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ABSTRACT Recent technological (e.g., IoT, 5G), and economic (e.g., UN 2030 Sustainable Development
Goals) developments have transformed the healthcare sector towards more personalized and IoT-based
healthcare services. These services are realized through control and monitoring applications that are
typically developed using artificial intelligence (AI)/machine learning (ML) based algorithms, that play a
significant role to highlight the efficiency of traditional healthcare systems. Current personalized healthcare
services are dedicated in a specific environment to support technological personalization (e.g., personalized
gadgets/devices). However, they are unable to consider different inter-related health conditions, leading
to inappropriate diagnosis and affect sustainability and the long-term health/life of patients. Towards this
problem, the state-of-the-art Healthcare 5.0 technology has evolved that supersede previous healthcare
technologies. The goal of healthcare 5.0 is to achieve a fully autonomous healthcare service, that takes
into account the interdependent effect of different health conditions of a patient. This paper conducts
a comprehensive survey on personalized healthcare services. In particular, we first present an overview
of key requirements of comprehensive personalized healthcare services (CPHS) in modern healthcare
Internet of Things (HIoT), including the definition of personalization and an example use case scenario
as a representative for modern HIoT. Second, we explored a fundamental three-layer architecture for IoT-
based healthcare systems using both AI and non-AI-based approaches, considering key requirements for
CPHS followed by their strengths and weaknesses in the frame of personalized healthcare services. Third,
we highlighted different security threats against each layer of IoT architecture along with the possible AI and
non-AI-based solutions. Finally, we propose a methodology to develop reliable, resilient, and personalized
healthcare services that address the identified weaknesses of existing approaches.

INDEX TERMS Healthcare 5.0, IoT, medicine 4.0, reliability, resilience, personalization, sustainability.

I. INTRODUCTION
Contemporary social and economic developments around the
globe e.g., UN Sustainable Agenda 2030 [1], are aiming
to extend life expectancy for all humans by improving
their physical and mental health, and well-being. Current
technological advancements have helped to achieve this
agenda in real-time. To this end, various dedicated technical
initiatives have been introduced, for instance, one such
initiative is ‘‘Healthcare 5.0’’ which has been developed as
a result of the emergence of digital wellness and a new
digital standard for healthcare services [2]. Furthermore,
recent development in technology has enabled remote and
automatic monitoring of healthcare services through medical
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devices that aims to monitor various health conditions of a
patient. Importantly, these devices are dedicated to specific
health conditions and work independently. For instance,
blood pressure monitor aims to monitor only heart-related
health conditions, insulin pump only regulates diabetic health
conditions through maintaining the right level of blood
insulin, to name a few.

Prior to Healthcare 5.0, ‘‘Healthcare 4.0’’ had emerged
from Industry 4.0, that had transformed the healthcare sector
into more digital during the past decade. For instance, x-rays
and magnetic resonance imaging (MRI) have transformed
into computer tomography (CT) and ultrasound scans to
electric medical records [3]. These devices are user-centric
that are used by caretakers/ medical practitioners to monitor
and treat medical conditions of patients, in preventive
care, and for well-being solutions. With the recent advent
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FIGURE 1. Economic impact of IoT devices and applications.

of technologies (e.g., Industrial Internet of Things IIoT,
Industrial cyber-physical systems ICPS), the use of IoT
devices and applications is exponentially growing. According
to [4] by the end of 2021, the IoT devices and applications
are expected to reach 212 billion, whose major use is in
healthcare (∼ 41%) as shown in Figure 1. Furthermore,
as reported by Grand View Research [5], the healthcare IoT
market is expected to be worth USD 534.3 billion by 2025.

The principle goal of technology-driven applications in
healthcare is to support healthcare operations by automati-
cally controlling various health conditions of patients through
continuous and remote monitoring of the conditions [6]–[8].
Following the principle, Healthcare 5.0 aims to support
various objectives, i.e., (i) reliable, (ii) resilient, and
(iii) personalized healthcare services in real-time. In the
following, we discuss our taxonomy that characterizes the
aforementioned healthcare objectives.
• Reliability: Analogous to the definition of reliability
by IEEE Standards [9], we consider the reliability of
healthcare services as the ability of the services to
perform their required functions consistent with stated
conditions (aka specification) for a specified time as
shown in Figure 2. Healthcare 5.0 supports automatic
monitoring and control of underlying health conditions
of patients. Therefore, these services must be extremely
reliable (i.e., they must perform required operations
as expected under normal and stated conditions).
Otherwise, the services may fail to operate as expected
leading to severe consequences, including threatening
the lives of patients. To establish reliability, various
efforts [10]–[12] have identified different factors (e.g.,
battery, memory, computational power, enhancement of
QoS) that can improve the reliability of the healthcare
services by using modern solutions e.g., blockchain-
based technologies.

• Resilience: We adapt the definition of resilience from
different interpretations [13], [14], as the ability of
healthcare service to continue its required function in
the face of adverse operating conditions. To this end,
a resilient service first detects an adverse condition (e.g.,

FIGURE 2. Reliability.

fault, error, bug, and cyber threat) that malfunctions it,
then recovers the required function of the service by
mitigating the impact of the adverse condition as shown
in Figure 4. Healthcare 5.0 services need to be resilient
to support continuous monitoring of health conditions,
i.e., to continuously deliver correct functionality and
availability of the services to the user despite adverse
environmental conditions, internal faults of the system
such as hardware and software defects, cybersecurity
threats, and vulnerabilities, excessive loads, age, and
wear, and degraded communications [13]. Any disrup-
tion of the services due to intentional or accidental
incidents may also threaten patients’ lives. To establish
resilience, various efforts [15], [16] have recognized
potentially vulnerable functions (e.g., failure of soft-
ware, hardware, cloud services, and communication
devices) that may hinder the resilience of healthcare
attributes and proposed different ways to recover
from them (e.g., post-event automatic recovery of the
vulnerabilities like Moving Target Defense (MTD) [17],
and blockchain-based solutions [18]).

