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ABSTRACT A reconfigurable manufacturing system offers several manufacturing routes to produce
the same product. Each manufacturing route considers different production, reconfiguration, and module
changing timewhich can potentially impact the delivery time of a product to the customer location. This study
considers the impact of different reconfigurable manufacturing routes and quality concerns on the efficiency
of a vehicle routing problem. The reconfigurablemanufacturing system produces different products while the
vehicle routing problem distributes the products to different customer locations. The analysis is conducted
by using two important reconfigurable manufacturing system characteristics i.e., modularity and scalability,
to assess their impact on manufacturing and supply chain systems. A multi-objective model containing the
objectives of the total cost, the total time, the scalability, and the modularity is proposed to analyze the
problem. The model is subsequently implemented by using a two-phased meta-heuristic approach using
automatic calibration. In the first phase, production analysis is examined by using different reconfigurable
machines through the application of a non-sorting genetic algorithm embedded with an absorption policy
and multiple crossover operators based on simulated annealing. The second phase considers the delivery of
products to different customer locations through the application of a variable neighborhood search approach.

INDEX TERMS Modularity, non-sorting genetic algorithm, optimization, quality variation, reconfigurable
manufacturing system, scalability, simulated annealing, variable neighborhood search, vehicle routing
problem.

I. INTRODUCTION
Reconfigurable Manufacturing System (RMS) is an active
field of research, and it has been regarded as one of the
main challenges of the future by the Committee on Visionary
Manufacturing Challenges [1]. RMS is distinguished from
other manufacturing systems due to its ability to provide
multiple machine settings. Each machine in a reconfigurable
manufacturing system comprises a sequence of settings called
configurations. Thus, a machine may have multiple configu-
rations depending on the number of possible changes between
configurations. For example, the settings of a machine can
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be changed from one configuration to another configuration
by adding/removing/adjusting tools, modules, tool approach
directions, etc. This aspect of manufacturing system is called
reconfigurability. Due to several machine configurations,
RMS is capable of accommodating product variety as well
as high volume of production.

As RMS can provide a large variety of products, several
customer classes, dispersed at different locations, can be
anticipated. To meet the demand of all customer classes, a
manufacturing system can either outsource or use an effec-
tive and responsive supply chain. A major concern of the
RMS system is to carefully design the supply chain by
taking maximum advantage of transportation and to avoid
delay in delivery [2]. Any delay in delivering the product
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to the customer will affect customer satisfaction and future
purchases.

The supply chain has gained increased research attention
due to its role in business processes. A salient problem
addressed in supply chain literature is the vehicle routing
problem (VRP) which delivers the demand of various prod-
ucts to a set of customers. In the existing literature, the effi-
ciency of VRP has been analyzed by using the objectives of
travel distance, minimizing the number of vehicles by using
different solution approaches [3]. However, the efficiency
of VRP has not been analyzed in the context of a recon-
figurable manufacturing system. In RMS, different sets of
configurations can perform the same operation. It means that
different production times, reconfiguration times, modular
adjustment times can be anticipated depending on the set
of configurations chosen for manufacturing. This may cause
variability in the time to deliver the products to the depot
and can influence the further dispatching time of products
in a VRP problem. As shown in Figure 1, a product is to be
created through the sequence of six operations (O1-O6). Each
operation can be processed by the combination of different
configurations. A variable delivery time to customer location
can be observed depending on the sequencing of operations
on machine configurations (also called process planning).
In some cases, the delivery is made within the preferred
time zone, whereas a penalty due to early/late arrival can
be observed in other cases. The early arrival at the customer
location is a cause of concern for the manufacturing system as
the products will wait at the customer locations until the start
of the preferred time windows. The late arrival of products to
customer locations impacts both manufacturers as well as the
customer. It is assumed in this study that the raw material is
already available at the manufacturing facility and the vehicle
routing problem examines only the distribution of products to
different customer locations.

One way to avoid the time variability is by taking advan-
tage of the scalability and modularity of a reconfigurable
manufacturing system by installing extra machines in par-
allel which can produce an extra quantity of production to
avoid such delays. For example, the capacity of RMS can
be increased by installing machine configurations to produce
more in a limited time, thereby, enabling the manufacturing
system to reduce the anticipated delay.

The second cause of concern is machine disruption and
quality variation of manufacturing systems. A machine
with a pre-defined capacity can fulfill the required demand
of ‘d’ units. However, in the presence of disruption and
quality variation, few product units are discarded which
necessitates an increase in the production capacity to meet
demand.

RMS problems are NP-hard and are typically solved by
evolutionary algorithms (e.g., non-sorting genetic algorithm).
During the execution of an algorithm, crossover operators,
such as order crossover, partially mapped crossover are used
to refine the solutions. A random proportion of parent string
is chosen to generate offspring. In contrast, this study uses a

novel mechanism for the selection of a proportion of string to
generate offspring.

This study considers the role of machine disruption, qual-
ity variation of a reconfigurable manufacturing system in
the context of the overall supply chain. A manufacturing-
routing (i.e., RMS-VRP) framework is analyzed by proposing
a multi-objective model. Two important RMS characteristics
i.e., modularity and scalability are integrated into the model.
The model contains the objectives of the total cost (TC), the
total time (TT), the scalability (S), and the modularity (M). A
two-phased approach is implemented to solve the RMS-VRP
problem. In the first phase, a modified version of the non-
sorting genetic algorithm, embedded with an absorption pol-
icy and several crossovers is implemented to solve the RMS
problem. In the second phase, a variable neighborhood search
approach is used to address the vehicle routing problem.

The remaining study is organized as follows. Section II
describes the literature related to reconfigurable manufactur-
ing systems and vehicle routing problems. The literature on
RMS is reviewed regarding two of its main characteristics i.e.,
scalability and modularity. Section III discusses the problem
statement and mathematical model to optimize the cost, time,
scalability, and modularity. Section IV describes the hybrid
solution approach of NSGA-II-VNS, combining the strengths
of the genetic algorithm and variable neighbourhood search
approach. Section V describes the results and offers manage-
rial implications. Finally, Section VI concludes the findings
and contains future research recommendations.

II. LITERATURE REVIEW
A. SCALABILITY ANALYSIS IN RMS
Scalability is central to the performance of RMS, and it
allows the rapid and cost-effective adjustment of a system to
dynamic changes in demand. In this sense, the original RMS
design is important for the optimal transition [4].

In [5], the authors proposed a mathematical model
for upscaling the capacity of machines designed in
series. In another study [6], authors optimized the num-
ber of machines needed for capacity scalability to meet
demand. Reconfigurable and computerized numerical control
machines were used for designing a scalable reconfigurable
system. The focus was onmeeting the revised market demand
by rebalancing a manufacturing system.

In a subsequent study [7], a mathematical model was pro-
posed for a system that contained storage buffers. The goal
was to maximize the throughput once the system is reconfig-
ured. In [8], the authors introduced a dynamic scalable model
aimed at reducing delay in scaling a reconfigurable system.

Although there is enough emphasis on scalability in the
design of RMS systems, the established literature does not
consider the impact of machine disruption, product failure,
and delayed transportation to the depot on the need to scale a
manufacturing system. Intuitively, product failure can trigger
extra production to meet the level of demand. In addition, dif-
ferent configurations will need different production, module

VOLUME 10, 2022 5305



A. S. Khan: Multi-Objective Optimization of Cost-Effective Modular Reconfigurable Manufacturing System

FIGURE 1. An illustration of assignment of operations to configurations and product delivery.

adjustment, configuration change time, etc. which means that
the product may reach the depot with a delay, depending on
the selection of the different sets of reconfigurable machines.
An attempt is made through this study to analyze the need for
scalability due to product failure and late delivery to depot.
We embed scalability at the outset/initial RMS design as it is
a standard practice in the established literature [6], [9].

