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ABSTRACT Global climatic changes and increased carbon footprints provided the main impetus for the
decrease in the use of fossil fuels for electricity generation and transportation. Matured manufacturing
technologies of solar PV panels and on-shore and off-shore windmills have brought down the cost of
generation of electricity using solar energy on par with conventional fossil fuel. Initially, solar and wind
power generation was envisioned for microgrids, serving small local communities. However, advancements
in power electronics have now facilitated large solar and wind farms to be integrated with main power
grids. In this context, hosting capacity, which is the amount of distributed energy resources a grid can
accommodate, without significant infrastructure up-gradation, has gained importance. In determining the
hosting capacity at a particular location, the uncertainties of wind and solar power generation play a role.
Effective forecasting models using time-series weather data can be built to predict wind and solar power
generation. This forecast is essential to ensure proper grid operation and control when renewable energy
sources are already installed. The forecast is also useful in the planning stages for investment decisions and
distribution system planning. While long-term forecasts are rarely needed for the operation of integrated
grids, accurate short-term predictive models are necessary for scheduling. This paper presents an extensive
review of various forecast models available in the literature. The study mainly focuses on the short-term
forecast, providing a critical review of the duration of data used in each model and a synoptic comparison
of their performance indices.
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NOMENCLATURE
ACF Auto correlation function.
ANFIS Adaptive Network Based Fuzzy

Inference System .
ANN Artificial Neural Network.
ARIMA Autoregressive Integrated Moving

Average.
ARMA Autoregressive Moving Average.
AR Auto Regressive.
CART Classification and Regression Trees.
CCRF Continuous Conditional Random

Fields.
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DoE Design of Experiments.
EEMD−MLP Ensemble Empirical Mode

Decomposition-Multi-layer Perceptron.
EEMGLSTM Ensemble Empirical Mode

Decomposition-Long Short Term
Memory Network.

EMD Empirical Mode Decomposition.
FNN False Nearest Neighbour.
GNN Generalized Neural Network.
GWe Gigawatt Electrical.
LASSO Least Absolute Shrinkage and Selection

Operator.
LM Levenberg-Marquardt.
LSSVM Least Square- Support Vector Machine.
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MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MA Moving Average.
MOS Model Output Statistics.
NARX Non-linear Autoregressive Network

With Exogenous Inputs.
NMAE Normalized Mean Absolute Error.
NRMSE Normalized Root Mean Square Error.
NWP Numerical Weather Prediction.
PACF Partial Auto Correlation Function.
PCA Principle Component Analysis.
PSO Particle Swarm Optimization.
PSO Particle Swam Optimization.
PV Photo Voltaic.
RBF Radial Basis Function.
RF Random Forest.
RMSE Root Mean Square Error.
SAX Symbolic Aggregate Approximation.
SA Simulated Annealing.
SMAPE Symmetric Mean Absolute Percentage

Error.
SMA Seasonal Moving Average.
SVM Support Vector Machine.
VMD Variational Mode Decomposition.
WNN Wavelet Neural Network.
WRF Weather Research and Forecast.

I. INTRODUCTION
The energy demand of the earth’s population is humongous
and is expanding in mammoth proportions, with the current
annual energy consumption being approximately 25 kTWh.
The current trends indicate a doubling of this by 2050 and by
the end of the century, it is expected to triple. Two scenarios
may be considered easing ease this threat - carefully use
the energy or find alternative energy sources [1]. Current
dependencies on fossil fuels would lead the human popu-
lation to an acute energy crisis. The continued use of the
dwindling fossil fuels and their associated harmful effects
like pollution and greenhouse gas emissions with resultant
climate change, render them less acceptable and reliable as
energy sources for the future. These factors pose some of
the daunting challenges to humanity to identify and employ
cleaner and greener energy sources that could satisfy and
sustain the demand for the future [2], [3]. The prohibitive
costs in consideration of the quantum of production limit
the employment of the currently known sources of green
energy as a viable alternative to conventional sources, though
the gap is slowly diminishing. Among the renewable energy
sources, solar and wind energy are immensely promising for
electric power generation and have the potential to ensure
a sizeable contribution to the electrical energy demand of
the planet. Both these sources are practically inexhaustible,
freely available, and involve no polluting residues or green-
house gas emissions [4]. However, solar and wind energy
are sources that depend on weather conditions, which carries
an element of uncertainty. Though solar power production

has a fairly predictable pattern, wind power is intermittent,
unreliable, [5], [6] and highly erratic [7]. This poses a major
threat to the reliability of power dispatch. This causes high
accuracy forecasts to be performed on multiple time hori-
zons [8]. Forecasting tools help in the reduction of devia-
tions between the schedule and the actual dispatch at the
load dispatch centers [9]. The power produced by solar PV
panels depends primarily on solar irradiance, which exhibits
a specific pattern. Themagnitude of irradiance is zero through
the night and starts increasing with sunrise. It reaches its peak
in the afternoon and then slopes down, reaching a near-zero
with sunset, thus following a periodic pattern every day.
The magnitude of irradiance may vary depending on the
weather conditions while retaining the pattern [10]. There
can also be variations due to the intervention of clouds.
De Giorgi et al. [11], developed multi-regression and ANN
models for solar irradiance prediction. A sensitivity analysis
using regression models has been performed to estimate the
impact of different input parameters, such as module temper-
ature, ambient temperature, and irradiance on the modules for
different tilt angles. The result showed a high impact of irradi-
ance on PV power. Benghanem and Joraid [12], estimated the
relation between different parameters like global irradiance,
diffuse irradiance, and temperature. This helped in evaluating
the potential of solar energy in Medina, Saudi Arabia. The
measured and estimated values are in good agreement. Ruiz
Ariaz et al. [13], proposed a new regression model for the
prediction of hourly solar irradiance. Themodel considers the
clearness index and relative optical mass. Dong et al. [14],
proposed a prediction of solar irradiance using a state-space
exponential smoothing model. Before applying this model,
the data is stationeries using the Fourier trend model. The
performance is compared with other time series forecasting
models, such as ARIMA, single exponential smoothing, ran-
dom walk model, etc. [15].

Power generation from wind is highly susceptible to cli-
matic variables viz. geographical location, wind speed and
its direction, seasonal changes, time of the day, etc. A uni-
form efficiency cannot be warranted for a particular fore-
casting method across different geographies [16]. Hence it is
critically essential to examine the seasonality and other influ-
encing parameters to determine the best fit model for the loca-
tion [17], [18] Literature provides a good number of options
for forecast such as statistical models, intelligent models, etc.
Reference [19]–[21] give a detailed review of diverse meth-
ods to forecast wind power. The authors have also enunciated
the directions for developing forecast models. It is specified
that a combination of physical and statistical models can be
more effective in prediction. In [22], a model is proposed
which integrates wind direction with other input parame-
ters to form a mixed ARMA model. The inter-dependencies
between wind speed and wind direction are investigated by
K-Mean clustering. A hybrid model using ARIMA-GARCH
and wavelet are proposed in [23]. The outliers in wind
speed data are filtered out using wavelet decomposition, fol-
lowed by modeling with the ARMA-GARCHmodel. In [24],
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ANN and Bayesian algorithms are employed to propose a
2-step prediction. This methodology could achieve MAPE
ranging from 14 to 18 percentage with the analysis done at
two different sites.

