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ABSTRACT In many fields, the issue of solving the time-varying Sylvester equation (TVSE) is commonly
encountered. Consequently, finding its exact solution has become a research hotspot. In general, the ZNN
and IEZNN models are the most useful algorithms that are frequently utilized to solve the TVSE problem.
However, the ZNN model is borned with noise susceptibility and the IEZNN model loses the adaptive
performance due to its constant coefficient in solving the TVSE problem. In this paper, a residual error
feedback zeroing neural network (REFZNN) is proposed to adaptively solve the TVSE problem. The
REFZNN model feeds back the residual error to the solustion system, which forms a feedback regulation to
reduce the residual error between the system output and the system target. Then, the convergence and noise
patience of the REFZNN model are proved by theoretical analyses. Finally, the validity of the proposed
model is verified by designing computer simulation experiments and its superiority is confirmed by the
performance comparisons with the ZNN and IEZNN models.

INDEX TERMS Time-varying problems, residual error, feedback, zeroing neural network (ZNN), Sylvester
equation.

I. INTRODUCTION
Sylvester equation plays an important role in many fields,
such as control system [1], [2], image processing [3], [4], and
so on. In the recent decades, a lot of researches have been
conducted on how to solve the Sylvester equation efficiently.

Originally, researchers studied many methods to solve
the Sylvester equation [5], [6]. The most classical approach
is Bartels-Stewart method. Only when the sampling period
is large enough, Bartels-Stewart method and its exten-
sion are exploited to solve the time-invariant Sylvester
equation by decomposing its coefficients into Schur and
Hessenberg-Schur factorizations [7], [8]. However, Bartels-
Stewart method holds the drawback of low efficiency and is
unable to cope with time-varying Sylvester equation (TVSE).

The associate editor coordinating the review of this manuscript and
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In recent years, recurrent neural network (RNN) become
quite prevalent owing to its parallel distribution and excellent
properties [9]–[13]. Hence, it is applied inmany fields such as
robotics [14]–[16], signal processing [17], [18], and industrial
applications [19]. Particularly, more andmore researchers use
it to solve Sylvester equation [20], [21]. The RNN model
is divided into gradient neural network (GNN) model and
zeroing neural network (ZNN) model [22]. On the one hand,
as a classical neural network for solving algebraic problems,
the GNN model has been widely used. Especially, the GNN
model is employed to solve Sylvester equation by designing
an error function that evolves along the direction of negative
gradient. When the error function converges to zero, the
solution of Sylvester equation can be obtained. Nevertheless,
in order to predict the evolution direction of the solution
model more accurately, the influence of time derivative infor-
mation must be taken into account. Jin et al. indicated that
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the GNN model cannot make good use of the time derivative
information, which may cause the lag error that is not able to
ignore when solving the TVSE problem [23]. Based on lit-
erature [23], Liao et al. modified the traditional GNN model
and refined it into a form with adaptive coefficients to satisfy
the requirement of solving the TVSE problem [24]. But this
model cannot own noise patience in the process of solving
the TVSE problem. Therefore, the above two methods fail to
efficiently solve the TVSE problem.

On the other hand, Zhang et al. advised zeroing neural
network (ZNN) model to solve the TVSE problem by
using the derivative information of the error function of
the objective equation [25]. On the basis of article [25],
researchers modified the ZNN model to improve the con-
vergence performance. For example, Li et al. designed
a sign-bi-power activation function to accelerate the con-
vergence process of ZNN model for solving the TVSE
problem [26]. In addition, Shen et al. analyzed an effec-
tive time stability of ZNN model and defined an activation
function to reduce the convergence time [27]. But these
ZNN models have not any effective solution to deal with
the noise interference encountered in the process of solving
the TVSE problem. For the sake of noise patience, Jin et al.
offered the integral-enhanced ZNN (IEZNN)model to reduce
noise impressionability [28]. Besides, Zhang et al. provided
a varying-parameter convergent-differential neural network
(VP-CDNN), which has good stability in the process of
solving the TVSE problem [29]. Unfortunately, these models
do not make full use of the information of residual error.
And there is not activation function in the evolution formula.
In this paper, a residual error feedback zeroing neural net-
work (REFZNN) model is proposed. This model combines
the integral term and activation function to increase the noise
patience. In addition, the feedback regulation of residual
error is introduced into the REFZNN model for convergence
capability.

The rest of this paper is divided into four parts. Firstly,
we do some preparatory work and define REFZNN model
in Section II. Then, the theoretical analyses are given to
lay the foundation for the effectiveness of REFZNN model
in Section III. Besides, the correctness of the theoretical
analyses are verified by computer simulation experiments
in Section IV, which confirms the advantages of REFZNN
model. Finally, a summary is described in Section V. Before
concluding this section, the highlights of this paper are listed
as follows:
• A novel residual error feedback zeroing neural net-
work (REFZNN) model is presented to effectively solve
the TVSE problem.

• The theoretical analyses are given to ensure the conver-
gence and noise patience of the REFZNN model.

• The advanced results of the REFZNNmodel for solving
the TVSE problem are demonstrated by the compar-
isons with the ZNN and IEZNN models in the form of
designed computer simulation experiments.