B. MODULARITY ANALYSIS IN RMS
Modularity is an integral characteristic of RMS, and it
allows the re-use, enhances the chances of fast-paced intro-
duction of new techniques, and facilitates the allocation
of resources with more ease [10]. In that sense, modu-
larity is advantageous, and it helps in the reduction of
manufacturing costs by minimizing the expenses needed in
planning and shortens the changing time between different
units [11].

Ref. [12] offered an approach to optimally select modular
instances of a reconfigurable manufacturing system. A trade-
off between the quality loss due to modularity and the recon-
figuration cost was assessed by using a non-linear integer
programming model. Ref. [8] discussed a trade-off between
the responsiveness and the cost of a modular reconfigurable
system. Ref. [9] studied modularity in the context of a scal-
able reconfigurable system. A mathematical model was used
to consider the optimal number of modules in a scalable
manufacturing system. The findings suggested a trade-off
between the use of additional modules and the loss due to
a decline in their availability.

Ref. [13] designed a cellular reconfigurable manufacturing
system to group modular machines for performing several
operations. Two objective functions were minimized by using
an evolutionary solution approach. In [14], the authors pro-
posed a mathematical model for a cellular reconfigurable
manufacturing system. The approach was based on attaining
a trade-off between the installation of the auxiliary module
and the auxiliary module transportation/flow among different
cells. The model optimized the objectives of the part travel
time among cells, auxiliarymodule travel time, and the recon-

figuration time needed to install and disassemble the auxiliary
modules.

The performance of RMS has frequently been analyzed by
modeling themodularity characteristic. However, the existing
literature does not consider the extra modularity (modularity
effort) needed in the presence of machine disruption (product
failure) and to avoid the late arrival of product to depot. In this
sense, this study considers the behavior of modularity in the
context of the overall supply chain. By selecting different
reconfigurable machines, we examine how modularity may
be impacted under different circumstances. Like the applica-
tion of scalability, modularity is embedded at the outset of the
RMS design to reduce the life cycle costs and to synchronize
the overall production [15], [16]. Ref. [17] suggested that a
modular manufacturing system can prove to be more produc-
tive in the presence of equipment/machine failure.

Table 1 provides the summary of selected studies in RMS
literature. Although scalability and modularity have been
discussed in different studies, they have never been modeled
keeping in view the quality defects and supply chain per-
formance. These aspects are important as a defective RMS
will discard few failed products and hence extra scalability
and modularity will be needed to fulfill the demand. It can
be observed from Table 1 that none of the existing studies
has mathematically examined the role of RMS in the con-
text of a supply chain. Lastly, genetic algorithms have been
frequently used as solution approaches in solving the RMS
problems and few studies have used more than one meta-
heuristic in assessing the RMS performance. This study uses
NSGA-II and VNS as solution approaches for assessing the
performances of a reconfigurable manufacturing system and
a vehicle routing problem. A novel mechanism is adopted to
assess the impact of genetic operators on the performance
efficiency of solution approaches.

C. VEHICLE ROUTING PROBLEM
VRP is a famous problem addressed in the supply chain
literature, which was first proposed by [30]. In the VRP,
a set of vehicles starts from one or multiple depots and visits
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TABLE 1. Summary of selected studies in RMS literature.

different customer nodes to fulfill demands and come back
to their respective depot. In doing so, the VRP considers an
optimal route to satisfy the requirements of different objective
functions. In this section, we present an overview of the VRP
literature regarding the production scheduling and quality
focus.

The integration of production scheduling and product dis-
tribution is central to the performance of a supply chain. It is
more important to closely monitor the production scheduling
in RMS, as a particular schedule may impact the delivery
time of a product. Though the existing literature lacks in inte-
grating the reconfigurable manufacturing system scheduling
and a vehicle routing problem, the integration of production
scheduling and vehicle routing problem is well established in
the literature of other manufacturing systems. For example,
in [31], the authors studied a joint machine scheduling and
VRP problem where the machine was switched between two
products in a period. The objective of carbon emissions was
optimized through the application of a tabu search algorithm.

Martins et al. [32] provided a co-ordinated framework
for a hybrid flow shop production and a vehicle routing
problem. A capacitated vehicle was used to deliver the
products to different customer locations. The goal of the
co-ordinated framework was to optimize the service time
of the last customer. The model was implemented by using
a biased-randomized variable neighbourhood descent meta-
heuristic. In [33], the authors offered an integrated approach
for production scheduling and vehicle routing problem. The
case of a make-to-order production was analysed by using
a single machine and capacitated vehicles. The goal was to
optimize the order delivery time. A genetic algorithm and a
two-stage algorithm were used for obtaining the results.

Fu et al. [34] studied the integrated problem of production
scheduling and vehicle routing problem. The production job
was split onto unrelated machines, and the finished products
were delivered to the customer locations by using heteroge-
neous vehicles. A two-phase iterative heuristic was used for
optimizing the setup cost and the transportation cost. In [35],
the authors considered the production and distribution of
products to different customers in a routing problem. The aim
was to decide the timing and the quantity of production and
when to offer the products to different customers. The model

was solved by using a heuristic designed in different phases.
In another study [31], the objectives of cost and carbon emis-
sions were minimized in an integrated manufacturing and
distribution framework. A VRP model integrated with manu-
facturing capacity and driver regulations was studied in [36].
The goal was to establish routes for vehicles by fulfilling the
delivery and collection needs of different customers.

To some extent, the VRP literature has emphasized on the
quality of products. As an example, [37] addressed a closed-
loop inventory routing problem by considering a mixed
quality defects-based model. The model was applied to the
e-commerce industry, and it analyzed the defective and non-
defective returns. However, the study did not quantify the
defective number of items during transportation or the role
of disruptive manufacturing in the proposed model.

Table 2 summarizes the literature of selected studies in
the VRP literature. Cost has repeatedly been used as an
objective function in assessing the performance of a vehicle
routing problem. Time and distance have also been selected to
understand the behavior of vehicle routing problems. In the
context of a production system, quality analysis and arrival
time concerns at the depot and customer locations have not
been studied for a changeable/reconfigurable manufactur-
ing system. In other words, the existing literature does not
consider the role of VRP in a reconfigurable manufacturing
system. As RMS provides multiple production routes, the
selection of a particular route may cause variation in the time
to deliver the products to the customer locations.

The contributions offered by this study can be summarized
as:

• A vehicle routing problem integrated with a reconfig-
urable manufacturing system (RMS-VRP) is analysed
by considering themodularity and scalability RMS char-
acteristics.

• A multi-objective model is proposed that considers the
objectives of the total cost, the total time, the scalabil-
ity, and the modularity in a joint manufacturing-routing
problem.

• The model considers the role of quality variation/defects
and the late arrival of products to the depot and customer
locations.
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TABLE 2. Summary of selected studies in vehicle routing problem literature.

FIGURE 2. Manufacturing System Design Decomposition based quality
variation and sources of defects [59].

• A novel solution approach based on a hybrid and auto-
matically calibrated form of NSGA-II-VRP is imple-
mented in the south asian manufacturing industry.

