire in communities and forums directed towards
Docker, DevOps, and general-purpose programming. This
methodology makes our sample a convenience sample,
possibly with referral-chain sampling in those cases in which
participants may have shared the questionnaire with col-
leagues [23]. To avoid oversampling specific subpopulations,
we sought to reach participants from varied experiences and
contexts by advertising the questionnaire through multiple
methods. In particular, this included communities gathering
through platforms such as Slack, Discord and Reddit, and
social networking platforms such as Linkedin, Twitter and
Facebook. We have also advertised the survey among the
participants of the XP conference—International Conference
on Agile Software Development. The strong presence of
professionals in XP makes it a vehicle to potentially reach
a significant number of respondents within our intended
audience. Through these multiple means, we registered a total
of 120 responses.

The first set of questions were used to characterize
the participants. Some of the questions that followed
focused specifically on Dockerfiles, and others on docker-
compose.yml files. When analyzing the results of both
types of questions, we considered only the respondents
who reported having some experience creating or modifying
that kind of file. This meant considering 119 responses for
Dockerfile-related questions and 107 responses for docker-
compose.yml-related questions.

To persuade the participation in the survey, we offered
the potential respondents first-hand access to the results.
We explained the goals of the study and the importance of
participating in it through a short promotional video that we
distributed with the questionnaire.2

2The video is available at https://vimeo.com/426652252

2320 VOLUME 10, 2022



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

FIGURE 1. Motivational example of a workflow when developing a Dockerfile.

B. INSTRUMENT DESIGN
The questionnaire was designed and made available as an
online form with a few questions to keep the response time
below five minutes. They were written to be as precise
and targeted as possible and as not to lead the respondents.
Most questions are close-ended and capture numeric values
(e.g., years) or use a five-point Likert scale [24]; the use of
open-ended questions was limited to just a few to identify
issues and approaches that might not have been anticipated
in the close-ended questions.

The questions are organized around four main groups, the
latter three of which are directly aligned with the research
questions introduced in Section III: a) characterization of the
participant; b) identification of existing issues, c) identifica-
tion of existing approaches, and d) identification of ancillary
tools and how they are used.

An early version of the questionnaire was used in an
academic setting (cf. Section VI-A). Before being used with
professional software developers, the survey was piloted by
two researchers with experience in Docker technologies. This
allowed us to detect potential problems with the instructions,
their usability, and if the questions themselves support
assessing what is intended.

Both questionnaires are available as part of a replication
package, published under a CC BY-SA license and identified
by the Digital Object Identifier (DOI)10.5281/zenodo.
4660238 [25].

C. RESEARCH VARIABLES
We statistically analyze the answers to all close-ended
questions. The questions used to characterize the respondents
allow us to contextualize the results since only developers
with some Docker experience are expected to be able to
provide informed answers. The years of experience with
Docker and withDocker-Compose are independent variables
in our study. They are used to segment the results and gain
insights over how the issues and the employed approaches
will vary according to expertise.

The dependent variables are the attitudes of respondents
towards statements that a considerable amount of time
is spent in various development activities. We use these
variables to identify which of these activities are the most
time-consuming and to answer RQ1.
The few open questions are analyzed to identify unforeseen

strategies and tools that may be used to tackle existing issues.

By collecting responses about the general approaches taken
to solve problems, we seek to answer RQ2, while questions
about the tools used during development help answer RQ3.

V. DATA HANDLING
The questionnaire was built using Google Forms,3 and the
results were stored in a spreadsheet with shared access
to the researchers. The name and other personal elements
were not collected as mandatory fields but respondents were
allowed to provide their email addresses in the last question
(General Comments) if they were interested in receiving
more details about the results of the study. We have used
them exclusively to share the results of the study with the
respondents, complying with data protection regulations.

The dataset and analysis scripts are also made available as
part of the replication package (cf. Section IV-B).

VI. ANALYSIS OF THE RESULTS
A preliminary run of the study was conducted with students
to test the survey and gather the first insights. The second
run of the study was done with professionals to gather
evidence that allows to answer our research questions. The
steps we followed, the results obtained in each of them, and
the sections that describe their analysis in this article, are
summarized in Figure 2.