II. PROBLEM FORMULATION AND
MODEL CONSTRUCTION
A. PROBLEM FORMULATION AND ZNN-TYPE SOLVERS
Typically, the TVSE problem can be characterized as follows:

A(t)X (t)− X (t)B(t) = −H (t), (1)

where A(t) ∈ Rm×m, B(t) ∈ Rn×n, and H (t) ∈ Rm×n rep-
resent known smoothly time-varying matrices. In addition,
the matrix X (t) ∈ Rm×n is the unknown matrix to be online
solved. It’s worth pointing that only the two eigenvalues of
A(t) ∈ Rm×m and B(t) ∈ Rn×n are not equal at any moment,
the TVSE problem (1) has a unique solution X∗(t) [30]. The
aim of this paper is to accurately solve the TVSE problem (1).

For supervising and tracking the solving process of the
TVSE problem (1), the error function can be described as

E(t) = A(t)X (t)− X (t)B(t)+ H (t) ∈ Rm×n. (2)

Conforming to the Kronecker product definition, the follow-
ing vectorization operation rule holds:

vec(DCF) =
(
FT
⊗ D

)
vec(C)

where F , C , and D denote the general matrixes, the operator
vec(·) denotes the vectorization of a matrix, the symbol ⊗
represents Kronecker product operator, and the superscript T

denotes the transpose of a matrix. Then, the error function (2)
is vectorized as

e(t) = N (t)x(t)+ h(t), (3)

where e(t) = vec(E(t)) ∈ Rmn×1, N (t) = In ⊗ A(t) −
BT(t) ⊗ Im ∈ Rmn×mn, x(t) = vec(X (t)) ∈ Rmn×1, h(t) =
vec(H (t)) ∈ Rmn×1. Besides, Im ∈ Rm×m and In ∈ Rn×n

denote the identity matries. According to previous researches,
the evolution formula of the ZNN model is decipted as

ė(t) = −γφ(e(t)), (4)

where the scale coefficient γ > 0 and φ(·) represents an
odd andmonotonically increasing activation function. Specif-
ically, the commonly utilized activiation functions are given:

1) POWER-SIGMOID ACTIVATION FUNCTION

φ
(
ej
)
=


1+ exp(−4)
1− exp(−4)

1− exp
(
−4ej

)
1+ exp

(
−4ej

) , if
∣∣ej∣∣ < 1,

e3j , if
∣∣ej∣∣ ≥ 1;

2) SIGN-BI-POWER ACTIVATION FUNCTION

φ
(
ej
)
=

1
2
Siga

(
ej
)
+

1
2
Sig1/a

(
ej
)
,

Siga
(
ej
)
=


∣∣ej∣∣a , if ej > 0,
0, if ej = 0,
−
∣∣ej∣∣a , if ej < 0;

where a > 0 and ej represents the j-th subsystem of e(t).

VOLUME 10, 2022 2861



K. Li et al.: Residual Error Feedback Zeroing Neural Network for Solving Time-Varying Sylvester Equation

Combining the equations (3) and (4), the ZNN model for
solving the TVSE problem (1) is described as below:

N (t)ẋ(t) = −Ṅ (t)x(t)− ḣ(t)− γφ
(
N (t)x(t)+ h(t)

)
. (5)

In order to achieve the performance of noise patience,
an integration-enhanced ZNN (IEZNN) model is desiged:

ė(t) = −γφ
(
e(t)

)
− µ

∫ t

0
e(τ )dτ, (6)

where the parameterµ > 0 is utilized to control the influence
of the integration item

∫ t
0 e(τ )dτ . Inserting (3) into (6), the

IEZNNmodel to solve the TVSE problem (1) can be arranged
as

N (t)ẋ(t) = −Ṅ (t)x(t)− ḣ(t)

−γφ
(
N (t)x(t)+ h(t)

)
−µ

∫ t

0

(
N (τ )x(τ )+ h(τ )

)
dτ. (7)

B. REFZNN MODEL CONSTRUCTION
In order to solve TVSE problem (1) more advantageously,
a residual error feedback zeroing neural network (REFZNN)
model is proposed as follows:

ė(t) = −λ
(
e(t)

)
φ
(
e(t)

)
−µφ

(
e(t)+

∫ t

0
λ
(
e(τ )

)
φ
(
e(τ )

)
dτ
)
. (8)

Here, the time-varying adaptive coefficient λ
(
e(t)

)
is based

on the residual error of the solution system can be constructed
as
• exponential adaptive coefficient

λ
(
e(t)

)
= b‖e(t)‖2 + b · exp(‖e(t)‖2 + b);

• absolute value adaptive coefficient

λ
(
e(t)

)
= b |log2(‖e(t)‖2)| + b;

• fraction adaptive coefficient

λ
(
e(t)

)
=
blog2(‖e(t)‖2)
log10(‖e(t)‖2)

;

where the parameter b > 1. Besides, the signs ‖ · ‖2 and |·|
represent the second norm of a matrix and the absolute value
of a number, respectively.

Consequently, fusing equations (3) and (8), the REFZNN
model for solving the TVSE problem (1) can be denoted:

N (t)ẋ(t) = −Ṅ (t)x(t)− ḣ(t)

−λ
(
e(t)

)
φ
(
N (t)x(t)+ h(t)

)
−µφ

(
N (t)x(t)+ h(t)

+

∫ t

0
λ
(
e(τ )

)
φ
(
N (τ )x(τ )+ h(τ )

)
dτ
)
. (9)

III. THEORETICAL ANALYSES
In this section, the theoretical analyses of the convergence and
robustness of REFZNN model (8) are depicted in details.

A. CONVERGENCE ANALYSES
In this subsection, The convergence of REFZNNmodel (8) is
validated as the following theorem.
Theorem 1: The computational solution solved by

REFZNN model (8) is globally close to the theoretical solu-
tion of the TVSE problem (1).