III. PROBLEM STATEMENT AND MATHEMATICAL MODEL
A. RMS PROBLEM STATEMENT
The manufacturing is performed by using a set of reconfig-
urable machines while the distribution is studied through a
vehicle routing problem (VRP). Several product types (P),
each comprising sequence of operations (O) are to be pro-
duced by using the available machine configurations (I ).
Due to quality variation, machine configuration i exhibits a
disruptive profile and it produces failed operation units (foio).
As shown in Figure 2, based on our previous framework of
manufacturing system design decomposition (MSDD) [59],
the quality variation can be attributed to poor maintenance,

tolerance error, and tooling issues, etc. Thus, the number of
operation units entering configuration iwill always be greater
than what enters configuration i + 1 due to the removal of
failed units. As the level of demand is to be respected, extra
units are produced to compensate for the failed operation
units. This will require scaling up the RMS and the need to use
extra modularity. The products are shifted to a nearby depot
once the required level of demand is produced. It is worth
noticing that different configurations will consider different
production times, module adjustment times, configuration
change times, and extra production times to compensate for
the failed products. Thus, the selection of different configu-
rations may cause a delay in delivering the products to the
depot.

B. VRP PROBLEM STATEMENT
From depot onwards, a vehicle routing problem (VRP) is
analyzed where a set of customer locations (r, s) is to be
visited to fulfill the demand of locations (d sp). All vehicles
(t ∈ T ) come back to the depot after completing the demand
of customer locations.
The aim is to design the manufacturing-routing network

by minimizing the effect of variation on production and
the effect of late arrival to the depot on the efficiency of
a vehicle routing problem. A set of machine configurations
(i) is to be selected which can warrant the minimum number
of failed operation units and a minimum delay in delivering
the products to the customer locations. A multi-objective
model is presented to optimize the total cost (TC), the total
time (TT), the scalability (S), and the modularity (M) of a
reconfigurable manufacturing system. The model description
is given below.
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INDEXES
Q index for quality characteristic q ∈ Q:q =

{1, 2, . . .Q}
o index for operation o ∈ O:o = {1, 2, . . .O}
i, í index for configuration i, í ∈ I :i, í = {1, 2, . . . I }
m, ḿ index for module m, ḿ ∈ M :m, ḿ = {1, 2, . . .M}
t index for vehicle t ∈ T :t = {1, 2, . . .T }
r, s index for customer location r, s ∈ S : r, s =

{1, 2, . . . S}
p index for product type p ∈ P:p = {1, 2, . . .P}

PARAMETERS
eci exploitation cost of configuration i
ccií configuration change cost between conf.i and í
macmi module adjustment cost of module m on conf.i
scpo scrap cost of operation o of product p
wcsp waiting cost per product p at customer location

s
lcsp late arrival cost per product p at location s
tcp transportation cost per product p per km dis-

tance
pcpo production cost of operation o of product p
dcp delay cost per product per minute at depot
ct ií configuration change time between conf.i and í
matmi module adjustment time of module m on conf.i
frk,oi failure rate of character is tick of op.o on on

conf.i
ptpo production time of operation o of product p
edp expected time of product p to arrive at depot
[etsp, lt

s
p] time window of product p at customer location

s
vt speed of vehicle t
dirs distance between customer locations r and s
QCo

q 1, if characteristic q belongs to operation o,
otherwise 0

Zlpo 1, if operation o belongs to product p, other-
wise 0

Lóp precedence order of operation o in product p

d sp demand of product p at customer location s
clps 1, if product p is needed by location s, other-

wise 0
NOpo number of operations in product p
Cai production capacity of configuration i
ni quantity of operation units entering the RMS
NMo,ó

a number of modules added between op.o and
ó

NMo,ó
s number of modules subtracted between op.o

and ó

DECISION VARIABLES
tpo time when product p arrives at depot
xoi 1, if operation o is assigned to conf.i, other-

wise 0

yo,ói,m,ḿ 1, if between ops.o and ó, there is a change of
module from m to ḿ on configuration i, other-
wise 0

ω
o,ó
i,í

1, if between ops.o and ó, there is a change of
conf. from i to í, otherwise 0

qoio quantity of operation units o enterting conf.i
foio failed operation units on configuration i
tps arrival time of product p at customer location s
gr,sp,t 1, if p is transported by k between r and s,

otherwise 0
mao,ói number of modules added between ops.o and ó
mso,ói number of modules subtracted between ops.o

and ó

C. THE TOTAL COST
The objective function of the total cost (TC) examines the
economic performance of RMS and VRP. Equation (1) con-
tains the TC objective function which comprises ten (10)
components. The first six (6) components are related to RMS
while the remaining four components are related to VRP.
These cost components are discussed below:

TC = CEC + CCC + PRC +MAC + EPC

+SC + DCD+WC + LAC + TRC (1)

The configuration exploitation cost (CEC) calculates the cost
of using a machine setting, i.e., configuration. Each configu-
ration has a cost value that depends on the number of tools,
modules, etc. it offers.

CEC =
∑
o∈O

∑
i∈I

xoi × eci (2)

The configuration change cost (CCC) (eq. 3) calculates the
cost of reconfiguration if there is a change of configuration
during processing the sequence of operations.

CCC =
∑
o,ó∈O

∑
i,í∈I

ω
o,ó
i,í
× cci,í (3)

The production cost (PRC) (eq. 4) expression calculates the
production cost of the units entering configuration i.

PRC =
∑
p∈P

∑
o∈O

∑
i∈I

xoi × qo
i
o × pc

p
o (4)

The module adjustment cost (MAC) (eq. 5) calculates the
cost involved in changing modules on the same machine
configuration. It will be calculated only if there is a change
of modules between the sequence of operations.

MAC =
∑

m,ḿ∈M

∑
o,ó∈O

∑
i∈I

yo,ói,m,ḿ × mac
m
i (5)

TheRMSproduces extra quantity to compensate for the failed
production. This extra quantity is exactly equal to the failed
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units produced (foio). Eq. 6 calculates the extra production
cost (EPC) value.

EPC =
∑
p∈P

∑
o∈O

∑
i∈I

xoi × fo
i
o × pc

p
o (6)

Eq. 7 calculates the scrap cost (SC) value associated with the
production of failed units.

SC =
∑
p∈P

∑
o∈O

∑
i∈I

xoi × fo
i
o × sc

p
o (7)

Eqs. (8-11) are the cost expressions associated with the
VRP problem. Eq. 8 calculates the delay cost of transferring
products to the depot (DCD). This delay is caused by the
modular adjustments, changing configurations, etc. between
the selected configurations and sequencing the operations.

DCD =
∑
s∈S

∑
p∈P

max(0, tpo − edp)× dcp × d
s
p (8)

The products, if arrived early, will wait at the customer loca-
tion until the start of preferred delivery time-window. Eq. (9)
calculates the waiting cost (WC) at the customer location.

WC =
∑
s∈S

∑
p∈P

clps×max(0, et
s
p − t

p
s )× wc

s
p × d

s
p (9)

There will be a penalty of late arrival if the products arrive
at the customer location beyond the preferred time-window.
Eq. (10) calculates the penalty cost of late arrival (LAC) at
the customer location.

LAC =
∑
s∈S

∑
p∈P

clps×max(0, t
p
s − lt

s
p)× lc

s
p × d

s
p (10)

Eq. (11) calculates the transportation cost (TRC) towards
the customer locations. It considers the distance between
customer locations r and s, and the speed of vehicle during
transportation.