A. PRELIMINARY RUN WITH STUDENTS
The preliminary version of the questionnaire was distributed
among graduate students of MSc in Informatics and Com-
puting Engineering at the Faculty of Engineering of the
University of Porto, resulting in 68 responses. Most of the
respondents were beginners, having just worked on one or
two Dockerfiles specifications on average.
In this first part of our study, the results showed

respondents perceiving they spend much time understanding
why a Docker container is not running as intended (54%) and
that few participants (4.4%) use ancillary tools when working
with Docker-Compose.

B. DEMOGRAPHICS
When distributing the survey targeting professionals, one
of the primary concerns was to ensure that we reached
developers from a wide diversity of contexts and varying

3Google Forms, https://www.google.com/forms/about/

VOLUME 10, 2022 2321



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

FIGURE 2. Results in each one of the steps taken in this study.

FIGURE 3. Distribution of the respondents by country.

degrees of experience. The answers to the demographics
questions reveal that participants are from 24 different
countries. The most represented countries are Portugal
(20%), the USA (18%), and Spain (10%), as depicted in
Figure 3.

The questions about professional background show that
most participants work in the industry (90%) and some work
in academia (12%). It also shows that most of them have
responsibilities as software developers (87%), and many have
responsibilities in operations (54%).

Even though we are working with a convenience sample,
these results give us confidence that it is considerably diverse,
which we expect will mitigate any potential bias that could
be present due to the under-representation of some groups of
developers.

C. PROFESSIONAL EXPERIENCE
To assess the professional experience of the participants
with Dockerfile and docker-compose.yml development, three
questions are performed twice, once for Dockerfiles and
once for docker-compose.yml files. They allow to capture the
independent variables in our study (cf. Section IV-C):

TABLE 1. Descriptive statistics of the experience in Dockerfile and
docker-compose.yml.

Q1 How much experience (in years) do you have working
on projects that had a [Dockerfile/docker-compose.yml
file]?

Q2 How much experience (in years) do you have working
on projects where you have used [Dockerfiles/docker-
compose.yml files] created by others (colleagues or third
parties)?

Q3 How much experience (in years) do you have
working on projects where you created/updated a
[Dockerfile/docker-compose.yml file]?

We present a summary of the answers to these questions
in Table 1, which shows that participants have some
years of experience with Docker technologies, as expected.
It is also observable that participants have, in general,
slightly more experience working with Dockerfiles than with
docker-compose.yml files.

D. TIME-CONSUMING ACTIVITIES IN Dockerfile
DEVELOPMENT
To better understand the Dockerfile development process,
we decompose it into eight different activities, namely:
A1 Reading Docker documentation.
A2 Finding out what are the right Dockerfile commands that

I need.
A3 Finding out what parent image is the most suitable.
A4 Finding out what are the dependencies of my system that

must be added to the docker image.
A5 Confirming if the resulting container is working as

intended.
A6 Trying to understand why the resulting container is not

working as intended.
A7 Finding out which commands are responsible for the

container misbehavior.
A8 Rebuilding the image and re-running the container to

confirm that it is working as intended.
Figure 4 shows the respondents’ attitude towards the

statement that each of these activities is time-consuming. It is
worth noting that more than half of the participants agree
that almost all activities are time-consuming. Activities A4,
A5, A6 and A8 show at the top of the list, with A5, A6 and
A8, in particular, being believed to be time-consuming by
two thirds of the participants. These three activities have in
common the fact that they are typical when diagnosing and
fixing a misbehaving container.

Despite providing a general summary of the responses,
the information presented in Figure 4 does not allow us

2322 VOLUME 10, 2022



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

FIGURE 4. Attitude from respondents towards a considerable amount of
time being spent in each of the development activities.

FIGURE 5. Average attitude from respondents towards a considerable
amount of time being spent in each of the development activities,
by level of Dockerfile development experience.

to see how the responses may be affected by professional
experience. For this purpose, we try to measure the experi-
ence in Dockerfile development by asking specifically how
many years of experience each participant has in creating or
modifying Dockerfiles. We use this information to analyze
the responses given by respondents with different years
of experience. As we show in Figure 5, those with more
experience in creating and modifying Dockerfiles tend to
perceive most Dockerfile development activities as less
time-consuming than respondents with less experience. This
observation seems to hold for most of these activities, but
not all. While some activities become less of a concern
as experience is gained, others remain perceived as time-
consuming, even among the most experienced professionals.