• Personalization: Personalized healthcare services typi-
cally operate in the most strict mode by supporting cus-
tomization of a specific health condition under specific
conditions [19], [20]. This does not work in practice
because patients with long-term health conditions often
have multiple health conditions. Therefore, we realize
personalization of healthcare service as the ability of the
service that provides determinant-based (e.g., genetics,
behavior, environmental and physical influences, med-
ical care, and social factors) optimization of multiple
health conditions of a patient as shown in figure 3. The
optimization extends the life expectancy of the patient by
reducing the side effects of various health conditions.
Based on our taxonomy, we extend Healthcare 5.0 to
support personalized healthcare services that aim to
optimize clinically inter-related multiple health con-
ditions of a patient. As sketched in Table 1, the
current infrastructure (i.e., software and hardware) of
healthcare services supports complementary technolog-
ical and clinical personalization. Former approaches
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TABLE 1. Perspective-based healthcare system/infrastructure components.

FIGURE 3. Personalization.

aim to develop personalized medical gadgets (e.g.,
customized hearing aid, artificial placenta [21], wear-
able insoles [22]) and applications (e.g., Basal and
bolus insulin settings in insulin-pump [23], fitbit+ [24])
for handling specific technical needs of a particular
health condition. Latter approaches aim to develop
personalized medical technologies (e.g., enzyme-based
biosensors for sweat analysis [25], antibody-based
sensor for rapid detection of avian coronavirus [26]) and
applications (e.g., ML-based algorithms [27], clinical-
parameter -based configuration of insulin-pump [28])
for handling specific biological effects of a particular
health condition.

As discussed above, current approaches to establish
reliability, resilience, and personalization of healthcare
services fail to support continuous monitoring of health
conditions in Healthcare 5.0 mainly because they are
either health condition-specific, or environment-specific,
or agent-specific. Moreover, the emergence of new IoT
medical devices manufactured by different vendors and
their communication through different protocols have made
the task of establishing the above-mentioned requirements
more challenging. Therefore, in this survey, we sys-
tematically study and analyze various approaches that
establish key requirements of the services and identify
gaps that help to establish Healthcare 5.0 services in
practice.

Our Contributions: To the best of our knowledge, this is
the first attempt that identifies and studies key requirements

of HIoT to support clinical personalization of healthcare
services (we call it CPHS) in contrast to the existing ones that
support only technological personalization. We summarize
our contributions as follows:

1) We defined novel comprehensive personalized health-
care services (CPHS) by contextualizing HIoT
(Healthcare 5.0) to support clinical personalization

2) We identified key functional (reliability, resilience,
and personalization) and non-functional (constraints
on reliability, resilience, and personalization) require-
ments of the CPHS

3) We introduced an example use case scenario as a
representative for modern HIoT

4) We explored and analyzed (strengths vs weaknesses)
various AI and non-AI-based approaches to establish
the identified requirements of HIoT (e.g., reliability,
resilience, and personalization) in each layer of the
reference architecture (i.e., things, communication, and
application layer) under normal and hostile conditions
(e.g., security threats).

5) Finally, we discussed our proposed methodology to
provide state-of-the-art reliable, resilient, and real-time
comprehensive personalized healthcare services that
address the identified weaknesses of the existing
approaches.

The overall logical organization of the paper is sketched
in Figure 6. The rest of the paper is organized as follows.
Section II explains our survey methodology. Section III
introduces the transformation of healthcare technology, per-
sonalized healthcare, and their key operational requirements
along with the example use case scenario. Section IV gives an
overview of a reference architecture for IoT-based healthcare
systems, their different layers, and recent efforts to establish
requirements of the modern personalized healthcare services.
Section VI provides an overview of security threats at IoT
layers and types of attacks on each layer, while Section VII
introduces our proposed solution. Finally, Section VIII
concludes our paper.

II. SURVEY METHODOLOGY
We have performed a survey in a very systematic way
by identifying top research findings in the domain of IoT
and healthcare. We extracted information and summarised
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FIGURE 4. Resilience.

the current literature according to the guidelines suggested
by Kitchenham [29], [30]. Our approach follows a defined
sequence of steps using a systematic literature review
(SLR) [31], started from downloading related research
articles, reports, and thesis using keyword-based query-
searching mentioned in Table 2. Our initial web search found
more than 30000 papers from different data sources, e.g.,
Springer, IEEE, Science Direct, Academic medicine, ACM.
Papers were accessed mainly from google scholar. Then our
refined search based on related keywords (e.g., healthcare
systems, IoT, healthcare 5.0, medicine 4.0, personalized
healthcare) found approx. 200 papers. Our final refinement
eliminated further 40 papers that were highly theoretical
and from non-scientific sources. The remaining papers
also included surveys in healthcare, however, most of
these surveys [32]–[34] are focused on monitoring specific
health conditions (e.g., cardiovascular, breathing problems,
diabetes, etc.) in a specific environment [35], [36] (e.g.,
smart home, assisted living environment, elderly homes,) for
specific healthcare services (e.g., wellness services and health
status) [37], [38] and for specific agents (e.g., caretakers,
doctors) using modern infrastructure (e.g., IoT devices, 5G
network, and electronic healthcare).