TRC =
∑
r,s∈S

∑
t∈T

∑
p∈P

gr,sp,t × d
s
p × tcp × (

dirs
vt

) (11)

D. THE TOTAL TIME
The objective function of the total time (TT) is given in eq.
(12) and its components are detailed below.

TT = CCT +MAT + EPT + LPT + PRT

+DTD+WT + TRT (12)

The configuration change time expression (CCT) (eq. 13) cal-
culates the time needed during changing the machine setting
from one configuration to another configuration.

CCT =
∑
o,ó∈O

∑
i,í∈I

ω
o,ó
i,í
× ct i,í (13)

The module adjustment time (MAT) on a configuration is cal-
culated using eq. (14). It involves the addition/subtraction/re-
adjustment of a module according to the operational needs of
a product.

MAT =
∑

m,ḿ∈M

∑
o,ó∈O

∑
i∈I

yo,ói,m,ḿ × mat
m
i (14)

The extra production time (EPT) needed to compensate for
the failed units is calculated using eq. (15).

EPT =
∑
p∈P

∑
o∈O

∑
i∈I

xoi × fo
i
o × pt

p
o (15)

The production of failed units means that a useful time is lost.
This component of time is calculated by the lost production
time (LPT) expression (eq. 16).

LPT =
∑
p∈P

∑
o∈O

∑
i∈I

xoi × fo
i
o × Ló

p
× ptpo (16)

The production time (PRT) required to meet the level of
demand at different customer locations is calculated by using
eq. (17).

PRT =
∑
p∈P

∑
o∈O

∑
i∈I

xoi × qo
i
o × pt

p
o (17)

The time delay in transferring the product to the depot is
calculated by the DTD expression (eq. 18).

DTD =
∑
s∈S

∑
p∈P

max(0, tpo − edp)× d
s
p (18)

The waiting time (WT) at the customer location is calculated
using eq. (19). The products will wait at the destination until
the start of the preferred time-window.

WT =
∑
s∈S

∑
p∈P

clps×max(0, et
s
p − t

p
s ) (19)

The transportation time (TRT) needed to deliver the products
to different customer locations is calculated using eq. (20).

TRT =
∑
r,s∈S

∑
t∈T

∑
p∈P

gr,sp,t × (
dirs
vt

) (20)

E. SCALABILITY
There are two concerns that necessitate a scalable RMS, i.e.,
the arrival-related concerns, and the defective production.
Eq. 21 contains the objective function of the scalability (S),
and it comprises the number of extra machines required to
meet demand due to failed units (NMD) and the number of
extra machines required to avoid the late arrival at the depot
(NML).

S = (
1

NMD
)+ NML (21)

The expressions for NMD and NML are provided in eq.
22 and eq. 23, respectively. NMD considers the decrease in
production capacity due to failed products. Thus, the ratio
of demand and effective production capacity (total capacity-
failed products) is used to calculate the number of reconfig-
urable machines.

NMD =
∑
p∈P

∑
s∈S

∑
o∈O

∑
i∈I

(
xoi × d

s
p × NO

p
o

Cai − foio

)
(22)

NML is expressed as the ratio of delay time and production
time. For instance, if delay time has a value of 50 minutes
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and production time is 100 minutes, the production efficiency
needs to be increased by 0.5. In other words, the production
efficiency needs to be increased by 50% by installing a par-
allel production system that is half as much efficient as the
original RMS system. The detailed expression for NML is
given in eq. 24.

NML =
DTD
PRT

(23)

NML =
∑
s∈S

∑
p∈P

∑
o∈O

∑
i∈I

(
max(0, tpo − edp)× d sp

xoi × qo
i
o × pt

p
o

)
(24)

F. MODULARITY
The objective function of the modularity (M) is given in eq.
25 and it is the sum of the extra modularity efforts to compen-
sate the scrapped products (MES) and the extra modularity
effort to avoid the late arrival at depot (MEL).

M = MES +MEL (25)

The expression of MES is given in eq. 26. As extra quantity
is produced which is equal to the number of failed prod-
ucts, MES calculates the extra modularity effort needed for
this production. In eq. (26), NMo,ó

a and NMo,ó
s consider the

modules added and subtracted between respective operations,
in that order.

MES =
∑
o,ó∈O

∑
i∈I

xoi × fo
i
o × (α × NMo,ó

a +

β × NMo,ó
s )

(26)

The MEL component of modularity is given in Eqs. (27)
and (28). MEL is the product of the number of machines
required to avoid the late arrival (NML) and the associated
modularity effort.

MEL =
∑
o,ó∈O

∑
i∈I

NML×(α × NMo,ó
a +

β × NMo,ó
s ) (27)

MEL =
∑
s∈S

∑
p∈P

∑
o,ó∈O

∑
i∈I

(
max(0,t

p
o−edp)×dsp

xoi ×qo
i
o×pt

p
o

)
×

(α × NMo,ó
a + β × NM

o,ó
s )

(28)

G. CONSTRAINTS
The actual time for a product to arrive at the depot is given in
eq. 29. The products arrive at the depot once the production
time, module adjustment time, extra production time, and
configuration change time components of the total time are
added.

tpo = PRT +MAT + EPT + CCT (29)

All units entering the RMS system are fed to the first config-
uration (eq. 30).

qo1o = no (30)

For the remaining configurations, the incoming units are
equal to the units coming from the previous configuration

minus the failed units (eq. 31).

qoio = Zlpo × x
o
i × (ni−1 − fo

i−1
o ) (31)

The number of failed units is calculated by using eq. 32.

foio = Qcoq × x
o
i × fr

k,o
i × ni (32)

The time taken by the products to arrive at the customer
location is calculated by using eq. 33 and it is the sum of the
time to arrive at the depot and the transportation time. In this
case, we compute the total time taken by a product from the
state of raw material to its final delivery to the customer.

tps = tpo + TRT (33)

An operation is to be performed by only one machine config-
uration (eq. 34).∑

i∈I

xoi = 1; ∀o = {1, 2, . . .O} (34)

Between two operations, there can be at most one configura-
tion change (eq. 35).∑

i∈I

ω
o,ó
i,í
≤ 1; ∀o, ó = {1, 2, . . .O} (35)

The required level of demand should be fulfilled by balancing
the produced quantity (PQ) and the failed products (FP) (eq.
36).

d sp ≥ PQ− FP; ∀s = {1, 2, . . . S} , ∀p = {1, 2, . . .P}

(36)

The expressions for PQ and FP are provided in Eqs. 37 and
38, respectively.

PQ =
∑
p∈P

∑
o∈O

∑
i∈I

xoi × (qoio − fo
i
o) (37)

FP =
∑
p∈P

∑
o∈O

∑
i∈I

xoi × fo
i
o (38)

Eqs. 39 and 40 ensure that a vehicle starts and ends its trip at
the depot, respectively.∑

s∈S

∑
p∈P

gr,sp,t = 1; ∀t = {1, 2, . . .T } (39)

∑
p∈P

gr,sp,t = 1; ∀t = {1, 2, . . .T } (40)

Eq. 41 necessitates that each customer location should be
visited exactly once while eq. 42 ensures that all customer
locations should be visited.∑

s∈S

∑
t∈T

∑
p∈P

gr,sp,t = 1; ∀r = {1, 2, . . . S} (41)

∑
r∈S

∑
t∈T

∑
p∈P

gr,sp,t = 1; ∀s = {1, 2, . . . S} (42)

Eq. 43 ensures that if an operation is assigned to a configura-
tion, the Tool Approach Directions (TAD) of both operation
and configuration need to be compatible.

xoi × TAD [i] = TAD
[
op
]

(43)

VOLUME 10, 2022 5311



A. S. Khan: Multi-Objective Optimization of Cost-Effective Modular Reconfigurable Manufacturing System

FIGURE 3. A stage-wise implementation of solution approach.