We looked beyond the average responses to understand
how each activity is affected by the participants’ experience.
The respondents were divided into two groups, which
we designate as the inexperienced group, consisting of
participants who have three or fewer years of experience

(65 responses), and as the experienced group, consisting of
participants who have more than three years of experience
with Docker (54 responses). By comparing the answers
provided by both groups, we can see how the attitude towards
the time consumed by each development activity changes
with the participants’ experience. Figure 6, indeed, shows
that experienced developers tends to perceive most of the
Dockerfile development activities as more time-consuming,
given that there is a prevalence of strongly agree and agree
answers in this group, and that the same cannot be observed
for the experienced group.
To verify if the differences visible in Figure 6 are

statistically significant, we have used a one-tailed Mann-
Whitney U test [26]. The null hypothesis for this test is
that the answers from both groups belong to the same
distribution, while the alternative hypothesis is that the
inexperienced group shows significantly more agreement
towards the statements. The results of these tests and
descriptive statistics are included in Table 2, and further show
that developers with less experience tend to perceive most
Dockerfile development activities as more time-consuming.
Namely, the tests (with a 95% level of confidence; ρ < 0.05)
show that inexperienced developers perceive the A1, A2, A3,
A6 and A7 activities as significantly more time-consuming
than experienced developers. For activities A4, A5 and A8,
no significant difference could be found, supporting the idea
that these activities are not as dependent on experience and
that they are perceived as time-consuming even as more
experience is gained. However, we should note that there
is a generally low agreement in the mean response of the
experienced group for all items.
In sum, these insights help us answer the first research

question,RQ1. They show that developers tend to perceive as
time-consuming most of the Dockerfile development activi-
ties, and especially those related to finding the dependencies
of my system (A4), confirming if the resulting container
is working as intended (A5), trying to understand why the
resulting container is not working (A6) and rebuilding the
image and re-running the container to confirm that it is
working (A8). The last three of these have in common being
typical activities when debugging a misbehaving container.
Furthermore, the less experienced developers seem, in gen-
eral, more likely to find activities as time-consuming than
experienced developers are. This suggests that developers
tend to become more efficient as they progress through
the learning curve of Dockerfile development, as would be
expected. However, not all activities seem to be equally
improved with experience. In particular, the time spent
finding the dependencies of my system (A4), confirming if
the resulting container is working as intended (A5), and
rebuilding the image and re-running the container to confirm
that it is working (A8) seem to be regarded as time-consuming
even after gaining experience in this technology.

The most interesting opportunities for improvement may
lie in the activities A4, A5, A6, and A8 since they are
perceived as the most time-consuming globally. Possible

VOLUME 10, 2022 2323



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

FIGURE 6. Attitude from respondents towards a considerable amount of time being spent in each of the development activities according to years of
Dockerfile development experience.

TABLE 2. Mean, standard deviation and one-tailed Mann-Whitney U test for the answers to the likert items for each activity of Dockerfile development.
The values are comprised in the scale between strongly disagree (1) and strongly agree (5).

improvements to activity A6 are likely to benefit inexperi-
enced developers more than experienced ones.

E. TIME-CONSUMING ACTIVITIES IN docker-compose.yml
DEVELOPMENT
To evaluate the activities concerning the development
of Docker-Compose specifications, we were interested
in studying both those that pertained to their writing
(W) and to their reading (R), as we suspected that these
two perspectives pose different challenges to software
developers.

We have considered the following activities concerning the
writing of Docker-Compose specifications:

W1 Reading Docker documentation;
W2 Finding out what are the keys that I need;
W3 Finding out what images are available;
W4 Trying to understand why the services are not working

as intended;
W5 (Re)starting the services to confirm that they are

working as intended;
W6 Configuring the properties of each service (e.g., port

mapping, name, . . . );
W7 Configuring the dependencies between the services

(e.g., depends_on);

W8 Configuring volumes and how they are attached to the
services;

W9 Configuring networks and how they are connected to
the services;

W10 Configuring configs and how they are accessed by
the services;

W11 Configuring secrets and how they are accessed by the
services.

Additionally, we have considered the following activities
as concerning the reading ofDocker-Compose specifications:

R1 Trying to understand what the services are;
R2 Trying to understand the dependencies between services

(e.g., depends_on);
R3 Trying to understand what volumes are used and how

they are attached to the services;
R4 Trying to understand what networks are used and how

they are connected to the services.