Artificial Neural Networks (ANN) are gaining signifi-
cant acceptance in recent times for renewable energy fore-
casts as they overcome certain shortfalls of time series
models [25]–[27]. ANN is a self-learning network, which
can learn from the given data during the process of training.
A well-trained neural network can be made to behave as
required. A network is formed with a set of neurons orga-
nized in different layers. The bottom layer has the predic-
tors (inputs) and the top layer contains forecast (outputs).
A series of known inputs and outputs are fed to the system.
At each step, the output of the system is compared with the
actual output and the error is propagated backward through
the network. When the training is completed with a sufficient
amount of data, the network will be capable of predicting
the future. Thus ANN is a very good tool for prediction
as it can be trained using historical data to predict future
values [28], [29]. The input data set is split into three, each
one for training, validation, and testing, while training recur-
rent networks. The network bias values and weights are cor-
rected using the data set for training in the training algorithm,
to minimize the error. The corrections are completed using
the validation set. The trained network is finally evaluated for
performance on the test data set.

In the past few decades, hundreds of models have been
proposed in the literature to predict solar and wind power
generation. An exhaustive comparison of all these models
is limited in the literature. In this paper, the authors have
attempted to analyze the existing models in renewable gen-
eration forecasts. A comprehensive comparison of the data,
models, and their performances is presented. The paper is
organized as follows. The installation capacity of solar and
wind power is briefed in section II. Various forecasting tech-
niques are illustrated in section III. A review of statisti-
cal models for solar and wind power forecast is discussed
in sections IV and V respectively. Section VI summarizes
machine learning techniques used for the short-term forecast.
A review of machine learning models for wind and solar
power forecast is discussed in sections VII and VIII respec-
tively. Section IX comments on the concluding remarks and
the future of short-term prediction for solar and wind power
forecast.

II. SOLAR AND WIND ENERGY- INSTALLED CAPACITY
Solar energy is the biggest non-carbon energy source. The
energy obtained from solar radiation that is incident on Earth
per hour (4.3 x 1020 J) is much higher than the planet’s
consumption in one year (4.1 x 1020 J). Solar electrical
production and supply is a 7.5-billion-dollar industry with
an annual growth rate of 35-40% globally. The potential of
solar power is clear from the fact that an energy equivalent
to 20,000 GW nuclear mission plants, which is equivalent to
twice the consumption of the world from fossil fuels, could be

supplied by coverage of 0.16% of the land on earth with solar
conversion systems of 10% efficiency. Sun could virtually
prove as an unlimited source of energy which dwarfs the
capability of achievement by human technology.

Wind energy is another clean, eco-friendly source that is
abundant. The advantage of wind energy is that power gener-
ation from it is easily scalable. Wind energy has an enormous
offering to renewable power generation. This is clear from the
studies that operating 20% rated capacity of 2.5 MW turbines
restricted to warm, rural, and non-forested areas can exceed
the cumulative global consumption of energy by 5-fold and
that of electricity alone by 40 times. Off-shore wind capacity
is also colossal. Studies indicate it could serve the energy
demand of Europe seven times over and the energy demand
of United States four times over.

A. GLOBAL SCENARIO
The installed capacity of solar PV globally has reached
approximately 627 GW, which was 67 GW at the end
of 2011, which was only 1.5 GW in 2000. The annual
average growth rate of solar PV over the past five years is
around 73%. The major contributors to this growth are only
a few countries [30]. The top five countries with a cumu-
lative installed PV capacity of 15 GW or above are China
(207.4 GW), European Union (131.7 GW), the USA
(75.9 GW), Japan (63 GW), and Germany (49.2 GW). 80%
of the total global capacity is due to these countries as
shown in Fig. 1. Country including Greece, India, Australia,
France, Korea, and Portugal are gaining momentum due to
economic support schemes and new policies. There has been
tremendous growth in wind power production in the past
15 years [31]. According to the statistics provided by Global
Wind Energy Council, the worldwide wind energy capacity
was 17.4 GW in the year 2000. By the end of 2019, it became
650.5 GW. The top 5 countries in wind production at the end
of the year 2019 are China (236.4 GW), European Union
(192 GW), Germany (61.36 GW), USA (105.45 GW), and
India (37.5 GW). Other countries emerging in wind gener-
ation are Brazil, France, United Kingdom, Spain, and Italy.
Fig. 2 shows the wind generation capacity of different coun-
tries in the last 3 years.

B. INDIAN SCENARIO
Being a tropical country, India has a greater potential to tap
solar energy. The PV industry in India is large and diversi-
fied. There are ten major solar cells, panels, and complete
PV systems manufacturers, and around 50 different assem-
blers. These companies supply around 200 MW per year of
30 different types of PV systems in rural, remote areas, and
industrial categories. The Ministry of New and Renewable
Energy (MNRE) has started several new schemes and incen-
tives which have provided new momentum to the growth
of PV installations in India. The total PV installed capacity
has quadrupled in the last four years. The total installed
capacity from May 2014 to April 2017 is increased from
2.26 GW to 12.28 GW.
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FIGURE 1. Solar PV installed capacities in leading countries.

The installed capacity of wind energy in India has con-
siderably increased in the last few years. The potential of
wind energy in India is about 400 GW as per the assessment
in 2011 [32]. Major developments in wind energy produc-
tion started with the formation of the National Program for
Wind Energy Development in 1990. The total wind capacity
of 1.9 GW in 2002-03 has escalated to 37 GW in 2019.
Tamilnadu has a maximum capacity of 9.2 GW followed
by Gujarat (7.2 GW) Maharashtra (4.79 GW), Rajasthan
(3.3 GW), and Karnataka (4.73 GW) at the end of 2019 [33].

III. FORECASTING TECHNIQUES
Scheduling of electric power requires load forecasting and
generation forecasting. Till the recent past, most of the power
generation was from conventional sources of energy like ther-
mal, hydel, and nuclear power plants, where the generation is
easily controlled and limited by the ratings of the plant. Here,
load forecasting is given more importance, and the generation
is scheduled to meet the load demand. Hence, generation

forecasting is less. Generation forecasting is a vital factor in
renewable power generation, where it is not easily controlled
and depends on nature. In such a scenario, it is necessary to
forecast the generation before the load schedule. Therefore,
the research focus is shifting towards generation forecasting
to enable greater renewable energy penetration. In generation
forecasting [34], the period of the forecast is one of the main
criteria to be considered. The different periods of forecast are
primarily divided into the following [35]:

A. VERY SHORT TERM
The forecast horizon ranges from a few minutes to 1 hour.
This forecast is useful for applications like electricity clear-
ing, real-time grid operation, and regulatory actions [35].