III. TRANSFORMATION OF HEALTHCARE TECHNOLOGY
The history of healthcare systems is deeply connected with
the history of medicine. As shown in Figure 5 medicine’s
history starts with Medicine 1.0, where it was dependent on
highly qualified doctors, and most of the medication was
based on natural substances like herbs. These were the days of
Healthcare 1.0, where intelligent public health approaches are
used to solve significant health problems [39]. The discovery
of antibiotics and the use of X-rays for diagnostic purposes
has introduced the concept of big hospitals and specialization

TABLE 2. Keywords.

in diagnostic techniques and is given the nameHealthcare 2.0.
Healthcare 2.0 was the era of industrialization and its primary
structure was mass production (aka Medicine 2.0). Later
surgery was benefited a lot with the new advancements in
electronics and micro-technology. Evidence-based medicine,
the introduction of surgical robots, navigation surgery, and
image recognition had given birth to Medicine 3.0 and
was the basis for Healthcare 3.0. With the advancements
in information systems and technologies, intelligent devices
with smart microelectronics, fast transmission and network
technologies are working together in healthcare systems
and are playing a significant role towards the better
quality lifestyle and improved healthcare services which
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FIGURE 5. Timeline of Healthcare evolution.

TABLE 3. Developments of Healthcare (aka Medicine) 1.0 - 5.0.

ultimately lead towards a healthier life, which is called
Medicine 4.0 (aka smart-health). Some of the examples of
Medicine 4.0 are personalized chemotherapy, personalized
telematic therapy, intelligent implants for cancer therapy,
and intelligent occlusal splint [40]. The focus of Healthcare
4.0 was to develop business models for healthcare systems.
Smart wearables with integrated sensors help to collect,
monitor, and diagnose diseases from the patient’s data
using artificial intelligence (AI)/machine learning (ML)
techniques. However, IoT devices with artificial intelligence
cannot be considered as a solution to the limitations (scala-
bility, security, privacy, and reliability) in fourth-generation
healthcare systems due to the following major challenges at
the communication layer,

• seamless data transmission rate with minimum or no
data loss,

• traffic-free transmission channels,
• cost-effective,
• no time data retrieval and
• machine to machine (M2M) or device to device (D2D)
communication.

The emergence of advanced communication technologies
like 5G has resolved the major challenges at the communi-
cation layer that resulted in connectedness and integration,
and is the start of Medicine 5.0 (aka Healthcare 5.0 ). The
main focus of Healthcare 5.0 is personalization by developing
customer models, digital wellness, and considering the well-
being of not only patients but individuals. The developments
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FIGURE 6. Logical structure of the paper organization.

of healthcare/medicine 1.0 - 5.0 are shown in Table 3.
Other similar initiatives around the globe are Industrie 4.0
(Germany and EU), Cyber-physical systems (CPS), Society
5.0 (Japan), and Cyber social systems [40].

Based on the introduction to Healthcare 5.0, in the
following subsection, we define personalized healthcare.

A. PERSONALIZED HEALTHCARE
According to the World Health Organisation (WHO), health-
care is defined as the maintenance or improvement of a
complete state of physical, mental, and social well-being
whose main purpose is to enhance the quality of life and to
extend the life expectancy of patients. This can be achieved
by enhancing their personalized health conditions.

FIGURE 7. Partial vs comprehensive health.

Current approaches consider personalized healthcare as a
service that tailors medical treatment to individual patients
through the identification of common features, including
their genetics, inheritance, and lifestyle [19]. However, this
consideration helps to personalize a single health condition
with specific causes (e.g., genetics, inheritance) but is unable
to personalize the overall health of a patient with multiple
health conditions which requires an understanding of the
biological relationship among different health conditions.
Furthermore, particularities of personalized healthcare are
different for different patients as everyone has different health
condition determinants, namely, biological, physiological,
and psychological characteristics (e.g., immunity, sensitivity
against variable phenomena) that play a vital role in
maintaining someone’s personalized health, which implies
that patient’s health condition parameters will also be unique.

To this end, we view personalized healthcare as a service
that provides determinant-based optimization of multiple
health conditions of a patient (which we call comprehensive
healthcare service - CPHS). Determinant-based optimization
aims to improve the long-term overall health of a patient
by reducing side-effects of different health conditions of
the patient (e.g., heart condition, blood pressure condition,
insulin condition), while considering the relation among
determinants. Healthcare 5.0 can make it possible to establish
a comprehensive personalized healthcare service (CPHS) for
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patients and improve their long-term health. Figure 7 sketches
the difference between partial and comprehensive health.

In the following subsection, we used an example use case
scenario based on the CPHS.

1) EXAMPLE USE CASE SCENARIO
Figure 8 shows different health monitoring devices (like
automatic blood pressure monitor, automatic blood glucose
and blood sugar monitor, automatic heart rate monitor, and
automatic insulin pump) that monitor different health con-
ditions (like blood pressure, diabetes, heart, and cholesterol)
of a patient. The monitoring devices share underlying health
condition data collected during the data collection phase,
for further processing. Later, the collected data is used by
other applications to monitor and control different health
conditions when required.

Currently, the applications monitor and control every
monitoring device separately mainly because each device
is manufactured for control and monitoring of a dedicated
health condition whose details are in Table 4. However, this
is not practical because, in reality, various health conditions
are interdependent. For instance, a certain health condition
(e.g., high blood pressure) could be a consequence of a
side-effect of another specific health condition (e.g., high
cholesterol). Therefore, we describe a use case scenario that
aims to provide optimized and rigorous personalized health
conditions of a patient through analyzing intra-dependencies
among different health conditions of the patient. To this end,
we consider the following two variations of the dependencies:
• One-to-Many (1–*), where a health condition may affect
none or many other health conditions, e.g., common
cold, fever.

• Many-to-Many (+ –+), where various health conditions
affect various other health conditions, e.g., arthritis,
diabetes and epilepsy.

As sketched in Figure 8, in our example use case, the data
is first collected from different monitoring devices and then
used to analyze dependencies among the monitored health
conditions as follows:
• No-dependencies - each health condition data is used to
determine if it appropriately characterizes the underly-
ing health condition. For instance, common cold or fever
has no long-term effects on a person’s blood glucose/
cholesterol levels.