Figure 7 depicts the distribution of the answers to these
questions. The answers seem to, in general, concentrate
around the neutral sentiment. To more clearly understand the
data, we have computed the mean, median and interquartile
range, as shown in Table 3 and Table 4, which reinforced this
perception (3) and showed a very slight skewness towards
an agreement sentiment (4), as indicated by the mean and

2324 VOLUME 10, 2022



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

FIGURE 7. Attitude from respondents towards a considerable amount of
time being spent in each of the development activities for writing and
reading perspectives.

TABLE 3. Writing activities of Docker-Compose development, and mean,
median and IQR for the answers to the respective likert items. The values
are comprised in the scale between strongly disagree (1) and strongly
agree (5).

TABLE 4. Reading activities of Docker-Compose development, and mean,
median and IQR for the answers to the respective likert items. The values
are comprised in the scale between strongly disagree (1) and strongly
agree (5).

median. The only exception is the result of activityW4, which
is directly related to debugging, and point to an agreement
towards this being a time-consuming activity. By analyzing
the IQR, we can also conclude that some of the answers
appear not to be consensual among respondents, especially
those related to reading activities.

The general summary of the responses shown in Figure 7
does not allow us to see how professional experience

FIGURE 8. Attitude from respondents towards a considerable amount of
time being spent in each of the writing development activities, by level of
Docker-Compose development experience.

FIGURE 9. Attitude from respondents towards a considerable amount of
time being spent in each of the reading development activities, by level
of Docker-Compose development experience.

may affect the responses. To better understand the results,
we specifically searched for correlations between experience
and the attitude towards each activity. Figure 8 and Figure 9
display the evolution of the mean perception by years
of experience of manipulating docker-compose.yml files,
respectively for writing and for reading activities. We can
observe that those with more experience in writing or reading
docker-compose.yml files tend to perceive most activities as
less time-consuming than respondents with less experience.

We then adopted a similar approach to the one that we used
for analyzing the items related toDockerfiles to understand in
more detail how each activity is affected by the participants’
experience. We have split the sample into two distinct
groups—inexperienced (48 responses) and experienced
(59 responses).

The distribution of answers between these two groups is
displayed in Figure 10 and the statistical results in Table 5.

The data for the inexperienced group, as shown by the
figure, supports a different reading than the one possible by
inspecting the responses globally. On average, inexperienced
respondents seem to agree that the writing-related activities
W1, W2, W4, W5, and W6 are time-consuming. In particu-
lar, debugging is not only regarded as time-consuming by the

VOLUME 10, 2022 2325



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

FIGURE 10. Attitude from respondents towards a considerable amount of time being spent in each of the development activities, by level of
Docker-Compose development experience.

respondents globally, as observed before but the debugging-
related activities W4 and W5 are especially regarded as
time-consuming by inexperienced developers. The data
also allows us to identify an agreement by inexperienced
developers that the activities related to documentation are
time-consuming (W1 and W2), which makes sense when
considering the higher reliance on such resources that is
expected from those with less experience. The configuration
of properties related to services (W6) is also reported as time-
consuming. This is not surprising as services are the core
building block of orchestration specifications. Therefore,
they are used more frequently, and the element for which
the most properties are available. As to the reading-related
activities, inexperienced respondents identify as the most
time-consuming the understanding of how volumes are being
used (R3).

The one-tailed Mann-Whitney U test results included in
Table 5 allow us to assess if the differences between the two
groups are statistically significant. The null hypothesis for
this test is that the answers from both groups belong to the
same distribution, while the alternative hypothesis is that
the inexperienced group shows significantly more agreement
towards the statements. The tests (with a 95% level of
confidence; ρ < 0.05) suggest that experience significantly
affects the perception of how time-consuming are some of
the writing-related activities (W1, W2, W4, W5, W7 and
W10) and all of the reading-related activities (R1, R2, R3
andR4). These results are in-line with the conclusions that we
took when analysing theDockerfile-related items, suggesting
that experienced developers perceive many of the activities
as less time-consuming as they become more proficient
with the technology. In fact, the most likely sentiment in
general for experienced developers is slightly skewed towards
disagreement.