Proof: As defined in the previous section, ej(t) is
regarded as the j-th subsystem of e(t), where j ∈ 1, 2, . . . ,mn.
Then, we can obtain the following formula:

ėj(t) = −λ
(
ej(t)

)
φ
(
ej(t)

)
−µφ

(
ej(t)+

∫ t

0
λ
(
ej(τ )

)
φ
(
ej(τ )

)
dτ
)
. (10)

To simplify writing, we define the following expression as

qj(t) = ej(t)+
∫ t

0
λ
(
ej(τ )

)
φ
(
ej(τ )

)
dτ. (11)

Consequently, the time derivative of qj(t) can comfortably be
obtained as

q̇j(t) = ėj(t)+ λ
(
ej(t)

)
φ
(
ej(t)

)
. (12)

Linking equations (10), (11), and (12), it is clear that the
following equation can be achieved as

q̇j(t) = −µφ
(
qj(t)

)
. (13)

The above formula is consistent with the ZNN model (4).
According to [31], qj(t) will globally converge to zero.
Furthermore, the Lyapunov candidate function in [32], [33]

can be created as follows:

Gj(t) =
1
2
κe2j (t)+

1
2
q2j (t), (14)

where κ > 0. Undoubtedly, Gj(t) is a positive definite
function owing to Gj(t) > 0 for ej(t) 6= 0 or qj(t) 6= 0 as
well as Gj(t) = 0 for ej(t) = qj(t) = 0.

At first, we defineG0 = Gj(0) = 1
2κe

2
j (0)+

1
2q

2
j (0), where

ej(0) and qj(0) are random initial values of ej(t) and qj(t).
After, the time derivative of Gj(t) can be easily gained as

Ġj(t) = κej(t)ėj(t)+ qj(t)q̇j(t)

= −κµej(t)φ
(
qj(t)

)
− κλ

(
ej(t)

)
ej(t)φ

(
ej(t)

)
−µqj(t)φ

(
qj(t)

)
. (15)

Then, assume that there exists a moment whereGj(t) satisfies
Gj(t) ≤ G0, the following inequalities can be obtained as

1
2
κe2j (t) ≤ G0,

1
2
q2j (t) ≤ G0.

It is easy to get as follows:

|ej(t)| ≤
√
2G0/κ, |qj(t)| ≤

√
2G0.

According to differential mean-value theorem, it can be
acquired:

φ
(
qj(t)

)
− φ(0)

qj(t)− 0
=
∂φ
(
qj(δ)

)
∂qj

∣∣∣∣∣
qj(δ)∈ϒ1

, (16)
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where the set ϒ1 denotes an interval that satisfies ϒ1 ={
qj(t) ∈ R,

∣∣qj(t)∣∣ 6 √2G0
}
. Since φ(·) is odd monotonic

increasing function, ∂φ
(
qj(δ)

)
/∂qj > 0 holds true. We pre-

sume that S1 = max
{
∂φ
(
qj(t)

)
/∂qj

}∣∣
qj(t)∈ϒ1

> 0, and the
inequality holds: ∣∣φ (qj(t))∣∣ 6 S1

∣∣qj(t)∣∣ . (17)

Based on (17), it can be facilely gained as∣∣ej(t)φ (qj(t))∣∣ 6 S1
∣∣ej(t)∣∣ · ∣∣qj(t)∣∣ . (18)

Similarly, S2, S3 can be generated as

S2 = min
{
∂φ
(
ej(t)

)
/∂ej

}∣∣
ej(t)∈ϒ2

> 0,

S3 = min
{
∂φ
(
qj(t)

)
/∂qj

}∣∣
qj(t)∈ϒ1

> 0,

where the setϒ2 =
{
ej(t) ∈ R,

∣∣ej(t)∣∣ 6 √2G0/κ
}
is a closed

interval. Correspondingly, the following inequalities can be
acquired:∣∣φ (ej(t))∣∣ > S2

∣∣ej(t)∣∣ , ∣∣φ (qj(t))∣∣ > S3
∣∣qj(t)∣∣ . (19)

Combining equations (15), (18), and (19), the inequality can
be delivered:

Ġj(t) = −κµej(t)φ
(
qj(t)

)
− κλ

(
ej(t)

)
ej(t)φ

(
ej(t)

)
−µqj(t)φ

(
qj(t)

)
6 κµ

∣∣ej(t)φ (qj(t))∣∣− κλ(ej(t))ej(t)φ (ej(t))
−µqj(t)φ

(
qj(t)

)
6 κµS1

∣∣ej(t)∣∣ · ∣∣qj(t)∣∣− κλ(ej(t))S2e2j (t)
−µS3q2j (t)

= −κ

2λ
(
ej(t)

)
S2ej(t)− µS1

∣∣qj(t)∣∣
2
√
λ
(
ej(t)

)
S2

2

−κ

(
µS3
κ
−

µ2S21
4λ
(
ej(t)

)
S2

)
q2j (t). (20)

Evidently, when Gj(t) ≤ G0, the premise of Ġj(t) ≤ 0 is

µS3
κ
−

µ2S21
4λ
(
ej(t)

)
S2
≥ 0, (21)

according to the inequality (21) and κ > 0, κ is keep in
(0, 4λ(ej(t))S2S3/µS21 ]. Therefore, it is available to find a
qualified κ that makes Gj(t) ≤ G0 always hold true for any
time t . In other words, Ġj(t) ≤ 0 maintains correctness for
all time. Moreover, Ġj(t) is equivalent with zero only when
ej(t) = qj(t) = 0. That is to say, the computational solution of
REFZNN model (8) can globally converge to the theoretical
solution of the TVSE problem (1).