Lastly, Eqs. 44 and 45 are boundary constraints where eq.
44 states the binary variables while eq. 45 contains the non-
negative variables.

xoi , y
o,ó
i,m,ḿ, ω

o,ó
i,í
, gr,sp,t ∈ {0, 1} (44)

tpo , qo
i
o, fo

i
o, t

p
s ≥ 0 (45)

IV. SOLUTION APPROACHES
A. A TWO-PHASE HYBRID SOLUTION APPROACH
Reconfigurable manufacturing system and vehicle routing
problems are a non-polynomial hard set of problems as
they involve complex analysis of different variables. Meta-
heuristics are appropriate approaches for solving such com-
plex problems. In addition, there has been a trend to hybridize
several meta-heuristics to take advantage of the unique capa-
bilities of eachmeta-heuristic. There aremultiple examples in
the literature where the hybridization of different approaches
has been used to solve the relevant problems such as in [60]–
[62]. In this study, a hybrid version of the genetic algorithm
(NSGA-II) and variable neighborhood search (VNS) is used
in different phases to solve the RMS-VRP problem. The
framework of stage/phase-wise implementation of solution
approaches is provided in Figure 3.

In stage 1, the input parameters of NSGA-II and VNS are
automatically calibrated by using the budget, cost function,
optimization, and statistical analysis (to be discussed later).
In stage 2, a non-sorting genetic algorithm, embedded with
an absorption policy and several crossover operators based
on simulated annealing is used to solve the reconfigurable
manufacturing system problem. Stage 3 assesses the vehi-
cle routing problem through the application of a variable
neighborhood search approach whereas stage 4 provides the
consolidated result of a joint RMS-VRP problem.

The framework of NSGA-II-VNS for the RMS-VRP prob-
lem is presented in Figure 4. NSGA-II and VNS employ

different search spaces for entirely different populations. The
search space of NSGA-II is based primarily on the decision
of assigning machine configurations to operations. Different
components of cost, time, modularity, and scalability are
evaluated because of the solutions attained in this search
space.

The steps used in implementing a non-sorting genetic algo-
rithm are provided in Algo. 1. The population of the RMS
problem is selected by randomly assigning operations to
configurations. This random assignment, however, should not
violate the precedence and compatibility constraints. In such
a case, the generated solution will not be feasible and will
incur a penalty.

NSGA-II runs for an automatically tuned and defined
number of iterations (gmax). At each iteration, the assign-
ment of operation to configuration follows the compatibility
and precedence checks. The algorithm uses a roulette wheel
mechanism, probabilistic mutation, and several crossovers to
assess the fitness of objective function values. The probabilis-
tic tournament selection criterion is used for the selection of
parents. In this approach, two candidate parents are selected
for the potential parent population. Based on a probability
value p, an improved solution is selected to become the parent
solution for the crossover. In a contrary situation, the other
solution is selected as a parent. It is worth noticing that
the improved solution is selected based on non-domination
principles.

This study uses a single-point crossover (SPC), order
crossover (OC), partially mapped crossover (PMX), and a
novel modified partially mapped crossover (MPMX). The
illustration of SPC, OX, PMX and MPMX crossovers is
presented in Figures 5, 6, 7, and 8, in that order. The steps
to implement/use SPC, OX and PMX operators are provided
in Algo. 5, 6 and 7, respectively. The steps to implement
the novel MPMX crossover operator are provided in Algo.
2. The cut-point in crossovers is applied randomly, which
can affect the proportion of string chosen for the procedure
of crossover. MPMX either selects the proportion of string
based on a pre-defined or random value. In Figure 8, two
possible scenarios of string selection are presented against
each probability/proportion value. The selection of the pro-
portion of strings in OX, PMX and MPMX can potentially
impact the objective function values. To this end, a simulated
annealing (SA) procedure is embedded with the OX, PMX,
and MPMX crossover operators. In this sense, SA ensures
that in each iteration of NSGA-II, an appropriate portion
of parent strings are selected to form offspring, resulting
in the optimal values of objective functions. The execution
steps of SA for crossover are provided between lines 15-29
in Algo 1.

An absorption policy is embedded in the NSGA-II to
refine the non-dominated solutions. It controls the random
absorption of solutions toward the dominant solution during
the search. This practice ensures that high-quality solutions
are obtained in each iteration of NSGA-II. Absorption policy
considers the distance between solutions, the direction of
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FIGURE 4. A joint framework of NSGA-II-VNS for RMS-VRP.

movement in radian, and advancement through evaluation
function.

The merger and working of NSGA-II and VNS in the
hybrid framework can be explained well through the rep-
resentation of solutions. The complete array of solution of
RMS problem is described in Figure 9. At each iteration
of NSGA-II, an operation is assigned to a machine con-
figuration by fulfilling the compatibility and precedence
constraints. The information of product to which an oper-
ation belongs, and the number of machine configurations
is archived. The objective function components of cost,

time, scalability, and modularity related to RMS are calcu-
lated at each iteration, by assigning configurations to oper-
ations. In Figure 9, in one iteration, configuration M3 is
assigned to the third operation of product 2 and five copies
of machine configurations are needed to fulfil the demand,
and so on.

Two important aspects of NSGA-II results are fed to the
VNS. Firstly, the arrival time at the depot, disruption, extra
machine requirements are archived to be used during the
execution of VNS. Secondly, the type of products and their
quantities produced by RMS is used during the execution
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Algorithm 1 NSGA-II Embedded With Absorption Policy and Several Crossover Operators for RMS

01: Input: Parameters of RMS, including the information of TADs, modules, capacities, etc.
02: Input: irace tuned input parameters of genetic algorithm //Execution of irace
03: Output: Set of non-dominated solutions of process plan
04: For g = 1 to gmax do
05: Generate initial solution
06: Select an operation (o) and configuration (i)
07: For i = 1: I , o = 1: O
08: if compatibility o 6= i
09: i = i+ 1

Else if10: precedence violated
11: o = o+ 1
12:

End if
13:

End if
14: Apply probabilistic Tournament, crossover, mutation //SPC, OC, PMX, MPMX
15: Randomly generate an initial set of parents’ strings //SA execution
16: Set initial parent strings=best parent strings
17: Set best parent strings=current parent strings
18: Set initial temp, t = to
19: Set final temperature t = tmin

While20: to > tmin
21: Generate new parent strings from the current strings
22: Generate a random value between 0-1 for proportion selection
23: Validate the new strings in OX/PMX/MPMX
24: Calculate the time function of current (Tc) and initial strings (Ti)
25: If Ti > Tc
26: Best string = new string
27: Else If Ti < Tc
28: Current string= initial string
29:

End While
// Select the best string for OM/PMX/MPMX crossover

30: Calculate fitness function of OBV’s
31: Merge parent and child population
32: Apply Absorption policy
33: Distance, Direction and Evaluation
34:

End For
35:

End For
36: Stop
37: Display non-dominated solutions
38: Archive the solutions

of VNS. The former aspect affects the overall efficiency of
the VRP problem, and the latter aspect is used as part of
routing and satisfying the demand of different customers.
An instance of the complete array of VRP solution rep-
resentation is provided in Figure 10. A customer with a
required quantity of a specific product is assigned to a route.
This assignment is made in accordance with the constraints
of the vehicle routing problem. The respective components
of objective functions attained through VNS are archived.
In stage 4 (Figure 3), these respective components are

added to attain the non-dominated solutions of all objective
functions.