In sum, these results help us answer our first research
question, RQ1, in light of the level of experience. Most
activities seem to become easier with experience, and all
the perceptions of activities being time-consuming come

from the developers with less experience. In particular, these
developers report requiring considerable time for configuring
properties related to services (W6), and for activities
related to debugging (W4 and W5) and to documentation
(W1 and W2).

This suggests that inexperienced developers may be the
ones to benefit themost from improvements to these activities
and that the most relevant opportunities for improvement may
lie in better supporting their work, and in particular in what
regards the debugging of Docker-Compose specifications.
This is consistent with the view [27] that less experienced
developers tend to follow a process of trial-and-error when
developing code artifacts.

F. APPROACHES FOR DIAGNOSING AND CORRECTING
PROBLEMS
The survey items that support answering RQ2 are open text
questions, and they ask what steps or strategies are being
followed by respondents to diagnose and fix bugs in the
creation of Dockerfiles and docker-compose.yml files.

We could find no significant differences in the approaches
described by experienced participants compared to the less
experienced participants.

Most of the approaches that were mentioned for solving
problems in Dockerfiles alluded to some form of trial-and-
error, searching Web resources, or entering the container
to execute commands which may help to diagnose the
issue manually. Some respondents also mention structured
approaches, such as continuous integration pipelines and
end-to-end testing.

Regarding Docker-Compose, the respondents mention
similar tactics, often referencing the analysis of the output
logs and execution of commands within the running con-
tainers. Some describe more systematic approaches such as
isolating services individually, making sure they work as
expected, and afterward test their dependencies, as well as
more advanced strategies to test network connectivity.

2326 VOLUME 10, 2022



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

TABLE 5. Mean, standard deviation and one-tailed Mann-Whitney U test for the answers to the likert items for each activity of docker-compose.yml
development. The values are comprised in the scale between strongly disagree (1) and strongly agree (5).

These approaches all imply leaving the environment
where the specification is being written to gather feedback
about existing problems by collecting data and conducting
experiments. Therefore, we formulate the hypothesis that an
approach, or family of approaches, that allows the same kind
of feedback to be gathered within the same environment,
and even possibly without abandoning the writing of the
specification, could help streamline the entire process.

G. ANCILLARY SOFTWARE TOOLS
We also ask participants if they use any plugins or tools
other than a general-purpose IDE to develop Dockerfiles and
docker-compose.yml files.
According to the responses that we have collected,

experience does not seem to influence the use of plugins
or tools, as experienced and inexperienced participants
provided similar comments in this matter. In fact, most
of the participants report not using any ancillary tools
during the development of Dockerfiles (78%) and of docker-
compose.yml files (83%). The other participants report using
just a few types of tools: syntax highlighters, linters, and
tools for managing local images and containers. Answering
the research question RQ3, these results show that ancillary
tools aimed towards Docker development exist but are
not widely used, and the most common ones only offer
basic and simple features and are often based on static
analysis.

Considering that many of the studied activities are
perceived as time-consuming—especially those related to the
creation of Dockerfiles (cf. Section VI-D) but also some
related to the creation of docker-compose.yml files when
done by those will less experience (cf. Section VI-E)—we
think that there is a real need for new tools that improve the
process of writing these specifications. However, to provide
more sophisticated tools than the ones currently available,

we believe that they may need to go beyond what is possible
with static analysis alone.

VII. THREATS TO VALIDITY AND LIMITATIONS
We have considered a few possible threats to the validity
of our results when designing the research methodology,
as described in Section IV. This section discusses some of
our efforts to mitigate the main threats and identify those that
we can not entirely discard.

Questionnaire design.Online questionnaires are partic-
ularly suitable for simple and generally closed questions,
but this could limit our capability to explain some of
the results. To mitigate this issue, we considered a very
restricted set of open-ended questions in the survey that
allowed us to obtain rich free-text responses without
taking so much time from the participants.
Clarity of the questionnaire. We sought to write the
questionnaire clearly and directly. However, there is
always the chance that some participants might be
confused—or even have a different interpretation—of
the questions than the one we intended. To mitigate
this issue, we have first run an initial version of the
questionnaire with students and performed a trial run
with two researchers, as described in Section IV-B.
This allowed us to identify and fix potentially dubious
questions before running the survey with professionals.
Notwithstanding, we designed the final item of the
questionnaire as an open-ended question that sought to
gather general comments. One of the respondents used
it to mention that the questionnaire as a whole did not
make sense and another that some questions were not
clear enough. These two participants constitute a small
fraction of our sample (1.7%), and we are confident that
most respondents had no problems understanding the