B. SHORT TERM
The forecast horizon ranges from 1 hour to one or two days
ahead [35]. This is useful in economic load dispatch planning,
operational security in the electricitymarket, and decisions on
load sharing.
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FIGURE 2. Wind installed capacities in leading countries.

C. MEDIUM TERM
The forecast horizon ranges from 5 to 7 days [35]. This is
useful for situations like decisions on unit commitment or
reserve requirements.

D. LONG TERM
Long-term forecast, whose duration is more than one week
is useful for planning power plant maintenance, operation
management, etc [35].

As the time of the forecast gets longer, the forecasting
becomes more and more uncertain because of the erratic
behavior of the predictors and the forecast variables. In this
work, the emphasis is primarily on short-term forecasting.
The predictions are done for 1 day ahead. Each forecasting
process involves a set of basic steps enumerated as follows:

1) Identification of Problem
2) Data Acquisition
3) Exploratory analysis
4) Determine a suitable model to fit the data
5) Evaluation of the forecasting model

The problem of the prediction of solar or wind power
generation is closely associated with the prediction weather
parameters. This problem can be divided into two parts. First,
solar irradiance or wind speed, or any other meteorological
variable is predicted and then the amount of energy is esti-
mated with the mathematical relations between the predicted
parameter and power. Fig. 3 gives a classification of forecast-
ing techniques.

E. PHYSICAL MODEL
The physical model starts with meteorological information
such as NWP data and then model it to fit the local physical
influences [36]. The adaptation of data is performed through
the solar PV model with solar prediction and power curves of
a wind turbine, provided by the wind turbine manufacturer,
with wind forecast. This model may lead to systematic errors
of the predicted power. This can be minimized by performing
Model Output Statistics (MOS) applying the offline data
from the site [37]. As this model needs high amount of
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FIGURE 3. Classification of forecast techniques.

computations, this is normally performed with supercomput-
ers and hence not very commonly used.

F. STATISTICAL MODELS
Statistical models are most appropriate for short-term fore-
casting [38]. This method uses historical data to predict solar
irradiance and wind speed. The accuracy of prediction for
these models is lower than that with a physical model, but
the computational requirements are less. A very high level
of accuracy is not demanded in the application of generation
scheduling. Thus, statistical models have opted where time
series models are developed with the past data and prediction
of future is performed. A time-series data represents series of
periodic measurements of a variable. The measurements can
be hourly, daily, weekly, monthly, yearly, or at any other peri-
odic interval. The primary information required to analyze the
past behavior of time series data is the data pattern. The past
pattern can be easily projected to predict the future using a
suitable forecast model if data is expected to behave similarly.
The two important classifications of time series models are
Parametric and Non-Parametric models. It is assumed in
the parametric model that the basic stationary data series is
structured and can be characterized using a minimum number
of parameters. In a non-parametricmodel, themodel structure
cannot be decided apriori and depends entirely on the amount
of data [39]. Various types of statistical models are discussed
below:

1) REGRESSION MODELS
In regression analysis, a trend line is fitted to statistical data
points, and the line is projected to the future. Linear or
non-linear trend equations can be developed [40]. By eval-
uating and analyzing a trend pattern, a historical pattern can

be determined which can then be projected to the future. The
regression model also helps to separate the trend pattern from
the data series. This method is normally used with decom-
position techniques. In regression models, the mathematical
relationship between two or more variables is evaluated from
a plot of the historical data [41].Multivariate linear regression
model equation is as given in (1). For single varies regression,
only coefficients β0 and β1 exist. All other coefficients βn are
zero.

yi = β0 + β1χi1 + β2χi2 + · · · + βnχip (1)

There are n number of dependent variable observations and
p number of independent variable observations. Multivariate
non-linear regression model equation is as given in (2).

y = b×mx11 ×m
x2
2 (2)

In the equation, the dependent variable is y and indepen-
dent variables are x1, x2, etc. Linear and non-linear regression
models are developed for prediction of solar irradiance and
wind speed.

2) PERSISTENCE MODEL
This is the simplest forecasting technique. In most of the
analysis, this method is considered as the baseline while
evaluating the performance of other forecast models [42].
This model assumes tomorrow’s conditions to be the same
as today. The complete historical data is not considered for
this model. Only the data pattern of the previous day is
considered.

3) MOVING AVERAGE MODEL
These are elementary models to smooth historical data.
Smoothing of data is required to evaluate the
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trend component. There are many levels of moving average
models such as simple moving average and weighted moving
average [43]. In the simple moving average model of order k ,
the average of each observation is calculated by averaging
that observation and m number of preceding and succeeding
observations where m = (k − 1)/2. The expression is given
in (3).

Ft =
m∑

j=−m

Y(t+j) (3)

where, Ft is predicted value of the current observation,
Yt is current observed value. The order of the moving average
model has to be chosen carefully. It is a general observation
that the trend is captured better with a large interval. The
error in the forecasting model increases with the increase
in order. The major drawback of moving average is that
equal weight-age is given to all the past values which are
considered for averaging. But in the actual case, the most
recent data should have more relevance. The available past
data is not fully used in this model. Rather, only the data
which is considered for averaging is made use. The forecast
result obtained through moving average may be misleading if
the data contains seasonal variations as well.

4) EXPONENTIAL SMOOTHING
Forecasting by weighted moving average extends the moving
average method. The simple moving average model attributes
equal weight-age to all the k points. But it is obvious in any
forecasting that the recent observations are the best guide to
the future. Hence, it is prudent to use a weighting scheme
that attributes lesser weight-age to older observations rela-
tive to the recent ones. In exponential smoothing models,
the weights of older observations reduce exponentially [14].
There can bemore than one smoothing parameter in exponen-
tial smoothing, which gives the classifications of exponential
smoothing as single, double, and triple exponential smooth-
ing. The determination of these parameters done with an
iterative method and these values decide the weights assigned
to the observations.

a: SINGLE EXPONENTIAL SMOOTHING

F(t+1) = α × Yt (1+ α)Ft (4)

where Ft+1 is predicted value of the subsequent sample,
Ft is predicted value of the current observation, Yt is cur-
rent observed value, α is the smoothing parameter (varies
between 0 and 1)

b: DOUBLE EXPONENTIAL SMOOTHING

Level ⇒ Lt = αYt + (1− α) (Lt−1 + bt−1) (5)

Trend ⇒ bt = β (Lt − Lt−1)+ (1− β) bt−1 (6)

where α and β are the trend smoothing constants respectively.
Both lie between 0 and 1. and Lt and Yt are the estimated and

actual values respectively if the time series at the time t . bt is
the slope.

c: TRIPLE EXPONENTIAL SMOOTHING:

Level ⇒ Lt = α (Yt − St−s)+ (1− α) (Lt−1 + bt−1)

(7)

Trend ⇒ bt = β (Lt − Lt−1)+ (1− β) bt−1 (8)

Seasonal ⇒ St = γ (Lt − Lt−1 − bt−1)+ (1− γ ) St−s
(9)

where γ is seasonal smoothing component (lies between 0
and 1), and St is seasonal component.