The proof is thus completed. �

B. ROBUSTNESS ANALYSES
The robustness of REFZNN model (8) disturbed by various
noises will be verified with two theorems in this part.
Theorem 2: Under the perturbation of constant noise

ζ (t) = ζ̄ , the residual error ‖e(t)‖2 of the proposed REFZNN
model (8) to solve the TVSE problem (1) globally converges
to zero along with the evolution direction.

Proof:We define ζ̄j the j-th subelement of ζ̄ , and the j-th
subsystem of equation (8) can be expressed to

ėj(t) = −λ
(
ej(t)

)
φ
(
ej(t)

)
−µφ

(
ej(t)+

∫ t

0
λ
(
ej(τ )

)
φ
(
ej(τ )

)
dτ
)
+ ζ̄j

= −λ
(
ej(t)

)
φ
(
ej(t)

)
− µφ

(
qj(t)

)
+ ζ̄j. (22)

Then, combining with equation (13), it is earned:

q̇j(t) = −µφ
(
qj(t)

)
+ ζ̄j. (23)

The Lyapunov candidate function is formed as follows:

Lj(t) =
1
2

(
µφ
(
qj(t)

)
− ζ̄j

)2

. (24)

Apparently, Lj(t) is positive definite. Its derivative about time
t can be written as

L̇j(t) = µ
(
µφ

(
qj(t)

)
− ζ̄j

)
∂φ
(
qj(t)

)
∂qj

q̇j(t)

= −µ
∂φ
(
qj(t)

)
∂qj

(
µφ

(
qj(t)

)
− ζ̄j

)2

. (25)

In line with the above analyses, it is effortless to realize
that L̇j(t) is negative definite. Namely, limt→+∞ Lj(t) =

0 as well as limt→+∞−µφ
(
qj(t)

)
+ ζ̄j = 0. Therefore,

limt→+∞ ėj(t) = −λ
(
ej(t)

)
φ
(
ej(t)

)
is established, which is

consistent with the ZNN model (4). That is to say, ej(t) can
convergent to zero. The proof is thus completed. �
Theorem 3: Under the perturbation of linear noise ζ (t) =

ζ t , the upper bound of the residual error ‖e(t)‖2 of
the proposed REFZNN model (8) for solving the TVSE

problem (1) is n
∣∣ζ̇max(t)

∣∣/ξminµλmin
(
ej(t)

)
when t →

+∞. Besides, λmin
(
ej(t)

)
is the minimum of λ

(
ej(t)

)
, ξj =∣∣φ (ej(t))∣∣ / ∣∣ej(t)∣∣ > 1 and ξ = min

{
ξj | j ∈ 1, 2, . . . ,mn

}
.

In addition, ζj(t) is the j-th subsystem of ζ (t),
∣∣ζ̇max(t)

∣∣ is the
upper bound of

∣∣ζ̇j(t)∣∣ .
Proof: Similar to the proof of Theorem 2, the following

dynamics can be acquired as

q̇j(t) = −µφ
(
qj(t)

)
+ ζj(t). (26)

Then, an auxiliary function is designed as uj(t) = q2j (t)/2 and
the time derivative of uj(t) can be procured:

u̇j(t) =
(
−µφ

(
qj(t)

)
+ ζj(t)

)
qj(t)

= −µqj(t)φ
(
qj(t)

)
+ ζj(t)qj(t). (27)

Obviously, −µqj(t)φ
(
qj(t)

)
≤ 0 is always true. Because

ζj(t)qj(t) ≤ 0 is a sufficient and non-essential condition for
u̇j(t) ≤ 0, the following discussion focuses on ζj(t)qj(t) > 0.
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In case of ζj(t)qj(t) > 0, uj(t) may increase. On the one

hand,
∣∣qj(t)∣∣ = √uj(t) will also increase with the increase of

uj(t). On the other hand,
∣∣−µφ (qj(t))+ ζj(t)∣∣ will decrease

along with the increasement of
∣∣qj(t)∣∣, which do not stop

until
(
−µφ

(
qj(t)

)
+ ζj(t)

)
= 0. This makes u̇j(t) = 0 with

uj(t) getting the maximum. Therefore, it manifests that
∣∣qj(t)∣∣

satisfies the following inequality:∣∣qj(t)∣∣ 6 ∣∣∣φ−1 (ζj(t)/µ)∣∣∣ ,
where φ−1(·) denotes the inverse function of φ(·). Because
|φ(·)| ≥ |φlin(·)|, φ−1(·) ≤ |φlin(·)|, where φlin(·) represents
linear activation function, and its definition as follows:

φ
(
ej
)
= ej,

the above inequality can be rewiritten as

−
∣∣ζj(t)/µ∣∣ 6 qj(t) 6

∣∣ζj(t)/µ∣∣ .
For an arbitrary moment t1 > 0, it satisfies Q1 = ej(t1) +∫ t1
0 λ

(
ej(τ )

)
φ
(
ej(τ )

)
dτ . Similarly, t2 corresponds to Q2 =

ej(t2)+
∫ t2
0 λ

(
ej(τ )

)
φ
(
ej(τ )

)
dτ .