VOLUME 10, 2022 2327



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

questionnaire, but this is a threat that we can not fully
discard.
Honesty of the respondents. We cannot guarantee
that the participants did not answer the questionnaire
more than once or in an untruthful way. Participants
were not offered any form of material gain to answer
the questionnaire, and we believe that they had no
incentive for the responses to be fabricated or dishonest.
Therefore, we believe that that is not the case for the
vast majority of the responses that we have collected, but
this is a threat that we can not consider to be completely
discarded.
Assessing developer experience. The questions on
professional experience asked the participants the num-
ber of years working with Dockerfiles and docker-
compose.yml files. This may not be a reliable way to
assess experience since it depends on the participants’
memory, since that working with a given technology
for a long time may not always equate to having
used more of its potential or knowing more of its
intricacies. However, since we found consistent and
significant correlations between the answers to these
experience-related questions and the other questions
in the questionnaire, we are confident that we could
measure experience with an adequate level of precision.
Representativeness of the sample. Collecting results
through an online questionnaire allowed us to reach
a wide and diverse audience. Notwithstanding, it is
not possible to guarantee that a convenience sample
such as ours is representative of the entire population
of software developers with some level of experience
developingDockerfiles or docker-compose.ymlfiles. For
this reason, the specific point estimates that we consider
in this study cannot be considered representative of the
entire population, but we expect the main conclusions
that stem from this work to reflect the current state of
practice [23].
Generalization to other IaC platforms. We chose
specifically Docker and Docker-Compose as the targets
of our study since this allows us to focus our questions
on specific software artifacts and workflows. We are
necessarily limiting the scope of the results to these
specific technologies, and we can not assume that they
generalize to other kinds of IaC platforms that rely
on different specification languages. Notwithstanding,
these results can still have implications for a very
relevant number of professionals. The prevalence of
Docker for creating and managing software containers
makes us confident of the significance of our results
on the use of Dockerfiles. On the other hand, Docker-
Compose is hardly one of the most commonly used
orchestration solutions and is used mostly for small
service stacks, prototyping purposes, or confined to
development environments. For this reason, our results
about the of docker-compose.yml files may not be as
significant.

VIII. CONCLUSION
The study presented in this article tries to reach insights on the
development of container and orchestration specifications.
We can say that it complements the interviews conducted by
Guerriero et al. [8], given that those address IaC in general.
At the same time, our work characterizes particular activities
when developing specifications for two IaC technologies in
particular—Docker and Docker-Compose.

Our results suggest that the Dockerfile development
process does present challenging activities, and developers
tend to perceive most of them as time-consuming. Finding
the dependencies of a system and debugging seem to be
the activities that would most benefit from improvements.
In what concerns Docker-Compose, while the results were
not as relevant, debugging activities also seem to be one
of the most common concerns, especially for inexperienced
developers. Lastly, we observed that most developers do not
use ancillary tools in their development process.

This work opens directions for future research, which may
focus on understanding our findings further or proposing
new ways to improve some of the activities. A first study
could be a usability evaluation, where participants perform
Dockerfile and docker-compose.yml development tasks and
are observed to identify the major bottlenecks of the
process, using methods such as task analysis or cognitive
walkthrough. A follow-up one could propose new approaches
or environments to develop Docker and Docker-Compose
specifications to address the most time-consuming activities
identified in this work and empirically demonstrate their
merits and liabilities. Notions such as liveness [28], and of
live software development [11], [29], [30] may play a relevant
role in designing such environments, given their goal of
proactively bringing feedback to users or even making the
environment automatically act upon this feedback). We also
consider that environments that enable visual programming
and leverage model-driven engineering techniques can have
an important role, especially for developers with less
experience [11], [12], [31].

ACKNOWLEDGMENT
The authors would like to thank their respondents for their
willingness to participate in this study. Some of the early
results of this research are part of David Reis’ and Bruno
Piedade’s masters theses [1], [2].