5) AUTO REGRESSIVE (AR) MODELS
In AR Models, the present values of the variables are rep-
resented as a regressive function of the past values [44].
Thus, the model is said to be a regression of the past values.
The combination of AR models and MA models leads to
a powerful model named ARMA(p,q) model. Here p and q
are orders of MA and AR models, respectively. Appropriate
selection of the order of ARMA needs to be done for the
effective forecast. These models can only be used if the data
is stationary. The model can be expressed as given in (10).

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · · + ϕpYt−p
+et − θ1et−1 − θ2et−2 − · · · − θqet−q (10)

where Yt is present observation, φ is AR coefficient, θ is MA
coefficient, et is error, p is order of AR, q is order of MA.

Three steps are required to model a practical time series
using the above equation. First is the transformation of the
original series Yt to be stationary about its mean and variance.
The second is the selection of suitable order of p and q.
Third, the estimation is parameters φ1, φ2, . . .φp and θ1,
θ2, . . .θp. Generally, this is achieved using some non-linear
optimization procedure that minimizes the sum of square
errors. If the data has seasonal variations, it can be modeled
as seasonal ARMA, which is expressed as ARMA(p,q)(P,Q).

AR: p is order of the auto regressive part, MA: q is
order the moving average part, SAR: P is order of sea-
sonal auto regressive part, SMA: Q is order of seasonal
moving average part. The order of the ARMA model is
obtained by analyzing the auto-correlations and partial auto-
correlations of the stationary series. Both auto-correlation and
partial auto-correlation functions should not have any abrupt
cut-offs. Box and Jenkins (1976) presented set of rules to
determine suitable values for p, q, P and Q. According to
Box-Jenkins’s methodology, any model is pertinent if it
results in random residuals. If more than one such model is
found to bewell fitting, themodel with fewer parameters need
to be selected.

6) ARIMA MODEL
ARIMA model considers the irregular component of a time
series. The model allows nonzero auto-correlations in the
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irregular component, which can cause a better model for
the data [45]. In AR, the variables usually have a built-in
dependence relationship which violates the assumption that
the error is independent. And the choice of the number of past
values to be considered alters the efficiency (effectiveness)
or goodness of fit of the model [46]. In the ARIMA model,
the disadvantage of the seasonal error component that was
experienced in the ARMA model is eliminated by regressing
the dependent variable against the past errors. The Integra-
tive (I) part of the ARIMA model includes the elimination of
non-stationary in a time series by difference the time series
as in (11).

Y ′t = Yt + Yt−1 (11)

G. INTELLIGENT TECHNIQUES
Intelligent techniques for forecasting are appropriate when
the time series data are non-stationary and erratic. The advan-
tage of these methods is the reduced computational complex-
ity compared to statistical models [25], [27]. These methods
can be categorized into two methods.

1) Based on Neural Networks (NN)
2) Based on Evolutionary Algorithms like Genetic

Algorithm (GA)

The various methods based on NN solve the problem by
mimicking the human brain. The designed network is trained
with the historic data. The trained network is then validated
and tested with the known data. In evolutionary algorithms,
the problem is solved by imitating the process of biological
evolution. Some hybrid models combine the advantages of
two or more models [26].

H. ERROR MEASURES
It is essential to perform a comparative analysis to deter-
mine the accuracy of individual models when different mod-
els are employed for the test data. The right choice of the
error measures is pivotal in determining the accuracy of the
predictive model. Three error measures are used primarily
to compare different models: Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE) and Symmetric
Mean Absolute Percentage Error (SMAPE).

1) MEAN ABSOLUTE ERROR (MAE)
MAE is defined as given as,

MAE =

∑
| Xt − Ft |
N

× 100 (12)

where Xt is input data at time t , Ft is predicted value at time t ,
N is number of samples used in computing the error, MAE is
an absolute measure. MAE can range from zero to infinity.
MAE cannot be considered a final guideline to judge the
accuracy of the model as the actual value decides the extent
of the error. For example, an error of 10 becomes negligible
when the actual value is 2000 but turns out to be significant
for an actual value of 50.

2) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
MAPE can be defined as given as,

MAPE =
1
N
×

∑
| Xt − Ft |
Xt

× 100 (13)

MAPE represents the quantum of error relative to the actual
data expressed as a percentage, thereby directly indicating
the accuracy of the model. Considering an error value of 10,
MAPE is 1% for an actual value of 10 and 20% for an actual
value of 50. This enhances the choice of MAPE as an effec-
tive pointer to the accuracy of forecasting techniques. While
MAPE considers the absolute value of the error, it cannot
provide information on the deviation of the predicted values
towards positive or negative. Outlets also may affect MAPE.

I. SYMMETRIC MEAN AVERAGE PERCENTAGE
ERROR (SMAPE)
The disadvantages of MAPE can be overcome by taking the
ratio of error and the mean of actual and predicted values.
This is defined as Symmetric MAPE as given as,

SMAPE =
1
N
×

∑
| Xt − Ft |

(Xt + Ft) /2
× 100 (14)

When taken the same example as is MAPE, SMAPE gives
an error of 28.57% in either case.

IV. REVIEW OF STATISTICAL MODELS FOR SOLAR
FORECAST
In [47] Peder Bacher et al., have proposed a method for
online short-term solar power forecasting. The data used
for this work is the hourly solar power from a PV system
and NWP (Numerical Weather Prediction) global irradiance.
Three different models are developed in this paper. The refer-
ence model is taken as the persistence model. Then, a simple
auto-regressive model is developed. The third model is the
conditional parametric model, where both observed power
and NWP power are the inputs. The coefficients chosen for
the model are conditional on the time of the day and time
of the year. The developed models are compared and Root
Mean Square Error (RMSE) for 10-hour ahead prediction is
compared.

In [48] S. Kaplanis et al. propose a novel method to predict
solar irradiance for any hour of a day based on only one
measurement in the morning. 5 years of measured data is
used for model development. Hourly global solar radiation
is determined based on the day of the year and site location.
A correction factor is introduced which accounts for the
air mass difference during the penetration of solar irradi-
ance. The results obtained are within the limits of standard
deviation. In [39], the solar irradiance data is classified by
different seasons. Each seasonal series is decomposed into
trends and random components. Trend component is mod-
eled with the least square method and random series with
the ARMA model. The prediction of solar irradiance in the
superimposition of individual prediction. The solar irradi-
ance data of the duration 1998 to 2005 is used for model
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building and testing. The average error obtained is between
15 to 21%. Finally, the predicted solar irradiance is used to
predict the power output from the solar panel.

In [49], a data mining approach is used to implement
solar irradiance forecasts. The historical data for 5 years
is classified into different clusters like a cloudy sky, clear
sky, etc. using a k-means clustering algorithm. This is done
to obtain rainfall probability patterns. These patterns are
later used to predict solar irradiance. In [50], the CART
(Classification and Regression Trees) algorithm of data min-
ing is chosen to analyze the data. The results indicated that
the prediction model has great importance on the seasonal
parameters. In [51], the multiplicative ARMA model is used
to predict solar irradiance. Four years of data are consid-
ered for model development. Annual periodicity and seasonal
variations were removed. The order of the ARMA model is
determined by observing the ACF and PACF plots. In [13],
a new regressive model with predictors for the sigmoid func-
tion as clearness index and relative optical mass is proposed.
21 weather stations in different locations are considered for
model building. The model is compared with two other sim-
ilar models in the literature and the proposed model is found
better. Other models are concisely tabulated in Table 1.