In the VRP problem, a customer is randomly selected and
assigned to a route based on the requirement of products at a
particular customer location. VNS addresses the VRP prob-
lem, and its execution steps are provided in Algo. 3. It uses
two important strategies, i.e., shaking and path relinking.
Shaking is used to alter the direction of the search. It offers a
starting point for the local search. A neighborhood solution
is used for shaking by employing a one-one exchange. In
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FIGURE 5. Single Point Crossover (SPC).

FIGURE 6. Order Crossover (OX).

FIGURE 7. Partially Mapped Crossover (PMX).

one-one exchange, customer locations are selected from two
routes and their positions are swapped. The shaking process
is terminated if both new routes are feasible, otherwise, the
process is repeated by selecting and swapping the order of two
more customers, and so on. Path relinking is used to draw a
connection between the current solution and the best solution.
It helps in quickly attaining the best solutions. The current
solution and the best (guiding) solution must share few prop-
erties to successfully implement the path relinking strategy.
In the current context, both solutions share the properties of
size, route length, common depot, etc. The algorithm runs for
a maximum number of iterations, and in each iteration, local
search techniques are employed to refine the solutions.

The input parameters of the algorithm are sensitive to
changes and different values can impact the performance

FIGURE 8. Modified Partially Mapped Crossover (MPMX).

FIGURE 9. Solution representation for RMS using NSGA-II.

FIGURE 10. Solution representation for VRP using VNS.

efficiency of their execution. Thus, the parameters of an
algorithm need to be appropriately calibrated.

B. PARAMETERS TUNING THROUGH IRACE
The parameters of an algorithm are sensitive to changes and
different values of parameters can result in different solutions.
Thus, a careful selection of input parameters is necessary to
obtain optimal values of objective functions. Traditionally,
studies have been calibrating the input parameters of an algo-
rithm by administering factorial design using Taguchi design
of experiments [63], [64]. In this study, an automatic calibra-
tion procedure is used through irace package [65] for config-
uring the parameters of NSGA-II and VNS. Irace is a package
used for automatic calibration/tuning of input parameters.

VOLUME 10, 2022 5315



A. S. Khan: Multi-Objective Optimization of Cost-Effective Modular Reconfigurable Manufacturing System

Algorithm 2 Steps for Modified Partially Mapped
Crossover (MPMX)
Step 1 Randomly select two parent strings
Step 2 Input: Length of a chromosome/string
Step 3 Randomly generate a value between 0-1
Step 4 Select the proportion of string based on generated

value (0.33, 0.44, 0.55, etc.)
Step 5 Exchange/Swap the sub-strings within the bound of

cut points
Step 6 Identify the mapping relationship
Step 7 Copy the elements in the remaining places of the

string
Step 8 If a configuration is already present in offspring

1 while copying from string 2,
its position is decided, and replacement is made
based on the mapped relationship

Algorithm 3VNSEmbeddedWith Local Search for VRP

01 Input: Information for VRP including parameters,
locations, demands, product types

02 Input: Automatically calibrated parameters of VNS:
pop. size, iterations

03 Generate initial solution based on randomization
04 Zi = ith solution in the population
05 For Iter = 1 to Max. Iter do
06 Generate an elite pool
07 Select a solution (N. Zi) about Zi
08 Execute the local search for a locally optimal

solution (L. Zi)
09 If L. Zi ≥ Zi
10 Store L. Zi as the new solution
11 Else retain Zi in the solution pool
12 End If
13 Select a new random solution (NR. Zi) about Zi
14 Iter = Iter +1
15 End For
16 Display the non-dominated solutions for VRP
17 Add respective components of RMS-VRP

problems
18 Consolidated non-dominated solutions

The underlying assumption of irace states that each parameter
has its own sampling distribution which is independent from
other parameters. The irace package implements an irace rac-
ing for sampling configurations of parameters, selecting opti-
mal configurations, and updating the sample for acquiring the
best solutions. The irace mitigates a premature convergence
using a restart mechanism and employs an elitist procedure to
ensure that the returned values are acquired after the highest
number of instances.

The framework for automatic calibration through irace
is given in Figure 11 and its pseudocode is presented in
Algo. 4. The calibration uses a cost function (C), budget (B),

FIGURE 11. Automatic calibration (race) process for parameter selection.

and the number of iterations (Iter). At each iteration/race,
the input parameter configurations are assessed through the
cost function. Based on the cost performance, improved con-
figurations are retained while the remaining are discarded.
Following this, a statistical test is run to ascertain whether
performing and non-performing parameters are statistically
different. A range is defined to calibrate the input param-
eters of NSGA-II and VNS, as shown in Table 3. Due to
the novel features of the RMS-VRP, a set of problems was
generated to calibrate the input parameters. Each problem
was defined by i × o × s × p where i = configurations,
o = operations, s = number of customers, and p = product
types. The second, third, and fourth columns of Table 3 show
the input parameters, their range, and the optimal value
selected through calibration, respectively. The irace was exe-
cuted till the exhaustion of the allocated budget (B). The
performance of tuned parameters based on irace was com-
pared with another popular approach called Response Sur-
face Methodology (RSM). The comparison was carried out
by first tuning the input parameters of algorithms, followed
by the assessment of the scalability objective function. The
results are reported in Figure 12, stating that irace tuned
parameters ensures a fast convergence of the solution to
optimal values i.e., the parameters of NSGA-II-VNS take less
iteration in providing stable results. This is because of the
iterative, elitist procedure-based approach, exhaustive nature,
and fine-tuning of parameters‘ through the statistical test in
an irace package.

The performance of NSGA-II-VRP is comparted with two
alternate solution approaches, i.e., non-dominated ranked
genetic algorithm (NRGA) and a simple non-sorting genetic
algorithm (NSGA-II). NRGA, proposed by [66], is an elitist
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TABLE 3. Input parameters, range and optimal values of NSGA-II and VNS.

FIGURE 12. Performance comparison of solution approach based on RSM
and irace tuned parameters.

Algorithm 4 Algorithm for Irace Implementation

01: Input: Parameter space
02: Output: Elite configuration set
03: Define: Set of instances, cost measure, budget
04: Select: Uniform sample from sample space
05: Allocate: An initial budget (b1)
06: Iter. = 1
07: While b1 is less than B do
08: Iter = Iter + 1
09: Value of cost function (C)
10: Statistical significance test
11: Update the sample set
12:

End While
13: Stop
14: Elite configuration set

multi-objective algorithm and it is based on non-sorting
genetic algorithm. Unlike NSGA-II, NRGA selects the par-
ent through a ranked-based roulette wheel mechanism. The
hybrid approach was compared to the application of NSGA-II
and NRGA by using the performance metrics of Error
Ratio (ER) andMaximumSpread (MS). The Error Ratio (ER)
metric, proposed by [67], evaluates the non-convergence
of the Pareto approximated solutions. A smaller ER value

TABLE 4. Sixteen problem sets and their associated data.

represents an improved performance. The MS evaluates the
diversification of solutions provided by the algorithm. It has
been previously used in [68], [69]. This metric assesses the
spread of the solutions, and a higher MS value is preferred.