REFERENCES
[1] D. Reis, ‘‘Live Docker containers,’’ M.S. thesis, Dept. Eng., Univ. Porto,

Porto, Portugal, 2020.
[2] B. Piedade, ‘‘Visual programming language for orchestration with

Docker,’’ M.S. thesis, Dept. Eng., Univ. Porto, Porto, Portugal, 2020.
[3] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri,

‘‘DevOps: Introducing infrastructure-as-code,’’ in Proc. IEEE/ACM 39th
Int. Conf. Softw. Eng. Companion (ICSE-C), May 2017, pp. 497–498.

[4] D. Bernstein, ‘‘Containers and cloud: FromLXC toDocker to kubernetes,’’
IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[5] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, ‘‘The making of cloud
applications: An empirical study on software development for the cloud,’’
in Proc. 10th Joint Meeting Found. Softw. Eng., Aug. 2015, pp. 393–403.

2328 VOLUME 10, 2022



D. Reis et al.: Developing Docker and Docker-Compose Specifications: Developers’ Survey

[6] Y. Zhang, G. Yin, T.Wang, Y. Yu, andH.Wang, ‘‘An insight into the impact
of dockerfile evolutionary trajectories on quality and latency,’’ in Proc.
IEEE 42nd Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2018,
pp. 138–143.

[7] R. Smith, Docker Orchestration. Birmingham, U.K.: Packt, 2017.
[8] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, ‘‘Adoption,

support, and challenges of infrastructure-as-code: Insights from industry,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2019,
pp. 580–589.

[9] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, ‘‘A systematic
mapping study of infrastructure as code research,’’ Inf. Softw. Technol.,
vol. 108, pp. 65–77, Apr. 2019.

[10] D. Weerasiri, M. C. Barukh, B. Benatallah, and C. Jian, ‘‘CloudMap:
A visual notation for representing and managing cloud resources,’’ in Proc.
28th Int. Conf. (CAiSE), 2016, pp. 427–443.

[11] P. Lourenço, J. Dias, A. Aguiar, and H. Ferreira, ‘‘CloudCity: A live
environment for the management of cloud infrastructures,’’ in Proc. 14th
Int. Conf. Eval. Novel Approaches Softw. Eng., 2019, pp. 27–36.

[12] B. Piedade, J. P. Dias, and F. F. Correia, ‘‘An empirical study on visual
programming Docker compose configurations,’’ in Proc. 23rd ACM/IEEE
Int. Conf. Model Driven Eng. Lang. Syst., Companion, Oct. 2020,
pp. 24–34.

[13] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, ‘‘Toward a
catalog of software quality metrics for infrastructure code,’’ J. Syst. Softw.,
vol. 170, Dec. 2020, Art. no. 110726.

[14] M. U. Haque, L. H. Iwaya, and M. A. Babar, ‘‘Challenges in Docker
development: A large-scale study using stack overflow,’’ in Proc. 14th
ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Oct. 2020,
pp. 1–11.

[15] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C. Gall,
‘‘An empirical analysis of the Docker container ecosystem on GitHub,’’
in Proc. IEEE/ACM 14th Int. Conf. Mining Softw. Repositories (MSR),
May 2017, pp. 323–333.

[16] A. Rahman, S. Elder, F. H. Shezan, V. Frost, J. Stallings, and L. Williams,
‘‘Bugs in infrastructure as code,’’ 2018, arXiv:1809.07937.

[17] A. Rahman, E. Farhana, C. Parnin, and L. Williams, ‘‘Gang of eight:
A defect taxonomy for infrastructure as code scripts,’’ in Proc. ACM/IEEE
42nd Int. Conf. Softw. Eng., vol. 20, Jun. 2020, pp. 752–764.

[18] A. Rahman, E. Farhana, and L. Williams, ‘‘The ‘as code’ activities:
Development anti-patterns for infrastructure as code,’’ Empirical Softw.
Eng., vol. 25, no. 5, pp. 3430–3467, Sep. 2020.

[19] H. Ibrahim, ‘‘A study of the use of Docker compose and dockerhub
images,’’ M.S. thesis, School Comput., Queen’s Univ., Kingston, ON,
Canada, 2019.

[20] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, ‘‘Slacker: Fast distribution with lazy Docker
containers,’’ in Proc. 14th USENIX Conf. File Storage Technol. (FAST),
2016, pp. 181–195.

[21] Z. Huang, S. Wu, S. Jiang, and H. Jin, ‘‘FastBuild: Accelerating Docker
image building for efficient development and deployment of container,’’
in Proc. 35th Symp. Mass Storage Syst. Technol. (MSST), May 2019,
pp. 28–37.