• Dependencies - data from different health conditions
determine side-effects of various other health condi-
tions. Which results in getting other health conditions.
For instance, medical conditions interact with one
another in the following ways:
– One medical condition might make another worse

like someone with arthritis who finds difficulty in
exercise got a heart or lung problem.

– One medical condition could start other serious
medical conditions like diabetes contributes to
cardiovascular disease, high blood pressure that
leads to a heart attack or stroke.

– May clash with each other, making one ineffective
or producing side effects.

– Treating one medical condition might make the
symptoms of another worse or may produce a new
or previously hidden health condition [41].

Based on the identified dependent health conditions, their
current treatment, and other associated patient’s routine
(e.g., exercise and food), control applications determine
a target personalized health condition by optimizing the
involved health conditions. To this end, the application
issues appropriate control alarms manipulated automatically
or semi-automatically to establish the health condition.

FIGURE 8. Example use case scenario.

In the following subsection, we define the key require-
ments for establishing CPHS.

B. KEY REQUIREMENTS OF CPHS
Healthcare 5.0 is the emergence of digital wellness [42]
and it aims to provide personalized healthcare services
by integrating cyber (e.g., monitoring/control) and physical
(e.g., biological) processes/components of the service. Their
integration helps to develop personalized healthcare services
that are autonomous supporting automatic control of health-
care services by remotely monitoring the health conditions.
Since these services are part of the critical application
domain, therefore such services should meet certain critical
requirements [43] for service operations that are given below:

1) Reliability Requirements: need to address the follow-
ing key attributes:
• Confidentiality: ensures that only authorized
users and devices can use medical data.

• Integrity: ensures the data completeness and
accuracy in the entire communication to avoid
wrong diagnosis and prescription.

• Availability: ensures the accessibility of medical
data and devices to the authorized users at the time
of need without any failure.

• Privacy: ensures that the privacy policies must be
followed and any sensitive and private data must
not be disclosed or shared without consent.

• Data Freshness: ensures that the physician or the
system will get the recent data to rightly diagnose
and prescribe and supports real-time response. For
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TABLE 4. Health monitoring devices.

example the fresh data for blood glucose level in
fasting to set the right amount of insulin.

• Security: ensures the three fundamental security
elements, i.e., ‘‘privacy’’, ‘‘integrity’’ and ‘‘acces-
sibility’’.

2) Resilience Requirements: IoT-based healthcare sys-
tem includes the following [43] requirements:
• Protection, involves:
– Self-healing: is the process in which the system

identifies the failure of medical devices and
is able to recover the software and hardware
automatically without any data loss.

– Self-optimizing: is the process in which the
system will improve its performance, quality of
service and can automatically optimize resource
consumption like energy, memory, etc.

– Self-protecting: is the process in which the
system automatically protects itself against
harmful attacks and generates alarms in case of
any suspicious/failure event.

– Self-configuring: is the process in which the
system automatically installs, configures, and
integrates itself to eliminate system’s flaws.

• Safety, ensures the safety of data and devices (i.e.,
the safety of the patient as well as of the involved
cyber and physical components).

3) Personalized Requirements: These are the character-
istics that are personalized to every patient and are
a factor of response to the patient’s health condition,
immune system, and other underlying associated health
conditions. Here are few such requirements:
• Deep-analysis: ensures that each health condition
of a patient is determined by analyzing various
aspects of the condition including, mechanical and
biological processes of the condition monitoring.
The immune system of different patients may
respond differently against the same disease.
Furthermore, different medical devices used for
monitoring health conditions may have different
characteristics, e.g., error rates.

• Coordinated-healthcare: ensures that the person-
alized health condition is resolved as a compre-
hensive health condition, and is possible through
deep-analysis of each health condition of the
patient and by identifying various (mechanical and

biological) dependencies among different health
conditions of the patient. This helps to identify
the strictly personalized health condition of the
patient.

IV. REFERENCE ARCHITECTURE FOR IoT BASED
HEALTHCARE SYSTEM
The word Internet of Things (IoT) is a combination of
two words Internet and Things. Every object capable of
connecting to the internet is considered as Thing, which
includes smart devices, sensors, and context-aware objects
that can communicate and are pervasive. Considering IoT as
fully pervasive, IoT devices must possess the following three
basic qualities:
• Ability to Sense: IoT devices must carry the ability
to sense and combine the sensed data. For example,
in the healthcare field, blood glucose, heart rate, body
temperature, cholesterol level are sensed and aggregated
using different specific biosensors. The data aggregation
is autonomous.

• Communicable: After sensing and aggregating, IoT
devices should be able to transmit data to the various
desired data centers by using different communication
mediums (i.e., Wireless Technologies, Mobile networks
(3G, 4G, 5G), wireless local area networks (WLAN),
wireless sensor networks (WSNs), and Mobile Adhoc
Networks (MANET), etc.).

• Actionable: The aggregated data alone doesn’t make
any sense so, in the case of responsive devices IoT
devices must be able to process the data in order to take
some action. For example, if a patient’s pulse rate or
blood pressure level is sensed and communicated, alone
this data is useless unless some processing technology
is applied and the system finds that if it exceeds/falls
behind from normal range. IoT systems also need to be
capable to send automatic alerts to healthcare providers
for further interventions.

We consider HIoT architecture based on three tiers. This
three-tier structure consists of the Things layer followed by
the communication and application layer. The description of
the HIoT system and its operational and control functions is
shown in Figure 9
In the following sub-sections, we analyzed the three layers

of the IoT systems. In each sub-section, we
• discussed a general overview of the layer,
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FIGURE 9. HIoT system architecture.