V. RESULTS AND ANALYSIS
The mathematical model and the solution approaches were
applied to a set of problems extracted from the practices of
a south Asian mechanical products manufacturing industry
and its associated collaborators. To this end, sixteen prob-
lem sets were attained, each containing a distinct number of
machine configurations, operations of products, and several
customers. Though the original data set was not extensive,
extrapolation was used to extend its scope. This data set
associated to the RMS-VRP is provided in Tables 4-12.

Figure 13 and 14 contains the ER and MS values of
NSGA-II-VRP, NRGA, and NSGA-II against different prob-
lem sizes, respectively. The hybrid approach shows smaller
error values and higher spread of solutions. The simu-
lated annealing-based proportion selection in NSGA-II-VRP
improves its performance and dominates it over the solu-
tions provided by simple NSGA-II. In problem set 3, the
MS value of NRGA is better than the value provided
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TABLE 5. Production compatibility between machine configurations and operations of products.

TABLE 6. Modules offered by different machine configurations and their exploitation costs.

TABLE 7. Operation precedence, production cost, production time and modular requirements of operations.

by the hybrid framework, however, NSGA-II-VRP provide
improved results in all other cases.

A discussion is presented in this section by considering the
problem set 10. It contains 9 reconfigurable machines com-

prising a total number of 22 possible configurations. A total
number of 30 modules are available on these configurations.
These machines can be used to produce 7 product types by
completing 33 sequences of operations. The products are to
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FIGURE 13. Error ratio (ER) metric values for different approaches.

FIGURE 14. Maximum spread (MS) metric values for different approaches.

FIGURE 15. Non-dominated solutions of cost and time based on different
crossover operators.

be delivered to 20 customer locations. The approaches were
implemented in MATLAB on a computer core i5, 2.2 GHz
with 8 GB RAM.

The performance assessment of objective functions by
using different crossover operators is provided in Figures 15.
It can be observed that the hybrid NSGA-II-VNS works well
by using the modified partially mapped operator (MPMX)
and it offers improved non-dominated solutions. This is
because of the simulated annealing based refined selection of
parent strings in the crossover operator to generate offspring.

FIGURE 16. Number of iterations considered by the solution approach to
gain stability against the different proportions of string selected in MPMX.

FIGURE 17. CPU time and percentage of convergence in the presence and
absence of simulated annealing.

Thus, uniformly distributed and many non-dominated solu-
tions are obtained.

Figure 16 shows the impact of different proportions of
strings selected in the MPMX operator on the total cost
solution. As the proportion of string selection increases, many
iterations are taken by the solution approach to attain stability.
In addition, the solution quality worsens, as reflected by the
total cost value (TC0.5 > TC0.4 > TC0.3). Thus, a small
proportion of string select inMPMXwill take fewer iterations
in returning optimal solutions.

Figure 17 shows the significance of embedding SA in the
framework. Accordingly, SA integrated into the framework
will result in the fast convergence of solutions in less compu-
tation time (CPU). The convergence of solutions is impacted
by many factors. The existing literature has discussed factors
such as crossover rate, mutation rate, etc. The focus has been
on selecting/tuning such input values that warrant optimal and
convergent solutions. Our results show that the proportion
of strings selected during crossover operation also impacts
the quality and convergence of solutions. Thus, for a given
crossover rate, a thoughtful selection of the chunk/proportion
of a chromosome is important for mating purposes. Fur-
thermore, the annealing phase (reduction of temperature) in
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TABLE 8. Cost of change between different machine configurations and their production capacities.

TABLE 9. Arrival time information for customer locations of problem
set 6.

SA ensures that the convergent solutions are obtained after
several iterations.

For the ease of understanding andwithout the loss of gener-
ality, the analysis is carried out by considering the following
cases:
Case 1: The delayed cost and time of product delivery

to the depot are not reduced by using extra modularity and
scalability, i.e., NML = 0 and MEL = 0.
Case 2: Extra modularity and scalability are used to avoid

the late arrival of products to the depot. This means that the

TABLE 10. Customer demand data for problem set 6.

RMS is scaled up to ensure that products reach on time to
the depot. In this case, NML 6= 0, MEL 6= 0, DCD = 0 and
DTD = 0.
Case 3: RMS is free of any quality-related defects, i.e.,

NMD = 0 and MES = 0.
The analysis is presented by firstly considering case 1. The

top 5 clusters of assigning operations to different configu-
rations are provided in Figure 18. These clusters result in
different objective function values of the total cost, the total
time, the modularity, and the scalability. In some clusters,
fewer modular changes are needed while a higher number of
failed products (due to machine disruption) are produced in
other clusters.
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TABLE 11. Operation names, codes and tool(s) needed for operations of product 1 and 3.

TABLE 12. Modular analysis in cluster 1.

The configuration instances and their frequency of use are
provided in Figure 19. A comparison is provided between
cluster 1 and cluster 5. Cluster 5 uses a smaller number of
machine configurations. In addition, in many cases, it uses a
higher frequency of a specific configuration.

Figure 20 shows the configuration exploitation cost (CEC),
scrap cost (SC), waiting cost at the customer location (WC)
and transportation cost (TRC) values of clusters 1, 2 and 5.
Cluster 1 contains the highest CEC, SC and TRC values com-
pared to other clusters. This is because it uses a higher number
of machine configurations for production which increases
the machine exploitation cost. In addition, it results in more
quality variation and defects which elevates the scrap cost
value. Cluster 5 has the highest value of waiting cost. This is
due to the smaller number of configurations used in cluster
5 and hence a limited need for configuration and modular
changes. Thus, production can be completed earlier, resulting
in delivering the products well before the preferred time-
window and hence more waiting cost at the customer loca-
tions. A similar pattern is shown by configuration change
time (CCT), lost production time (LPT), waiting time (WT),
and transportation time (TRT) values (Figure 21).

The cost components related to case 1, case 2, and case
3 are provided in Figure 22. The perfect quality-based RMS

(case 3) has the lowest configuration, extra production, and
late arrival cost values. This is because it focuses on ‘doing it
right the first time’ and hence there is no need for excessive
production and the use of additional machine configurations
for such production. Case 2 uses additional scalability and
modularity to avoid the delayed cost of transferring the prod-
ucts from manufacturing to distribution (DCD = 0). How-
ever, this results in the increased values of configuration
exploitation cost and production cost. The distribution of cost
components in the operation-configuration cluster highlights
the component which contributesmost in elevating the overall
cost. If cluster 1 is selected, more effort will be needed to
reduce the extra production cost, scrap cost, and transporta-
tion cost. Within cluster 1, case 2 has the highest value of
scrap cost whereas case 1 has the highest transportation cost.

Although monumental savings can be achieved through a
defect-free RMS (case 3), it is extremely hard to design such a
system. Every manufacturing system is subject to defects and
decay during its operation. In the wake of Industry 4.0, man-
ufacturing systems need to be more responsive by providing
optimal quality and on-time delivery of products. A Recon-
figurable Integrated Manufacturing System (RIMS) can be
installed to readily monitor the behavior of a manufacturing
system and to identify the sources of quality-related issues.
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FIGURE 18. Clusters of operations assignments in Case 1.

Following implications can be drawn, based on the pre-
sented analysis for researchers and managers working in
reconfigurable/changeable manufacturing and supply chains:

FIGURE 19. Configuration instances and their frequency of use in Clusters
1 and 5.