Assuming λ
(
ej(t)

)
φ
(
ej (t)

)
>
∣∣ζ̇j (t) /µ∣∣ in [t1, t2] with

t2−t1 = δ, it generates the following relationship expression:

Q2 − Q1

=
(
ej (t2)− ej (t1)

)
+

∫ t2

0
λ
(
ej(τ )

)
φ
(
ej(τ )

)
dτ

−

∫ t1

0
λ
(
ej(τ )

)
φ
(
ej(τ )

)
dτ

=
(
ej (t1 + δ)− ej (t1)

)
+

∫ t1+δ

t1
λ
(
ej(τ )

)
φ
(
ej(τ )

)
dτ

>
∫ t1+δ

t1
λ
(
ej(τ )

)
φ
(
ej(τ )

)
dτ − ej (t1) . (28)

According to the above analyses, the inequality is obtained as∣∣ζj (t1 + δ) /µ∣∣− Q1

6
∣∣ζj (t1) /µ∣∣+ ∣∣ζj (t1 + δ) /µ− ζj (t1) /µ∣∣− Q1

=
∣∣ζj (t1) /µ∣∣+ ∣∣∣∣∫ t1+δ

t1

(
ζ̇j(τ )/µ

)
dτ

∣∣∣∣− Q1

6
∣∣ζj (t1) /µ∣∣+ ∫ t1+δ

t1

∣∣ζ̇j(τ )/µ∣∣ dτ − Q1. (29)

Combing equations (28) and (29), it can be getted:

Q2 −
∣∣ζj (t1 + δ) /µ∣∣

>
∫ t1+δ

t1

(
λ
(
ej(τ )

)
φ
(
ej(τ )

)
−
∣∣ζ̇j(τ )/µ∣∣) dτ

−
(∣∣ζj (t1) /µ∣∣+ ej (t1)+ Q1

)
. (30)

Due to λ
(
ej(t)

)
φ
(
ej(t)

)
−
∣∣δ̇j(t)/µ∣∣ > 0 and Q2 ≤∣∣ζj (t1 + δ) /µ∣∣, it can be acquired as∫ t1+δ

t1

(
λ
(
ej(τ )

)
φ
(
ej(τ )

)
−
∣∣ζ̇j(τ )/µ∣∣) dτ

6
∣∣ζj (t1) /µ∣∣+ ej (t1)+ Q1. (31)

It must be emphasized that the left side of equation (31) is
a increasing function about δ, while the right side of equa-
tion (31) is a fixed value. Therefore, it is easily to attain
that limt→+∞ λ

(
ej(t)

)
φ
(
ej(t)

)
−
∣∣ζ̇i(t)/µ∣∣ = 0.

Assuming λ
(
ej(t)

)
φ
(
ej (t)

)
< ζ̇j (t1) /µ < 0, we can

similarly earn that limt→+∞ λ
(
ej(t)

)
φ
(
ej(t)

)
+
∣∣ζ̇i(t)/µ∣∣ = 0.

To sum up, it can be decured that λ
(
ej(t)

)
φ
(
ej (t)

)
∈[

−
∣∣ζ̇j (t)∣∣ /µ, ∣∣ζ̇j (t)∣∣ /µ]. Furthermore, this shows ej(t)

converges to
[
−
∣∣ζ̇j (t)∣∣ /µξjλ(ej(t)), ∣∣ζ̇j (t)∣∣ /µξjλ(ej(t))].

So ‖e(t)‖2 satisfies:

0 6 ‖e(t)‖2 =

√√√√ n2∑
i=1

e2j (t) 6 n |emax(t)| , (32)

where |emax(t)| denotes the largest value among
∣∣ej(t)∣∣ ,∀i ∈{

1, 2, . . . , n2
}
. Finally, we can conclude that the residual

error ‖e(t)‖2 of the REFZNN model (8) disturbed by linear
noise converges to the interval

[
0, n

∣∣ζ̇max(t)
∣∣ /ξµλmin

(
ej(t)

)]
.

The proof is thus completed. �

IV. EXPERIMENTAL VERIFICATION
The previous section has theoretically analyzed the conver-
gence and robust performance of the proposed REFZNN
model (8). In this section, the above theoretical results will
be confirmed through computer simulation experiments. The
following time-varying matrices are applied as an example of
the corresponding matrices in TVSE problem (1) for simula-
tion experiments as below.

A(t) =

[
sin(t) cos(t)
− cos(t) sin(t)

]
,

B(t) =

[
0.1 sin(t) 0

0 0.2 cos(t)

]
,

H (t) =

[
0.1 sin2(t)− 1 −0.2 cos2(t)
0.1 sin(t) cos(t) 0.2 sin(t) cos(t)− 1

]
.

Then, the corresponding time-varying matrices N (t), and
time-varying vector h(t) in the equation (3) can be written
as 

N (t) =

([
1 0
0 1

]
⊗

[
sin(t) cos(t)
− cos(t) sin(t)

]

−

[
0.1 sin(t) 0

0 0.2 cos(t)

]
⊗

[
1 0
0 1

])
,

h(t) =


0.1 sin2(t)− 1
0.1 sin(t) cos(t)
−0.2 cos2(t)

0.2 sin(t) cos(t)− 1

 .
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FIGURE 1. The experimental results of REFZNN model (8) in the case of noise-free, where µ = b = 3. (a) The convergence process of the calculation
synthesized by REFZNN model (8). (b) The residual errors ‖e(t)‖2 of ZNN model (4), IEZNN model (6), and REFZNN model (8) using exponential
adaptive coefficient under zero noise. (c) The residual errors ‖e(t)‖2 of ZNN model (4), IEZNN model (6), and REFZNN model (8) using absolute
value adaptive coefficient under zero noise. (d) The residual errors ‖e(t)‖2 of ZNN model (4), IEZNN model (6), and REFZNN model (8) using fraction
adaptive coefficient under zero noise.