V. REVIEW OF STATISTICAL MODELS FOR WIND
FORECAST
Forecast models are highly data dependent when the data is
erratic like wind speed. The existing time series models like
exponential smoothing, ARIMA, etc. may not give the best
expected results with the data available from the region of
study. Hence it is required to deploy various models to the
data to understand the behavior pattern of the wind and to
zero in on a model and develop a custom-made solution for
the region of study. The first step towards developing the
best forecast model is to test the basic-existing statistical time
series models such as persistence, regression [62], moving
average, exponential smoothing, and ARIMA as these are the
basic and simple models available.

References [19], [20] give a detailed review on diverse
methods to forecast wind power. The authors have also
enunciated the directions for developing forecast models.
It is specified that a combination of physical and statisti-
cal models is more effective for prediction. Reference [22],
proposes a model which integrates wind direction with
other input parameters to form a mixed ARMA model.
The inter-dependencies between wind speed and wind direc-
tion are investigated by k-Mean clustering. The outliers in
wind speed data are filtered out using wavelet decomposi-
tion, followed by modeling a hybrid model with ARMA-
GARCH [23]. In [63], ANN and Bayesian algorithms are
employed to propose a 2-step prediction. This methodology
could achieve MAPE ranging from 14 to 18% with the anal-
ysis done at two different sites.

Decomposition of time series data is one of the oldest
methods to analyze and characterize time series data. The idea
of decomposing the time series data was introduced in the

early 1950s. Since then, extensive studies were carried out by
various researchers in this area. Initial works were focused
on seasonal decomposition and the effect of using forecast-
ing to reduce the complexity of seasonal adjustments [64].
Some researchers were working on forecast effects of trend
variance [65]. A decomposition method based on seasonally
adjusted data was proposed by Miller and Williams [66].
Later, the concept of empirically combining distinct seasonal
models was proposed [67]–[69]. In [70], Chen analyzed the
strength of variousmodels like regression, ARIMA, andHolt-
Winters’ and found that Holt-Winters’ gave better results.
In [71], the performance of forecast of various seasonal mod-
els with different types of real-time data was analyzed. The
performance of each model varies mainly depending on the
data. Thus, there is no accord yet as to the situations under
which each model is preferred. Some of the recent works
include [72], [73]. In [72], the authors proposed a generic
method to identify and characterize different types of changes
occurring in time series data. The algorithm integrates the
decomposed components with methods to detect multiple
changes. In [73], the authors focus on separating trends and
growth cycles. The complexity of the separation of trends
arises due to the interaction of trends and business cycles.
Thus, a piece-wise linear approach termed as Phase Average
Trend (PAT) was developed. In [74], a day-ahead prediction
of wind speed is performed by developing a multiplicative
Decomposition Model. Analysis indicates that the decom-
position model is promising in terms of better results and
lesser errors in comparison with the existent basic forecasting
methods built on time series models. A concise framework
of other statistical models for wind forecast is presented
in Table 2.

It can be observed from the results of decomposition mod-
els presented that the percentage errors are between 10 to
15% in the solar forecast and 10 to 25% in the wind forecast.
Even though the models gave reasonable accuracy in the solar
forecast, they did not effectively capture the outlets in the
wind data. As wind data is too erratic to be modeled by a time
series model, non-linear models such as Machine Learning
would be more effective.

VI. OVERVIEW OF MACHINE LEARNING BASED MODELS
Machine learning models are extensively used in various
forecasting applications as they can predict the behavior of
the data sets and also, they can predict the output based on
historical information. Some of the machine learning-based
models extensively used in solar and wind power prediction
are SVM, ELM, BA-BP, EANN, PSO-SVM model, ARMA
and SVM, ARMA, and PSO-SVM, Clustered hybrid, deep
learning, swarm intelligence, ensemble and hybrid ensemble
learning, and hybrid ensemble learning methods. Classifica-
tion of machine learning techniques is depicted in Fig. 4.

The brief description of few models is described as,

A. SVM
This is a popular type of statistical learning technique that
is based on structural risk reduction [86]. This technique is
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TABLE 1. Review of statistical models for solar forecast.

very popular amongst the other machine learning techniques.
Given a data-set {bi, ai}Ni = 1, here N represents the data-set
length, aiε Xn represents the input vector and biε Xn is the
ith label of A. The main aim of this function is to set up a
classifier function f (a) = W T

a + Y , this function will in turn
map the input values ‘a’ to labels b; W in the function, W =
[w1,w2,w3, · · · ,wR]T denotes weight-vector. Y is a scalar
quantity, f (a)is a mathematical function which reflects the
mapping of the input variables to higher order dimensional
space. Since SVM performs minimization of structural risk,
the optimization can be transformed further as,

1
2

∥∥∥W 2
∥∥∥+ B n∑

i=1

uiδi (15)

(15) is subjected to

bi (wai + y) ≥ 1− δi and δi ≥ 0, i = 1, 2, · · · , n (16)

where, b is penalty number and deltai is themarginal distance.

B. EXTREME LEARNING MACHINE (ELM) MODEL
It is a method that is primarily developed to solve the compli-
cation of simple hidden layer NN [87]. The main advantage
of ELM is accuracy and also the single layer NN is compu-
tationally faster than conventional learning frameworks [88],
[89]. Consider a single hidden layer NN, inputs weight wi
and offsets Y are initialized randomly after which the output
weights are obtained. The input weights and the hidden layer
bias of the neural network are randomly obtained to get a
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TABLE 2. Review of statistical models for wind forecast.

unique value NN (H ) for the hidden layer output matrix.
Single hidden layer NN is transformed into a linear system
Hγ = T , with the identification of its output weight [90].

Ĥ = H ′T (17)

Here Ĥ represents the inverse of the matrix H .

C. BAT ALGORITHM- BACK PROPAGATION MODEL
This technique is an amalgam of methods. Back Propaga-
tion (BP) is a multi-layer feed-forward NN. In this technique,
the error is back-propagated, and the signal is forward prop-
agated. This technique is most popular in machine learning
to perform function approximation, pattern recognition, and
classification. The network framework of this technique is
highly complex [91]. BA is developed based on its echoloca-
tion behavior [92]. BA is applied to classify and design many

engineering applications [93], [94]. The combined BA-BP
framework has better accuracy in terms of its prediction
capability. The initial weights are optimized with BA and
channelized to the BPNN.