FIGURE 20. Cost components of Clusters 1, 2 and 5.

FIGURE 21. Time components of Clusters 1, 2 and 5.

FIGURE 22. Cost comparison among Cases 1, 2, and 3.

1) Different operation-configuration clusters can impact
the time to deliver products to customers. Thus, a con-
siderate selection of machine configurations (process
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planning) is required to ensure the on-time delivery of
product to customers.

2) More focus needs to be provided to ensure a defect-free
manufacturing system. Defects have manifold conse-
quences, and they increase the cost/time and scalability,
and modularity requirements.

3) The need to control the production of failed products
and late arrival concerns will demand investment in
more scalable and modular manufacturing systems.
Thus, the overall cost will increase. In this sense, there
is a trade-off among cost, time, modularity, and scala-
bility in the presence of defective production and late
arrival concerns.

4) Customer satisfaction can be enhanced by offering
variety, throughput, and on-time delivery. The vari-
ety and throughput requirements can be met by using
a reconfigurable manufacturing system. However, the
on-time delivery of products can be a challenging task.
Practitioners working in a reconfigurable/changeable
manufacturing system can closely monitor the path
followed by a product during production to ensure on-
time delivery.

5) The irace tuned parameters of the hybrid algorithm
work well and return stable solutions in less compu-
tation time.

6) The integration of simulated annealing ensures the fast
convergence of solutions. For the crossover, a thought-
ful selection of the chunk/proportion of a chromosome
is important for mating purposes. The annealing phase
(reduction of temperature) in SA ensures that the con-
vergent solutions are obtained after several iterations.

7) MPMX crossover operator in NSGA-II offers many
non-dominated solutions, showing uniform distribution
and compactness. In addition, a small proportion of
string selection provides optimal solutions in a smaller
number of iterations.

VI. CONCLUSION
The reconfigurable manufacturing system is a promising
manufacturing paradigm. It can cost-effectively provide vari-
ety as well as throughput. However, it still facesmultiple chal-
lenges of which defective production and responsive deliv-
ery are prominent issues. RMS offers several manufacturing
routes to produce the same product which can impact the
production time and delivery time of a product. Motivated
by such issues, in the first, this study attempted to design
a reconfigurable manufacturing system in the context of a
supply chain i.e., a vehicle routing problem. The aim was to
understand the impact of product failure and late delivery on
the need to scale up a reconfigurable manufacturing system
with extra modularity.

A multi-objective model was proposed to solve the joint
manufacturing-routing (RMS-VRP) problem. The model
contained the objectives of the total cost, the total time,
the scalability, and the modularity. Each objective function

modeled the behavior of RMS and VRP. A hybrid and auto-
matically tuned framework of NSGA-II-VNS, integratedwith
SA was used to analyze the problem.

Multiple clusters and caseswere analyzed to providemean-
ingful implications. These findings will assist practitioners
in understanding the analysis of cost in different cases and
the trade-off between different components of the proposed
model. It is important to closely monitor the scheduling of
operations on different configurations for responsive delivery.

This study has the following limitations and suggestions
for future research. The failure rate was restricted to specific
value for the deterministic problem. It is a stochastic phe-
nomenon that can be well examined by modeling as a proba-
bility value. The presented analysis was based on production
according to the operational precedence. Future research can
define a priority rule such as First-In-First-Out (FIFO) for the
production purpose. In addition, other RMS characteristics
such as diagnosability, integrability can be modeled to better
understand the behavior of a reconfigurable manufacturing
system. In continuation to a vehicle routing problem, other
supply chain problems such as a closed-loop supply chain
can be analyzed in the context of a reconfigurable manufac-
turing system. Sustainability and emission-related objectives,
besides the objectives of cost and time, can be defined which
are quite practical in a vehicle routing problem. In addition,
social well-being concerns related to high vehicle speeds can
be mathematically examined. Lastly, exact approaches and
other evolutionary approaches can be used for comparative
purposes.

APPENDIX

Algorithm 5 Steps of Single Point Crossover (SPC)
Step 1 Randomly select two parent strings
Step 2 Cut each string into two halves
Step 3 Select the left or right sub-string to the cut point and

exchange it with the right or left sub-string of another
string

Algorithm 6 Steps of Ordered Crossover (OX)
Step 1 Randomly select two parent strings
Step 2 Randomly cut the selected parent strings at two

points
Step 3 Maintain the sub-strings within the cut bound in

the offspring
Step 4 Select the sub-string after the second cut point in

the second chromosome and paste it in the first
string/chromosome.

Step 5 During paste, ensure the order by removing any
repeated value of the configuration

Step 6 Select the sub-string after the second cut point in
the first chromosome and paste it into the second
string/chromosome

Step 7 Repeat step 5.

VOLUME 10, 2022 5323



A. S. Khan: Multi-Objective Optimization of Cost-Effective Modular Reconfigurable Manufacturing System

Algorithm 7 Steps of Partially Mapped Crossover
(PMX)
Step 1 Randomly select two parent strings
Step 2 Randomly select two cut points in each string
Step 3 Exchange/Swap the sub-strings within the bound

of cut points
Step 4 Identify the mapping relationship
Step 5 Copy the elements in the remaining places of the

string
Step 6 If a configuration is already present in offspring

1 while copying from string 2,
its position is decided, and replacement is made
based on the mapped relationship

LIST OF ABBREVIATIONS
RMS Reconfigurable Manufacturing System.
VRP Vehicle Routing Problem.
NP Non-Polynomial.
TC Total Cost.
TT Total Time.
S Scalability.
M Modularity.
M1 Model 1.
M2 Model 2.
NSGA-II Non-Sorting Genetic Algorithm.
VNS Variable Neighborhood Search.
PRP Production Routing Problem.
MSDD Manufacturing System Design Decomposi-

tion.
AHP Analytical Hierarchical Process.
SPEA-II Strength Pareto Evolutionary Algorithm.
GA Genetic Algorithm.
MOPSO Multi-Objective Particle Swarm Optimiza-

tion.
AMOSA Archived Multi-Objective Simulated Anneal-

ing.
WGP Weighted Goal Programming.
LNS Local Neighborhood Search.
ILS Iterated Local Search.
SA Simulated Annealing.
TS Tabu Search.
CEC Configuration Exploitation Cost.
CCC Configuration Change Cost.
PRC Production Cost.
MAC Module Adjustment Cost.
EPC Extra Production Cost.
SC Scrap Cost.
DCD Delay Cost and Depot.
WC Waiting Cost.
LAC Late Arrival Cost.
TRC Transportation Cost.
CCT Configuration Change Time.
MAT Module Adjustment Time.
EPT Extra Production Time.

LPT Lost Production Time.
PRT Production Time.
DTD Delayed Time Delivery.
WT Waiting Time.
TRT Transportation Time.
NMD Machines required for failed products.
NML Machines required for avoiding late arrival.
MES Modularity for compensating failed products.
MEL Modularity for avoiding late arrival.
PQ Produced Quantity.
FP Failed Products.
TAD Tool Approach Direction.
SPC Single Point Crossover.
OC Order Crossover.
PMX Partially Mapped Crossover.
MPMX Modified Partially Mapped Crossover.
C Cost function.
B Budget.
RSM Response Surface Methodology.
RO Robust Optimization.
CPU Computation Time.
RISM Reconfigurable Integrated Manufacturing System.
FIFO First-In-First-Out.
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