A. EXPERIMENTAL RESULTS OF NOISE-FREE CASE
In the case of noise-free, the experimental results of the
REFZNN model (8) for solving the TVSE problem (1) are
exhibited in Fig. 1. As shown in Fig. 1 (a), the red dotted
line denotes the theoretical solution of the TVSE problem (1),
and the other solid lines with different colors represent the
calculated solutions tallied by the REFZNN model (8) with
µ = b = 3 from eight different initial values. Clearly,
from eight arbitrary initial points, the computational solutions
of the REFZNN model (8) can converge to the theoretical
solution of the TVSE problem (1) in a very short time.
Specifically, it converges to the theoretical solutionwithin 1 s.
Thus, the correctness of Theorem 1 is well verified.

As shown in Figs. 1 (b)–(d), they respectively represent
the residual errors of the REFZNN model (8) composed

of exponential, absolute, and fractional adaptive coefficients
to solve the TVSE problem (1). Clearly, no matter which
adaptive coefficient is used, the residual errors of REFZNN
model (8) can converge to of order 10−6. However, those of
ZNN model (4) only converges of order 10−4 and IEZNN
model (6) does not converge in t = 20 s. The advantage
of REFZNN model (8) to solve the TVSE problem (1) is
presented.

B. EXPERIMENTAL RESULTS OF VARIOUS NOISES
The following two cases are considered for computer simu-
lation experiments to verify the robustness of the REFZNN
model (8).
1) Constant noise: In this part, the simulation results of

ZNN model (4), IEZNN model (6), and REFZNN model (8)
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FIGURE 2. The residual error ‖e(t)‖2 of ZNN model (4), IEZNN model (6), and REFZNN model (8) under constant noise interference, where
µ = b = 3. (a)Linear residual error diagram of ZNN model (4), IEZNN model (6), and REFZNN model (8) in the case of constant noise
ζ (t) = ζ̄ = [8]4. (b)Log residual error diagram of ZNN model (4), IEZNN model (6), and REFZNN model (8) in the case of constant noise
ζ (t) = ζ̄ = [8]4.

FIGURE 3. The residual error ‖e(t)‖2 of ZNN model (4), IEZNN model (6), and REFZNN model (8) under linear noise interference, where
µ = b = 3. (a)Linear residual error diagram of ZNN model (4), IEZNN model (6), and REFZNN model (8) in the case of linear noise
ζ (t) = ζ t = [8t ]4. (b)Log residual error diagram of ZNN model (4), IEZNN model (6), and REFZNN model (8) in the case of linear noise
ζ (t) = ζ t = [8t ]4.

under constant noise are demonstrated in Fig. 2. For illustra-
tion and comparison, every value of constant noise is set to
8. The values of µ and b are both taken as 3. It is reflected
from Figs. 2 (a) that the residual error of the REFZNN
model (8) can immediately converge to an accuracy close to
zero. For a clearer presentation, a comparative log plot of the
residual errors of the three models is furnished in Figs. 2 (b).
As exhibited in Figs. 2 (b), starting from any initial value, the
residual error of the REFZNNmodel (8) under constant noise
reduces to of order 10−4 within 1 s. So that the correctness of
Theorem 2 is proved. In contrast, the residual errors of the
IEZNNmodel (6) and ZNNmodel (4) remain a high level for

a long time in the same condition. Specifically, the residual
error of the ZNN model (4) converges to of order 100, and
the residual error of the IEZNN model (6) decreases to of
order 10−3.

2) Linear noise: For the authenticity and effectiveness of
the experiment, we set the value of linear noise as 8t , and
the values of µ and b are both 3. Similarly, as visualized
in Figs. 3 (a)–(b), starting from an arbitrary initial value, the
residual error of the REFZNN model (8) minimizes to of
order 10−2 within 1 s under the interference of linear noise.
However, the ZNN model (4) and IEZNN model (6) keep an
upward trend. It can be seen from the experimental results that
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the residual errors of ZNN model (4) and IEZNN model (6)
are 100 times of those of the REFZNN model (8) in t = 20 s.
As a result, the rightness of Theorem 3 is approved, and the
superiority of REFZNN model (8) is further demonstrated.

V. CONCLUSION AND FUTURE WORK
In this paper, a residual error feedback neural net-
work (REFZNN) model for solving the TVSE problem (1)
is proposed for the first time. Compared with the ZNN
model (4) and IEZNN model (6), the REFZNN model (8)
has residual error feedback adjustment mechanism, which
can make the system more stable. The convergence and
robustness of the REFZNN model (8) to solve the target
problems are analyzed theoretically. At the same time, the
simulation results suggest that the REFZNN model (8) pos-
sesses superiority in convergence speed and solution accuracy
under different residual error feedback functions. In addi-
tion, the simulation results also verify the stability of the
REFZNN model (8) in solving the TVSE problem (1) under
the influence of different noises. In general, the advantages
of REFZNN model are highlighted. On top of that, the focus
of future work is to use the REFZNN model to solve other
problems.

REFERENCES
[1] V. L. Syrmos and F. L. Lewis, ‘‘Output feedback eigenstructure assignment

using two Sylvester equations,’’ IEEE Trans. Autom. Control, vol. 38, no. 3,
pp. 495–499, Mar. 1993.

[2] V. L. Syrmos, ‘‘Disturbance decoupling using constrained Sylvester equa-
tions,’’ IEEE Trans. Autom. Control, vol. 39, no. 4, pp. 797–803, Apr. 1994.

[3] Q. Wei, N. Dobigeon, and J. Tourneret, ‘‘Fast fusion of multi-band images
based on solving a Sylvester equation,’’ IEEE Trans. Image Process.,
vol. 24, no. 11, pp. 4109–4121, Nov. 2015.