• identified key challenges to establish the identified
requirements of HIoT (e.g., reliability, resilience, and
personalization),

• analyzed current approaches (AI/non-AI-based) and to
address the above challenges, and

• identified the challenges as research gaps that have not
been addressed adequately.

A. THINGS LAYER
IoT devices are seamlessly integrating into healthcare and
have reformed the healthcare industry with their multiple
healthcare monitoring devices and applications. IoT-based
solutions like smart sensors, wearable devices, and smart
health monitoring systems play significant roles in develop-
ing healthcare systems (smart hospitals, mobile healthcare
(mHealth)), and the healthcare industry. Things layer [44]
in HIoT, are sensing systems and devices that record the
different values observed from different sources (i.e., devices
monitoring patient’s different body parts or health conditions)
based on the application. Things layer consists of different
devices and Things, that include:
• Sensors, whose aim is to sense/detect the physical
quantities like temperature, pressure, smoke, light, etc.,
and then convert it into desired output in the form of

the electrical signal to measure the applied physical
quantity. Sensors are further categorized into:
– Biosensors are analytical devices used in detecting

the presence or concentration of a biological
analyte, such as a biological structure, molecule,
or a microorganism in the living body. Biosensors
usually consist of three parts:
∗ Chemical Component, whose job is to recog-

nize the analyte and produce a signal,
∗ Transducer, that converts this signal to an

electrical signal and
∗ Reader Device where this signal is displayable.
Figure 10 sketches biosensor operation and its main
components.
Biosensors play a vital role in the medical field,
health condition monitoring, clinical analysis of
different health conditions, and diagnostic applica-
tions. They are advantageous over the lab equip-
ment due to many reasons. Some of them include
small size, low cost, quick results, reusable, and
avoiding contamination. A comprehensive list of
biosensors based on their working mechanism
is shown in Figure 11. Further different types
of biosensors, their details with their working
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FIGURE 10. Workflow and components of biosensors.

principles and the diagnosis are shown in Table 5.
These sensors aims at detecting disease-specific
data from a patient’s body.

– General-Purpose Sensors like temperature sensor,
pressure sensor, proximity sensor, accelerometer
and gyroscope sensor, infrared (IR) sensor, optical
sensor, gas sensor, smoke sensor, and many more.
These sensors aims at detecting various environ-
mental conditions required for a patient’s health.

• Wearable Monitoring Devices are the sensors that are
worn anywhere on the human body in the form of some
object that allows continuous or intermittent monitor-
ing of physiological signals. They play an important
role in healthcare, industrial process control, online
control, offline control (distant and local), military
applications, and continuous environmental monitoring.
Some examples are ring sensor, smart shirt, heart rate
monitor, blood pressure monitor, blood sugar monitor,
stress monitor, smartwatches, textiles, glasses, patches,
etc. These wearable biosensors are used for different
applications e.g.,
1) Ring Sensors are used for:

– Wireless supervision of people during haz-
ardous operations in the military during fire
fighting.

– In an overcrowded emergency department.
– In cardiovascular disease for monitoring the

hypertension.
– For chronic surveillance of abnormal heart

failure.
Themain advantages of usingwearablemonitoring
devices are:
– Continuous monitoring,
– Detection of transient phenomena,
– Promote further diagnostic and therapeutic

measures,
– Easy to use, flexible, and
– Reduces hospitalization fee.

Considering their use Wearable devices are
expected to reach a market value of e24.4 billion
globally by 2023. There have been various
developments in wearable devices. In [45] the
authors presented a novel ring sensor for the
continuous measurement of sympathetic nervous
system activities. They successfully tested it on
different age groups and got accurate results
compared to the state-of-the-art open-source
devices. The technology used by wearable gadgets
is with low processing capabilities. Some examples
are Google Glass and Smartwatch. Mobile devices
are used as the computation source to increase the
impact of these wearables technology. However,
in terms of device security and privacy, this
wearable technology is not as mature as it needs
to be. These devices are vulnerable to attacks
due to the security and privacy issues where
due to the low processing power, the developers
can’t use complicated security mechanisms and
algorithms [46]. Some of the disadvantages of
wearable monitoring devices are
– Initial cost is high
– Limited number of physiological parameters for

monitoring
– battery life is short

The battery life of wearable monitoring devices
is addressed In [47] where authors used the
original dictionary-based technique where bat-
tery life for these devices used in healthcare
is achieved by compressing the biosignals, and
this compression is achieved by building and
maintaining a dictionary at run time.

2) Medically Implanted Devices/Sensors are used
in the human body in the following ways:
– For replacing a missing biological structure,
– for supporting a damaged biological structure,

and
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TABLE 5. List of Biosensors with types, principle and diagnosis [48].

– for enhancing an existing biological structure

using biomedical material tissues, active implant
electronics, and transplanted biomedical tissues.
Some of the examples of medically implanted
devices are cochlear implants, automatic insulin
pumps, pacemakers for cardiovascular diseases,
retinal implants, artificial heart, cardiopulmonary
bypass, and many more.

The above-mentioned sensors and devices collect data
from the patient’s body and in some cases after small
processing transfer this data to the data center where this
big data is analyzed. In some responsive sensors, the devices
monitor the related body parameter and after processing
perform the operation for the body like in smart automatic
insulin pumps, the sensors check the blood sugar level
of the patient in specific time intervals and based on the
disease modeling of the device performs operations and
automatically inject insulin into the body of the patient.
We have highlighted key challenges of the Things layer
that hinders key requirements of HIoT as identified in the
Sub-section III-B. Furthermore, we have analyzed current
approaches (AI/non-AI-based) to address the challenges.
Additionally, we have also identified the challenges as
research gaps that have not been addressed adequately. In the
following, we have discussed the above for each requirement,
namely reliability, resilience, and personalization, in order
below.