D. ELMAN ANN
This type of NN is a simple recurrent NN [95] which consists
of four structural layers. The four structural layers are input
layer, middle layer, receiving layer and an output layer. The
main function of the receiving layer is to properly compre-
hend the output information of the hidden layer [96], [97].
The function of hidden layer neuron is given by,

Fi (t) = a

{
k∑

k=1

VikFk (t − 1)+
N∑
n=1

WijIj (t − 1)

}
(18)
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FIGURE 4. Classification of machine learning models.

where Fk (t) and Ij (t) denote output of the receiving layer,
and input neurons. Vik and Wij are the weights. This model
is most preferred for its use in dynamic modelling. It has
the capability of self-correlation and can process dynamic
information. BP based NN is robust in terms of learning and
adaptability. However, these models are prone to minor opti-
mization problems and lack convergence speed [98]. SVM
can lessen the complexity of solving high dimensional space
problems. When compared to NN, they have greater gen-
eralization and extension capability [99]. In the case of the
ELM, algorithm to obtain better prediction accuracy only
hidden layers neurons need to be set. The learning and gen-
eralization capability of ELM are superior when compared to
other learning machine models. However, they are prone to
regularization problems. EANN model has enhanced model
fitting capability. In this model, the output of the hidden
layer is memorized in the last iteration with a surplus layer
called the receiving layer. This model is complex as it has
number of hidden layers in the framework when compared
to other network frameworks. Owing to the above-mentioned
features, combination models are more helpful and are note-
worthy in enhancing the prediction accuracy by overcoming
the shortfalls of the individual models.

1) LINEAR COMBINATION
This methodology is usually preferred for time series
prediction. In order to find out the weights of this linear
combination, VMD-IPN and RBF framework is used. This
forecasting model has the capability of reducing the problems
of prediction accuracy of the single models [100]. In a com-
bination model, Z = [Z1,Z2, · · · ,ZN ]T , where the equation
represents an array of target values and Ẑ (j) = [Ẑ1 (j) ,
Ẑ2 (j) , · · · , ẐN (j)]T , j = 1, 2, · · · n is an array of predicted
values to the jth single model. Therefore the forecasted values

can be found by,

Ẑ =
n∑
j=1

WjẐ (j) (19)

where n denotes the total number of n single models of the
linear combination andN is array of values predictedWj is the
weight of the model. Also to enhance the efficacy of the linear
combinationmodel, the final predictive value Ẑ and the single
predictive value Ẑ (j) should comply to inequalities [101].
γ
(
Z , Ẑ

)
≤ γ

(
Z , Ẑ (j)

)
,∀j(j = 1, 2, 3 · · · , n, where γ is

forecasting error. The linear combinationalmodel can find the
correspondingweight considering the predicting capability of
the model components and later the combinational weights
are predicted byNN. Themodel works initially by developing
the in-sample training validation pairs and then finds the
combination weights by VariationalMode decomposition; in-
sample training validation pair based neural network weight-
ing and radial bias function.

2) ARMA AND SVM
It is a hybrid model developed for wind power prediction.
ARMA model fetches the time series information [82]. After
fetching the relevant information, the model can predict the
values with the help of historical data. Consider a time
series f (t); the ARMA (a, b) model is given by

f (t) =
x∑
i=1

aift−i −
y∑
j=1

bjγt−j + γt (20)

Here ai is autoregressive value; bj is the moving aver-
age value which is determined using LSE. γ t is Gaus-
sian noise and x is the order of AR and y is the order
of MA.
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3) PSO-SVM
This framework is an amalgam of optimization technique
and learningmechanism. This combinationalmodel can solve
problems related to regression and classification [82] SVM
has greater generalization capability when compared to other
ML techniques. The parameter of RBF and the penalty factor
are important in determining the performance of the SVM
technique. PSO is used to find the best value of the two
parameters.

4) ARMA AND PSO-SVM MODEL
To enhance the prediction capability, it is necessary to
combine two or more models with rational weights. These
combinational models outperform when compared to single
prediction models. However, it is very difficult to rate the
prediction accuracy of individual models arbitrarily. In this
model, time series and an intelligent technique is used. The
main advantage of this technique is that it can store more
information and enhance prediction accuracy [82]. The com-
bined ARMA and PSO-SVM model can be written as,

Gcom = δ1GARMA + δ2GSVM (21)

where δ1 and δ2 denotes weights of the ARMA and
PSO-SVM model and it should satisfy the condition δ1 +
δ2 = 1. GCOM denotes combinational model that predicts
the results of the combined ARMA and PSO-SVM model.

5) CLUSTERED COMBINATIONAL MODEL
In order to explore the prediction accuracy of the wind power,
proper investigations need to be conducted on the historical
data. The main advantage of clustering is to encapsulate
the characteristics of wind speed, power and temperature
and can also verify the effective data-set. Some of the other
combination models are (Ensemble Empirical Mode
Decomposition-Long Short-TermMemoryNetwork) EEMD-
LSTM, EEMD-ARIMA, and EEMD-MLP (Multi-layer per-
ceptron) is tested for different data sets and the results are
validated under different conditions [82].

VII. REVIEW OF VARIOUS MACHINE LEARNING
METHODS FOR WIND FORECAST
Wind speed forecasting ensures stabilization of regulatory
markets in terms of proper power dispatch, thereby leading
to structured planning of reserve power capacity. Due to the
extensive use of BESS in modern wind power plants as a
reserve, the shelf life of BESS units gets deteriorated due
to frequent charging and discharging. The capacity of the
BESS is predicted by the charging and discharging schedules.
An accurate wind power forecasting technique enables a
wind farm operator to determine the capacity of battery units
with reserve power mode [102]. Deep learning techniques
are widely used in applications like regression, clustering,
classification, and pattern recognition. Also, ANN based
methodologies [35] are in used to predict solar radiation and
wind speed. With wind farms, the data sets can be obtained
from failure history, SCADA, maintenance, and CMS data.

Deep Mind, based on NN, a forecasting tool developed by
Google. Some of the common reasons for the failure of a wind
turbine are fluctuations in the rotor blades and the tower of the
wind turbine. Machine learning based methodologies can be
used to detect the fault and monitor the performance of the
wind turbine [103]. Wind turbines are usually subjected to
wear and tear; ML based techniques can be used to prevent
such events by analyzing some parameters like yaw angle,
pitch angle, and rotor speed. Some of the most commonly
used AI techniques are feature based algorithms. These algo-
rithms fetch information like acoustics, temperature, torque,
and rotor speed from the sensors housed on the turbine
equipment [104].