[4] Q. Wei, N. Dobigeon, J.-Y. Tourneret, J. Bioucas-Dias, and S. Godsill,
‘‘R-FUSE: Robust fast fusion of multiband images based on solving
a Sylvester equation,’’ IEEE Signal Process. Lett., vol. 23, no. 11,
pp. 1632–1636, Nov. 2016.

[5] G. Wang, H. Huang, J. Yan, Y. Cheng, and D. Fu, ‘‘An integration-
implemented Newton-Raphson iterated algorithm with noise suppression
for finding the solution of dynamic Sylvester equation,’’ IEEE Access,
vol. 8, pp. 34492–34499, 2020.

[6] L. Ding, L. Xiao, K. Zhou, Y. Lan, Y. Zhang, and J. Li,
‘‘An improved complex-valued recurrent neural network model for
time-varying complex-valued Sylvester equation,’’ IEEE Access, vol. 7,
pp. 19291–19302, 2019.

[7] R. H. Bartels and G. W. Stewart, ‘‘Solution of the matrix equation
AX+XB = C,’’ Commun. ACM, vol. 15, no. 9, pp. 820–826, 1972.

[8] D. Kleinman and P. K. Rao, ‘‘Extensions to the Bartels–Stewart algorithm
for linear matrix equations,’’ IEEE Trans. Autom. Control, vol. AC-23,
no. 1, pp. 85–87, Feb. 1978.

[9] J. Yan, X. Xiao, H. Li, J. Zhang, J. Yan, and M. Liu, ‘‘Noise-tolerant
zeroing neural network for solving non-stationary Lyapunov equation,’’
IEEE Access, vol. 7, pp. 41517–41524, 2019.

[10] X. Xiao, D. Fu, G.Wang, S. Liao, Y. Qi, H. Huang, and L. Jin, ‘‘Two neural
dynamics approaches for computing system of time-varying nonlinear
equations,’’ Neurocomputing, vol. 394, no. 21, pp. 84–94, Jun. 2020.

[11] X. Xiao, C. Jiang, H. Lu, L. Jin, D. Liu, H. Huang, and Y. Pan, ‘‘A parallel
computing method based on zeroing neural networks for time-varying
complex-valued matrix Moore-penrose inversion,’’ Inf. Sci., vol. 524,
pp. 216–228, Jul. 2020.

[12] C. Jiang, X. Xiao, D. Liu, H. Huang, H. Xiao, and H. Lu, ‘‘Nonconvex
and bound constraint zeroing neural network for solving time-varying
complex-valued quadratic programming problem,’’ IEEE Trans. Ind. Infor-
mat., vol. 17, no. 10, pp. 6864–6874, Oct. 2021.

[13] C. Jiang, L. Jin, and X. Xiao, ‘‘Residual-based adaptive coefficient and
noise-immunity ZNN for perturbed time-dependent quadratic minimiza-
tion,’’ 2021, arXiv:2112.01773.

[14] T. Ogata, S. Nishide, H. Kozima, K. Komatani, and H. G. Okuno, ‘‘Inter-
modality mapping in robot with recurrent neural network,’’ Pattern Recog-
nit. Lett., vol. 31, no. 12, pp. 1560–1569, Sep. 2010.

[15] S. Li, H. Cui, Y. Li, B. Liu, and Y. Lou, ‘‘Decentralized control of collabo-
rative redundant manipulators with partial command coverage via locally
connected recurrent neural networks,’’ Neural Comput. Appl., vol. 23,
nos. 3–4, pp. 1051–1060, Sep. 2013.

[16] Y. Li, S. Li, and Y. Ge, ‘‘A biologically inspired solution to simultaneous
localization and consistent mapping in dynamic environments,’’ Neuro-
computing, vol. 104, pp. 170–179, Mar. 2013.

[17] S. Li, Y. Li, and Z. Wang, ‘‘A class of finite-time dual neural networks
for solving quadratic programming problems and its k-winners-take-all
application,’’ Neural Netw., vol. 39, pp. 27–39, Mar. 2013.

[18] S. Li, B. Liu, and Y. Li, ‘‘Selective positive–negative feedback produces
the winner-take-all competition in recurrent neural networks,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 2, pp. 301–309, Feb. 2013.

[19] W. Duan, X. Xiao, D. Fu, J. Yan, M. Liu, J. Zhang, and L. Jin, ‘‘Neural
dynamics for control of industrial agitator tank with rapid convergence
and perturbations rejection,’’ IEEE Access, vol. 7, pp. 102941–102950,
2019.

[20] Y. Qi, L. Jin, H. Li, Y. Li, and M. Liu, ‘‘Discrete computational neu-
ral dynamics models for solving time-dependent Sylvester equation with
applications to robotics and MIMO systems,’’ IEEE Trans. Ind. Informat.,
vol. 16, no. 10, pp. 6231–6241, Oct. 2020.

[21] X. Yan,M. Liu, L. Jin, S. Li, B. Hu, X. Zhang, and Z. Huang, ‘‘New zeroing
neural network models for solving nonstationary Sylvester equation with
verifications on mobile manipulators,’’ IEEE Trans. Ind. Informat., vol. 15,
no. 9, pp. 5011–5022, Sep. 2019.

[22] X. Xiao, D. Fu, G.Wang, S. Liao, Y. Qi, H. Huang, and L. Jin, ‘‘Two neural
dynamics approaches for computing system of time-varying nonlinear
equations,’’ Neurocomputing, vol. 394, pp. 84–94, Jun. 2020.