[22] J. S. Molléri, K. Petersen, and E. Mendes, ‘‘An empirically evaluated
checklist for surveys in software engineering,’’ Inf. Softw. Technol.,
vol. 119, Mar. 2020, Art. no. 106240.

[23] S. Baltes and P. Ralph, ‘‘Sampling in software engineering research:
A critical review and guidelines,’’ 2020, arXiv:2002.07764.

[24] S. Jamieson, ‘‘Likert scales: How to (ab)use them,’’ Med. Educ., vol. 38,
no. 12, pp. 1217–1218, Dec. 2004.

[25] D. Reis and B. Piedade, Davidreis97/Challenges_With_Docker: Replica-
tion Package. Zenodo, Apr. 2021.

[26] H. B. Mann and D. R. Whitney, ‘‘On a test of whether one of two random
variables is stochastically larger than the other,’’ Ann. Math. Statist.,
vol. 18, no. 1, pp. 50–60, Mar. 1947.

[27] A. Luxton-Reilly, E. Mcmillan, E. Stevenson, E. Tempero, and P. Denny,
‘‘Ladebug: An online tool to help novice programmers improve their
debugging skills,’’ in Proc. 23rd Annu. ACM Conf. Innov. Technol.
Comput. Sci. Educ., New York, NY, USA, Jul. 2018, pp. 159–164, doi:
10.1145/3197091.3197098.

[28] S. L. Tanimoto, ‘‘A perspective on the evolution of live programming,’’ in
Proc. 1st Int. Workshop Live Program. (LIVE), May 2013, pp. 31–34.

[29] A. Aguiar, A. Restivo, F. F. Correia, H. S. Ferreira, and J. P. Dias, ‘‘Live
software development: Tightening the feedback loops,’’ in Proc. Conf.
Companion 3rd Int. Conf. Art, Sci., Eng. Program., Apr. 2019, pp. 1–6.

[30] D. Amaral, G. Domingues, J. P. Dias, H. S. Ferreira, A. Aguiar, R. Nóbrega,
and F. F. Correia, ‘‘Live software development environment using virtual
reality: A prototype and experiment,’’ in Proc. Int. Conf. Eval. Novel
Approaches Softw. Eng. Cham, Switzerland: Springer, 2019, pp. 83–107.

[31] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, ‘‘CloudCAMP:
Automating the deployment and management of cloud services,’’ in Proc.
IEEE Int. Conf. Services Comput. (SCC), Jul. 2018, pp. 237–240.

DAVID REIS received the master’s degree in
informatics and computing engineering from the
Faculty of Engineering of University of Porto
(FEUP), Portugal. He has been working as a Soft-
ware Engineer with Semasio, since 2020, where
he develops and deploys highly concurrent and
parallelized software components, and employing
DevOps practices.

BRUNO PIEDADE received the master’s degree in informatics and
computing engineering from the Faculty of Engineering of University of
Porto (FEUP), Portugal. He has a particular interest in service orchestrators,
such as Docker-Compose, and on improving software development tools’
experience.

FILIPE F. CORREIA is currently an Assistant
Professor with the Faculty of Engineering of
University of Porto (FEUP), Portugal. He is also
a part of the Software Engineering Group, FEUP,
and INESC TEC. His research interests include
software engineering topics, namely, software
architecture, design patterns, continuous delivery,
agile methods, and live software development.

JOÃO PEDRO DIAS received the B.Sc. andM.Sc.
degrees in informatics and computing engineering
from the Faculty of Engineering of University of
Porto (FEUP), where he is currently pursuing the
Ph.D. degree in informatics engineering (holding
an FCT grant). Since 2017, he has been an
Invited Assistant Lecturer with FEUP. He works
in the area of software engineering, with a special
focus on the Internet-of-Things, with more than
25 published and indexed articles.

ADEMAR AGUIAR is currently an Associate
Professor with the Faculty of Engineering of
University of Porto (FEUP) and a Researcher with
INESC TEC, Porto, with over more than 25 years
of experience in software development, software
architecture, and design (patterns, frameworks,
and infrastructures), agile methods, wikis, and
open collaboration tools.

VOLUME 10, 2022 2329

http://dx.doi.org/10.1145/3197091.3197098