1) Reliability: Reliability is the probability of a com-
ponent or a system reaching specific performance

standards and producing the desired output in certain
environmental conditions for a specific time dura-
tion [62]. In other words for IoT devices, reliability
can be defined by considering the following three
requirements [63].

• Perform a required function (i.e., Things are
performing their required functions as expected,
which is mainly sensing of various parameters).

• Perform the function under stated conditions
(i.e., Things are functioning in the desired set-
ting/configuration and environment)

• Operation for a specific time (i.e., Things are
automatically functioning at a configured time for
a specific time)

Reliability is one of the main challenges in sensor
technology and in the more sensitive systems like
healthcare reliability is of vital importance. The major
challenges that hinder reliability of Things layer
include:

• Constrained nature of the Things that contains
battery, memory, and computational capacity
[63], [64].

• Conditions of the operational environment (e.g.,
heat, freezing temperatures, mechanical or spon-
taneous wear, vibration, and moisture) [65].

• Tendency of sensors to ‘‘fail-dirty’’ (a phe-
nomenon in which the sensor continuous to
send fallacious information after some failure)
[66], [67].
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FIGURE 11. Typical nomenclature of biosensors.

In [68] the authors presented a smart and secure
framework for the hospital environment using the Inter-
net of Things (IoT) and Artificial Intelligence (AI).
The presented system solved information system,
treatment, diagnosis, patient monitoring, and record
maintenance problems effectively. According to
[69]–[71] AI-based algorithms are able to process huge
amounts of data that are collected from different smart
IoT devices within split seconds and predict the result,
these predicted results along with the electronic health
reports (ERHs) can be further analyzed by medical
partitions. AI-based algorithms are able to think and
detect illness faster with better accuracy and can assist
the practitioners about the possible illnesses that can
cause serious health problems in the future and can
suggest possible treatment and medications for these
diseases. In [72] artificial neural networks (ANN) are
used to analyze urine and blood samples, as well as
track glucose levels in diabetics, determine ion levels
in fluids, and detect various pathological conditions.
Above mentioned challenges are addressed in different
ways. For instance, [11], [73] proposed solutions to
improve the reliability of sensors by making sensors
capable of obtaining and providing reliable and accu-
rate data. Evaluation of sensor reliability involves sta-
tistical or probabilistic data that multiply the reliability
estimate. According to [74] the development of ‘‘smart
sensors’’ can improve the reliability of the sensors.
Current devices operating at the Things layer are not
rigorously reliable to support real-time and critical
operations of HIoT. For instance, some devices suffer
from discrepancies by design [75], e.g., the error rate
of blood pressure monitor. Similarly, the others may

be faulty either due to their maligned software (e.g.,
as a result of security attacks) [76], [77] or for some
mechanical failure (e.g., as a result of mishandling
of the device by an elderly patient). Moreover, such
devices also fail to operate reliably due to their limited
resources, e.g., battery life of sensors, signal strength,
memory, and computational capacity [63], [78], [79].

2) Resilience: Resilience is the capability of systems to
continue their normal operations and vigorous response
in case of any unexpected or unpredicted situations.
The importance of resilience multiplies in sensitive
systems like healthcare where the continuity of the
system is desirable from diagnosis to treatment and
follow-up. Gaps in the continuity of care threaten
a patient’s well-being and cause adverse events.
According to [80], resilience is two-fold; a systemmust
be sound enough against attacks (that is in the first place
be able to obstruct most attacks) and it must be able
to go back to a safe state after any occurred attack.
Abnormal operations at the Things layer occur due to
several reasons. Some of them are as under:
• Hardware failure (e.g. sensors failure, failure of
the control unit of IoT due to hardware and/or
software, etc.) [81], [82].

• Failure of cloud services [83], [84] that may
include failure of software, hardware, scheduling,
service, power, and denser system packaging.

There have been some efforts to deal with the different
issues of IoT. In [85] the authors focus on the
IoT healthcare infrastructures, failures of components
(hardware, software), and complete systems. The
reasons for their failure may vary depending upon
the healthcare IoT infrastructure. According to [86]
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important challenges that hinder the safety and
failure-free execution of IoT are as under:
• Capabilities and technical specifications of IoT’s.
• Geographically dispersed deployment.
• Lack of security policies.
• Diverse attacks on IoT, and management of
security patches.

So far, various approaches have improved the resilience
of healthcare IoTs [85], [87]–[90]. In [87] authors
proposed an intelligent collaborative security model to
minimize the security risks, but the possible failures
of IoT components and systems are not handled and
their influence on the infrastructure is still unsolvable.
In [88] the authors used traditional techniques of
safety and violence for describing failure and misuse
cases.The works in [85], [90] proposed the Markov
Queuing approach for taking into account the safety
and security issues of healthcare IoT infrastructure.
In [85] the author proposed the Markov model that
considers possible failures of healthcare IoT systems
as well as recovery procedures.
In [82] the authors proposed a lightweight secu-
rity scheme for ensuring transmission resilience and
information confidentiality in the Internet-of-Things
(IoT) communication. In their proposed system a
single-antenna transmitter communicates with a half-
duplex single-antenna receiver in the presence of a
sophisticated multiple-antenna-aided passive eaves-
dropper and a multiple-antenna-assisted hostile jam-
mer (HJ). The proposed system is demonstrated using
simulations. However, some technical challenges like
network synchronization and interference cancellation
need to be addressed in experimental validation. In [91]
the authors designed a novel blockchain-enabled
authentication key agreement protocol BAKMP-IoMT
for the internet of medical things (IoMT) environ-
ment that provides secure key management between
implantable medical devices and personal servers, and
also between personal servers and cloud servers. The
proposed design stores data using blockchain and this
data can be accessed by the users in a secure way using
cloud service. The developed tool provides resilience
against different types of possible attacks.
Current devices operating at the Things layer are
not resilient, i.e., they fail to recover in case of any
failure or physical damage. AI and blockchain-based
technologies provide data transmission and storage
resilience. The devices support limited hard resilience.
They support resilience either by restarting the device
in case of software failure or by replacing the device in
case of mechanical failure/damage.