The flow of wind primarily depends on atmospheric
parameters like pressure, humidity, height, and surface
irregularities. These parameters are of utmost importance
for short-term predictions. In solar power prediction, levels
of irradiance, humidity, temperature have to be given more
priority. To solve the issues with non-linearity ML methods
are the prime choice. For accurate wind speed forecasting,
a large amount of data sets is necessary. These data sets are
in turn used to train a supervised machine learning regres-
sion technique. Extreme learning machines, SVM, and ANN
are the most frequently used machine learning regression
techniques [105]. For a duration ranging from three minutes
to six hours, multilayer perceptron based NN techniques is
used to forecast wind power. A hybrid model consisting of
wavelet transform and NN is used for short-term wind speed
forecasting in Portugal [106]. In this framework, the data of
wind speed is divided into series through a discrete wavelet.
The series of these data-sets is later fed to the neural network
for training. Once the data sets pass through the training
algorithm, they are trained for learning where minimization
of error is performed. The learning algorithm generally used
is backpropagation [107]. This technique lacks speed and
as a result, it is replaced by Levenberg-Marquardt (LM).
The NN based wavelet technique is compared with ARIMA
and NN with the use of data-sets. The value of MAPE is
around 6.97%. Physical algorithms are usually preferred to
map the data of the wind turbine into numerical weather pre-
diction (NWP) systems [108]. This technique is preferred to
enhance the prediction of wind speed. However, this method
is not preferred for short-term wind forecasting. An enhanced
auto-regressive integrated moving average (ARIMA) model
is developed to forecast the wind speed; the obtained results
are marginally acceptable in terms of its accuracy and effi-
cacy. Single statistical models are not significant in extract-
ing the wind speed information. Generally, SVM and ANN
techniques are used for wind speed forecasting in such cases.
These techniques are highly expensive in terms of training the
model. Conventional single models, namely physical, statisti-
cal andNN are not effective in terms of accuracy of predicting
wind speed. These models have acoustic noise and result in
reduced forecasting accuracy. It is, therefore, necessary to
combine forecasting models to enhance the robustness of the
multiple single models [109].
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TABLE 3. Review of machine learning models for wind forecast-1.

These combined models for wind forecast are classified
into model variables and structure optimization weighted
and error correction based [106]. In model variables and
structure based optimization methods, a modified optimiza-
tion technique [114], [115] is applied to a model during the
training phase to obtain greater accuracy. In [116], to fore-
cast short-term wind speed, PSO based optimization tech-
nique is applied to LSSVM [117]. To optimize the requisite

parameters in an RBF technique, the ordinary least square
method is used instead of the conventional gradient search
method. Also, many optimization techniques like Grey Wolf,
Whale, Bat, GA, and so on have been used for parame-
ter optimization. To increase the accuracy of wind power
forecasting, error correction-based models are usually pre-
ferred. In this methodology, the data present in the system
error is extracted to ensure greater accuracy of forecasting.
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TABLE 4. Review of machine learning models for wind forecast-2.

To establish enhanced accuracy of the forecast, a combined
grey andMarkovmodel is implemented to ensure greater pre-
cision [118], [119]. In this combined methodology, the errors
forecasted by the grey model are categorized into different
conditions using the Markov model and for each conditions
the probability is estimated. The most frequently used model
amongst the weighted combination is the linear combination
model. In this model, the approach used is the average of
the components. In [120]–[122], results suggest that a single
naïve average can achieve acceptable correctness. But this
method has lesser accuracy. These methods cannot recognize
the fact that the prediction values depend on past informa-
tion. The weights of the backpropagation neural network and
statistical models are identified by the error propagation of
the wind speed forecasting [123]. To prevent the shortfalls
of the single model prediction methods, a multi-objective Bat
algorithm is applied to determine the coefficients of optimal
weight [105]. The aforementioned prediction methods have
certain shortfalls. Model variables and structure optimization
combination models are complex in terms of computation.

Also, in AI-based optimization techniques, training time is
too long, and they are subjected to over-fitting problems.
Error correction-basedmodels can reduce the prediction error
and are extremely expensive in terms of designing a model.
The weight-based model is not preferred over the first model,
but they have greater adaptability to information and can
ensure stabilized predictive performance. Even though the
models are not capable of optimal prediction, the results are
within the prediction sequence. Therefore, it is necessary to
combine an additional model for the identification of the
weight of every single model. Studies suggest many methods
to find the correct weights but, in most cases, predicting
the optimal weights will always be a nightmare. Therefore,
because of the aforesaid shortfalls, it is necessary to use
a combination model for wind speed forecasting. A com-
bination model can combine the strengths of the individ-
ual components to achieve greater accuracy. Support Vector
Machine (SVM) is a popular regression model that maps the
predicted values to actual values of wind speed. A,ultivariate
least square SVM is proposed in [124]. The method is tested
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on data collected over a year from wind farms in different
locations. A MAPE 10.06% is the best obtained.

Hybrid Models using fuzzy logic and AI techniques are
proposed for forecasting in [125]. NWP is used to do a
preliminary forecast and the quality of NWP is estimated
with fuzzy rules. One hour ahead forecast is done using a
neural network with wind speed measurements from a wind
farm and NWP data as inputs. The worst case error is in the
range of 40 to 50%. With a second model, quality of NWP
is estimated by using the output of the first model as input
to the second model. The rule sets of the fuzzy model are
decided by comparison of wind power obtained from power
curve of a wind turbine with NWP data. The fuzzy model
output yields and NWP quality index. With a third momdel,
separate forecast id done for each class of wind speed. The
error obtained in the range of 5 and 14%. A combined hybrid
approach using ANFIS, PSO and wavelet is proposed in [75].
Wavelet Transform is used to decompose themeasured values
of wind power. The prediction of this data is performed
using ANFIS. PSO technique is used to improve the perfor-
mance. The accuracy of the model is increased by training
the parameters of the membership function of ANFIS using
PSO. The best MAPE reported using the proposed model
is 4.98%. In [126], wind speed prediction is performed with
a novel ANN model, ICA-NN. The inputs to the predic-
tion model are measured data from a SCADA system and
NWP data. This data set contained temperature, humidity,
and wind speed. Imperialist Competitive algorithm is used
to adjust the weights. The Mean Square Error is found to be
less than 20%. In [127], Wavelet Neural Network (WNN)
is used to predict wind power. WNN is an ANN where the
activation function is a wavelet function. A new training strat-
egy is proposed based on Clonal Search Algorithm (CSA).
The proposed model is compared with existing models such
as Simulated Annealing (SA), Particle Swarm Optimization
(PSO), CSA, and Differential Evolution (DE). The proposed
method has an error of 9.7%, which is the lowest. In [128], the
hybrid model is developed to predict wind speed where wind
speed is decomposed into several sub-layers using empirical
mode decomposition. Each decomposed series is predicted
with a neural network optimized by genetic algorithm and
mind evolutionary algorithm. The lowest MAPE obtained
was 2.5%. In [129], lifting wavelet transform and Support
Vector Machine (SVM) are used for model building. Wavelet
transform characterizes the original wind speed and SVM
improves the prediction accuracy. Each decomposed data is
predicted separately and superimposed to obtain the final pre-
diction. The prediction error is found to be 14.9%. In [130],
SVM enhanced Markov Chain model is chosen for wind
power forecast. Markov chain is used to capture the normal
variations in wind speed, whereas SVM identifies the wind
ramp dynamics. Several methods for wind power forecast
have been proposed by Jing Shi, et al. In [24], [25], ANN
techniques are used. One method is a technique employing
two steps based on neural network and Bayesian algorithm.
The algorithm was tested for data collected from two sites

and the MAPE is between 14 to 18%. Prediction models with
ANN are compared with auto-regressive models and seasonal
ARIMA models in [26], [27], [80], [131]. A new training
algorithm is proposed by applying the Lyapunov stability
approach to ANFIS. The results are compared with common
training algorithms like GD and RLS. In [132], an entropy
based neural network learning algorithm is proposed.