[23] L. Jin, S. Li, H. Wang, and Z. Zhang, ‘‘Nonconvex projection activated
zeroing neurodynamic models for time-varying matrix pseudoinversion
with accelerated finite-time convergence,’’ Appl. Soft Comput., vol. 62,
pp. 840–850, Jan. 2018.

[24] S. Liao, J. Liu, X. Xiao, D. Fu, G. Wang, and L. Jin, ‘‘Modified gradient
neural networks for solving the time-varying Sylvester equation with adap-
tive coefficients and elimination of matrix inversion,’’ Neurocomputing,
vol. 379, pp. 1–11, Feb. 2020.

[25] Y. Zhang, D. Jiang, and J. Wang, ‘‘A recurrent neural network for solving
Sylvester equation with time-varying coefficients,’’ IEEE Trans. Neural
Netw., vol. 13, no. 5, pp. 1053–1063, Sep. 2002.

[26] S. Li, S. Chen, and B. Liu, ‘‘Accelerating a recurrent neural network to
finite-time convergence for solving time-varying Sylvester equation by
using a sign-bi-power activation function,’’ Neural Process. Lett., vol. 37,
no. 2, pp. 189–205, 2013.

[27] Y. Shen, P. Miao, Y. Huang, and Y. Shen, ‘‘Finite-time stability and
its application for solving time-varying Sylvester equation by recurrent
neural network,’’ Neural Process. Lett., vol. 42, no. 3, pp. 763–784,
Nov. 2015.

[28] L. Jin, Y. Zhang, and S. Li, ‘‘Integration-enhanced Zhang neural net-
work for real-time-varying matrix inversion in the presence of various
kinds of noises,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12,
pp. 2615–2627, Dec. 2016.

[29] Z. Zhang, L. Zheng, J. Weng, Y.Mao,W. Lu, and L. Xiao, ‘‘A new varying-
parameter recurrent neural-network for online solution of time-varying
Sylvester equation,’’ IEEE Trans. Cybern., vol. 48, no. 11, pp. 3135–3148,
Nov. 2018.

[30] Y. Zhang, K. Chen, X. Li, C. Yi, and H. Zhu, ‘‘Simulink modeling and
comparison of Zhang neural networks and gradient neural networks for
time-varying Lyapunov equation solving,’’ in Proc. 4th Int. Conf. Natural
Comput., 2008, pp. 521–525.

[31] Y. Zhang, C. Yi, D. Guo, and J. Zheng, ‘‘Comparison on Zhang neu-
ral dynamics and gradient-based neural dynamics for online solution of
nonlinear time-varying equation,’’ Neural Comput. Appl., vol. 20, no. 1,
pp. 1–7, Feb. 2011.

[32] B. Ren, S. S. Ge, K. P. Tee, and T. H. Lee, ‘‘Adaptive neural control for
output feedback nonlinear systems using a barrier Lyapunov function,’’
IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1339–1345, Aug. 2010.

[33] A. Lamperski and A. D. Ames, ‘‘Lyapunov theory for Zeno stability,’’
IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 100–112, Jan. 2013.

VOLUME 10, 2022 2867



K. Li et al.: Residual Error Feedback Zeroing Neural Network for Solving Time-Varying Sylvester Equation

KUNJIAN LI received the B.E. degree in commu-
nication engineering from the Nanyang Institute of
Technology, Nanyang, China, in 2020. She is cur-
rently pursuing the M.Agr. degree in agricultural
engineering and information technology with the
School of Electronics and Information Engineer-
ing, Guangdong Ocean University, Zhanjiang,
China. Her current research interests include
neural networks and computer vision.

CHENGZE JIANG (Student Member, IEEE)
received the B.E. degree in software engineer-
ing fromGuangdongOceanUniversity, Zhanjiang,
China, in 2019, where he is currently pursuing
the M.Agr. degree in agricultural engineering and
information technology with the School of Elec-
tronics and Information Engineering. His current
research interests include neural networks and
computer vision.

XIUCHUN XIAO received the Ph.D. degree in
communication and information system from Sun
Yat-sen University, Guangzhou, China, in 2013.
He is currently a Full Professor with the School
of Electronics and Information Engineering,
Guangdong Ocean University, Zhanjiang, China.
His current research interests include artificial
neural networks, image processing, and computer
vision.

HAOEN HUANG received the B.E. degree
in electrical engineering and automation from
Guangdong Ocean University, Zhanjiang, China,
in 2019, where he is currently pursuing the M.Agr.
degree in agricultural engineering and informa-
tion technology with the School of Electronics
and Information Engineering. His current research
interests include Newton algorithm, neural net-
works, and robotics.

YONGJIANG LI received the Ph.D. degree in cryp-
tography from Xidian University, Xi’an, China,
in 2011. He is currently an Associate Pro-
fessor with the School of Mathematics and
Computer Science, Guangdong Ocean University,
Zhangjiang, China. His current research interests
include big data and block chain application.

JINGWEN YAN received the Ph.D. degree in
optics from the State Key Laboratory of Applied
Optics, Changchun Institute of Fine Mechanics
and Optics, Academia Sinica, Changchun, China,
in 1997. He is currently a Professor with the
Department of Electronic Engineering, University
of Shantou, Shantou, China, where he is also the
Associate Director of the Key Laboratory of Dig-
ital Signal and Image Processing of Guangdong
Province and has been with the Department of

Electronic Engineering, since 2006. His current research interests include
SAR image processing, hyper-wavelet transforms, and compressed sensing.

2868 VOLUME 10, 2022