3) Personalizing: With the exponential growth of com-
mercially available wearable devices, the concept
of IoT-based personalization healthcare services is
well-established and well-liked. These healthcare ser-
vices use a set of interconnected devices and create an

IoT-based healthcare network that is capable of observ-
ing and recording multiple types of health related data.
After collecting data, different healthcare activities are
performed such as monitoring, diagnosis, treatment,
and remote surgeries [92]–[94]. In [95] the authors
developed smart socks using textile-based triboelec-
tric nanogenerator (TENG). The authors developed
Artificial intelligence (AI)-based algorithms, for gait
analysis and provide detailed information of multiple
triboelectric socks users. It helps to identify various
health conditions and activities of users for smart home
and healthcare applications. In [96] the authors tried to
access the capabilities of AI for predicting congestive
heart failure for the COVID-19 patients. AI can help to
provide advanced cardiac treatment, and to analyze-/
measure the functioning of the human heart.
According to [92], [97] the major challenges for
personalised healthcare are:
• Data privacy and security,
• handling big data (as some healthcare sen-
sors/wearables are working 24/7),

• healthcare application are inadequate and may
suffer:
– Low quality of data deliverance.
– Performance analysis.
– Data storage.
– Privacy prevention, and standardization.

The authors used different approaches to address
the above-mentioned challenges like cryptographic
techniques for attaining data privacy and security,
cloud storage system to handle huge healthcare data
and smartphone-supported self-monitoring sensors for
better quality performance. Current devices operating
at the Things layer provide limited personalized health-
care services. For instance, they can be configured to
monitor a specific health condition (e.g., chronically ill
patients, active and assisted living, dementia, diabetes,
breathing problems, etc.) of a patient in a specific
environment (e.g., smart homes, care centers, etc.).

Consequently, Things layer devices are not reliable and
resilient to address key requirements of CPHS. For instance,
they fail to reliably provide continuous monitoring of
a patient’s health which may threaten the patient’s life.
Furthermore, the devices also fail to support CPHS, as they
are technologically personalized (i.e., for specific medical
conditions (like blood glucose, blood pressure, heart rate,
etc.), and are not clinically personalized (i.e., unaware for
the other associated medical conditions of the patient).
AI/ML-based approaches provides personalization in specific
environment [96] and for specific diseases [15].

B. COMMUNICATION LAYER
The communication layer is considered as the spine of the
IoT systems [98]. IoT devices generate a large amount of
continuous data that is challenging to store and communi-
cate [99]. All the data from the Things layer is transferred
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to the application layer through the communication layer.
A suitable communication medium is required to transfer
the data from all the nodes of the Things layer to the other
layers of the system. The communication medium could
be wireless (WiFi, Bluetooth, RFID, 5G, etc.) or wired
(Ethernet, USB, etc.) based on the designed communication
protocol. Figure 12 shows the communication medium
classification according to connectivity in an IoT system. The
major requirements for IoT communication in order to set up
a successful healthcare 5.0 system include energy efficiency,
range, cost, reliability, security, and scalability. Real-time
data collection and data processing are carried out at the
communication layer on IoT platforms and in information
systems [99].

FIGURE 12. Classification of IoT communication mediums.

As the communication layer in an IoT-based healthcare
system is considered the backbone of IoT communication,
it inherits all the problems of the communication network.
Analyzing the communication layer problems, in the follow-
ing, we
• highlighted key challenges of the communication layer
that hinders key requirements of HIoT as identified in
the Sub-section III-B,

• analyzed current approaches to address the above
challenges, and

• identified the challenges as research gaps that have not
been addressed adequately.

We discussed the above for each requirement, namely
reliability, resilience, and personalization, in order.

1) Reliability: According to the recent research [100]
there are two forms of network reliability challenges,
which are:
• Enhancement of QoS in the network

• Evaluating the reliability functions for networks
There have been various attempts for improving the
reliability of IoT networks through enhancing QoS
parameters and by quantifying components based
on the monitoring. In [101] the authors presented
micro services QoS-aware middleware that monitors
response time, throughput, availability, reliability, and
cost parameters. In [102] authors used the Generalized
Stochastic Petri Net (GSPN) approach for reliability
modeling. The mathematical model used by them
calculated the reliability of failure rate, consumption
time, response time, and repair times. In [103] the
authors proposed a gateway redundancy model which
reduced the RTT (return trip time) as the performance
metric and proposed methodology lowers the return
time to 1% from 14% during fault conditions. In [104]
the authors quantified some QoS metrics, like delay
throughput, and packet loss. In [105] the authors
proposed a general model for a QoS-aware IoT infras-
tructure, that only deals with latency and bandwidth.
In [106] the authors provided an analysis of the role
of fog computing, cloud computing, and the Internet
of things for mitigating storage facilities related to
the data of the patients and minimum capital invest-
ment on computing for uninterrupted context-aware
services to the end-users. The authors proposed a
three-layer patient-driven Healthcare architecture for
real-time data collection, processing, and transmission.
In [107] the authors’ combined packet replication with
modulation diversity using multiple IEEE 802.15.4g
SUN modulations for the evaluation of the benefits
of improving communication reliability. Their results
showed a significant increase in packet delivery ratio
(PDR), that enhance the reliability of SUNnetworks for
industrial applications. In [73] the authors presented a
framework for handling reliability in IoT based on the
TCP (Transmission Control Protocol). The framework
calculates delays, failure states, and re-transmission of
the data. In [108] the authors proposed a novel approach
that uses using machine learning and multi-objective
optimization (moo) for the software-defined network
(SDN)-enabled adaptive and reliable communication
in an IoT-fog environment. The authors successfully
evaluated reliability using ML-based algorithms, while
the ‘‘moo’’ algorithm is used to find the Pareto-
optimal paths. The proposed approach is more faster
and reliable compared to the other existing ones.
In [109] the authors have provided a comprehensive
framework to provide optimal solutions for privacy
preservation, and energy optimization for researchers
and practitioners in a better understanding of 5G
infrastructures. The authors evaluated the proposed
framework using case studies and mathematical
modeling.
The afore-mentioned research has some limitations:
• The services are not scalable.
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• Reliable performance only at a specific layer of the
network like the edge layer.