Wind speed depends on many inputs such as temperature,
humidity, wind direction, atmospheric pressure, etc. In the
literature, algorithm using wavelet transform are extensively
reported [133]–[137]. The technique is used to smoothen the
data prior to prediction. Time series data is effectively decom-
posed in the time frequency domain. Interest on wavelet
transform application for forecasting began in 1990’s. The
percentage error obtained is 14.9% using lifting wavelet
for characterization of the signal and SVM technique to
obtain better accuracy [138]–[144]. In [144], [145], hybrid
wavelet-neuro algorithms with novel training strategies are
proposed to reduce prediction error. Recent works include
application of emperical mode decomposition and principal
component reconstruction technique with multilayer ANN.
The authors of the reported literature have used data specific
to a particular geographic location, hence dependent on local
atmospheric and weather conditions. This makes it difficult
to compare the accuracy of the various models. However,
from the results presented, a general conclusion can be drawn
that hybrid models using machine learning algorithms have
better accuracy. To ensure better performance and forecasting
accuracy, hybrid or combinations models are of prime choice.
In the combinations models, the diversity of the combination
is given more importance rather than the optimally of each
model [146]. In the study of these combinations models,
different types of NN combinations are considered. A com-
parison of various single and combinations models used for
wind power forecasting is presented in Tables 3 and 4.

VIII. REVIEW OF MACHINE LEARNING TECHNIQUES FOR
SOLAR FORECAST
In [147], a forecasting technique is proposed that uses a
neural network and fuzzy theory. Fuzzy rules are determined
to predict solar insolation from humidity and the amount of
cloud. Fuzzy rules are set using min-max theory, based on the
measured values of cloud amount and humidity. A correction
method is also proposed to reduce forecast errors. The output
of solar power obtained using fuzzy logic and correction
method is used to train the neural network.

In [154], one-day ahead solar forecast using ANN is pro-
posed. The novelty of the proposed method is that the oper-
ator of the PV panel could appropriately select the model
parameters of the ANN such as the number of hidden lay-
ers, number of delay elements, etc. NARX network with
back-propagation LM algorithm is chosen for the model
development. The absolute percentage error is between 1 to
5%. In [155], ANN and GNN (Generalized Neural Network)
models are compared. The first stage in modeling with GNN
is an offline process called themodel structuring phase, where
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TABLE 5. Review of machine learning models for solar forecast.

the aggregation function is fixed. The second stage is testing
which is an online process. GNNmodel performed better than
the normal ANN. In [135], a novel ANN-based model for the
prediction of solar irradiance is proposed. Instead of consid-
ering solar irradiance as the only parameter in training ANN,
an input vector that consists of statistical feature parameters
is constructed. To obtain this, the relationship between sur-
face solar irradiance and extra-terrestrial irradiance is found
out. LM algorithm is chosen for training the ANN. The
MAPE obtained for sunny and cloudy days are 9 and 26%,
respectively. In [11], short-term solar forecasting system is
implemented using Elmann ANN. An initial investigation on
the relationship between different input parameters is carried
out using multivariate regression. The ANN is trained with
different sets of input vectors. The first vector was with
only measured PV power, the second vector was formed
by combining PV power and irradiance on the plane of the

PV module. The third vector was formed by combing PV
power and ambient temperature. The forecast error for the
day ahead prediction was found to be between 26.2 to 19.5%.
In [49], a data mining approach is used to implement solar
irradiance forecasts. The historical data for 5 years is clas-
sified into different clusters like a cloudy sky, clear sky, etc.
using a k-means clustering algorithm. This is done to obtain
rainfall probability patterns. These patterns are later used to
predict solar irradiance. In [50], the CART (Classification
and Regression Trees) algorithm of data mining is chosen
to analyze the data. The results indicated that the predic-
tion model has great importance on the seasonal parameters.
In [156], solar prediction models are developed with two
multiple regression models, the least-square algorithm, and
the Support Vector Machine (SVM) technique. In the least
square method, parameters like dew point, temperature, wind
speed, sky cover, precipitation, and humidity are considered.
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In the SVM technique, three different kernel functions like
Linear Kernel, a Polynomial Kernel, and a Radial Basis Func-
tion (RBF) kernel are used for model building. RBF kernel is
found to be the best. Comparison of various models for solar
forecast and brief analysis is presented in Table 5.

IX. CONCLUSION
An exhaustive review of the short-term predictive models
for solar and wind power is carried out in this paper. The
models can broadly be classified into two categories, sta-
tistical models, and machine learning models. The most
commonly proposed statistical models are Auto-regressive
models, decomposition models, classification and regression
tree models, Spatio-temporal models, Gaussian models, com-
bination’s probability models, etc. It is observed from the
results of various basic time series models like ARIMA and
ARMA, etc. that it is required to develop more sophisticated
predictivemodels to improve the accuracy of forecasting. The
models should be capable of capturing abrupt changes in the
solar irradiates and wind speed data. Thus, decomposition
models, Spatio-temporal models, etc. give better results. It is
also observed that even though the models gave reasonable
accuracy in the solar forecast; they did not effectively capture
the outlets in the wind data. As wind data is too erratic
to be modeled by a time series model, non-linear models
such as machine learning algorithms. Despite the intermittent
nature of wind and solar energy resources, they have been
used for energy production on a larger scale. The study of
various machine learning models is presented in the paper.
The comparative analysis of various models suggests some
of the noteworthy characteristics of the models. Wind power
forecast was performed daily with certain data sets and the
requisite samples were also considered for proper forecasting.
These models were applied to different locations. The com-
binations models, deep learning, and principle component
analysis (PCA) based models, Random forest (RF) algorithm
have performed better in terms of prediction accuracy and
stability. Also, LASSO based model used for wind power
forecasting exhibited poor performance due to its linear
behavior. Support Vector Regression (SVR) algorithm could
provide better prediction accuracy if its standard deviation is
not considered in the data set. Also, VMD based technique
can decompose the sequence of raw wind speed data and can
generate a new sequence. The clustered PSO-SVM-ARMA
model provided better results and it can ensure safe operation
of power system even during large scale integration of wind
power. With solar power forecasting models, EMS, LASSO,
HDC-blended, and MLP techniques outperformed the other
models. These models have exhibited better prediction accu-
racy. Also, the LASSOmodel in solar power forecast requires
less training and can handle irregularities in data points.

Some improvements that can be suggested to enhance the
prediction accuracy of wind speed forecasting and also to
predict the in-sample weights, is to investigate other data
pre-processing methods. Most of the ensemble-based mod-
els have not considered Spatio-temporal information; this

information can be considered in designing the learning mod-
els to enhance prediction accuracy. Optimal methods can be
explored, individually for each of the components of the time
series data and then the predicted values of the components
combined to obtain the forecast.
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