• Limited view of network performance like limited
to only TCP.

• Only specific for specific parameters of QoS (e.g.,
delay, throughput, packet loss, etc.).

So far, there is no combined approach which deals
with reliability considering both QoS and quantify-
ing component parameters. Being wireless, current
communication infrastructures (e.g., media, protocols)
used in HIoT are not reliable to support real-time
and critical operations of CPHS. Due to interference,
delays, and loss of data in wireless communication,
data integrity becomes a serious problem from CPHS
point of view mainly because a small variation in
data can have significant consequences on a patient’s
health condition, e.g., a small error in blood pressure
monitored values may not have a significant impact
on the health condition, while a similar small error
may have a significant impact on the health in case
of monitored glucose values. Furthermore, to support
continuous monitoring of health conditions requires
high availability of the communication network, which
is not the case in current wireless communication.
However, 5G aims to support reliable communi-
cation [109], [110] through ultra-low latency, high
bandwidth, ultra-high reliability, reducing interference,
and enhancing QoS. AI/ML-based approaches provide
more faster and reliable communication in IoT-fog
environments.

2) Resilience: Analogous to the Things layer, the
resilience of the communication layer can be realized
as the capability of communication systems to continue
their normal operations and vigorous response in case
of any unexpected or unpredicted situations. To support
real-time resilience for IoT based healthcare systems is
very challenging mainly because the resilience of such
communication system arise from the complexity of
failures, namely failures of
• communication devices (e.g., router) or
• communication network (e.g., wireless media,
protocol).

Former are partially resilient through reconfiguration,
when current configurations get maligned but do not
support resilience in case of any other mechanical
failure. While the latter does not support resilience,
for instance, any interference in wireless media and
vulnerability in the communication protocol is not
recoverable on the fly. Recently, various approaches
have been proposed to support resilience in IoT-based
communication networks. For instance, in [111]–[113]
authors have proposed different Cloud and Edge-
computing-based mechanisms to support the recov-
ery of various network failures in IoT networks
including DoS attacks. However, they are limited in
supporting only communication network failures due to

denial-of-service (DoS) attacks and fail to support
operational failures of communication devices in the
face of other security attacks. Furthermore, there have
been some efforts [114], [115] that introduce resilient
aware architecture and overlays to support device
failures in the face of security threats. However, these
approaches are retrospective, i.e., they are only resilient
in known scenarios and fail to provide resilience in
situations that are either variant of the known scenarios
or different from the known. In [116] the authors
proposed secure demand-side management (DSM)
engine that uses machine learning (ML) for the
IoT-enabled grid that is responsible to preserve the
efficient utilization of energy based on priorities. The
proposed DSM engine reduces the utilization power
of smart grids and is less vulnerable to intrusions.
In [117], the authors designed an authenticated key
exchange (AKE) protocol that can resist side-channel
attacks and enhance security and privacy in E-Health
applications. The proposed protocol provides stronger
security and higher efficiency compared to similar
protocols in IEEE 802.15.6 and Bluetooth 5.0.
Current communication infrastructures (devices and
network) are typically not resilient, e.g., they fail
to automatically recover in case of any soft (i.e.,
software/configuration failure/malfunctioning) or hard
failure (i.e., hardware/device failure). AI/ML-based
approaches can provide resilience by preserving the
efficient utilization of energy based on priorities. They
partially support resilience, for instance, soft resilience
through self-configuration and hard resilience through
configuring an alternative interface. However, these
resilience methods hinder data integrity due to failure
in recovering the loss of pre-configuration/failure
data.

3) Personalization: The Communication layer supports
personalization by providing various personalized
communication networks (e.g., Wireless Personal Area
Network - WPAN, Wireless Body Area Network -
WBAN, and Internet of Medical Things - IoMT)
that connect various medical devices of an individual
patient. Although these networks support data and
communication protection among personal devices,
it fails to protect data and communication when
these networks interact with external networks (i.e.,
Internet) for monitoring and analysis of patients’
health conditions. For instance, in [118]–[120], var-
ious personalized communication mechanisms have
been proposed that enable secure transmission of
information among various medical devices. However,
these approaches are limited in enabling on the fly
integration and communication of new devices (e.g.,
IoT medical devices from different manufacturers
supporting different communication protocols), and in
protecting the end-to-end transmission of data among
external healthcare agents (e.g., practitioners, carers,
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and nurses) that involve other networks (e.g., Internet,
LAN, and WAN).
Contemporary IoT-based communication infrastruc-
ture achieves personalization through supporting cus-
tomized communication configuration for required
healthcare services. For instance, 5G aims to support
the traffic-free transmission channels for real-time
data exchange among HIoT components to support
emergency medical services. Furthermore, personal-
ization can also be supported using personal clouds to
prioritize the desired services.

Consequently, the communication layer is not reliable
and resilient to address key requirements of CPHS, for
instance, the current communication infrastructure fails to
reliably exchange data for continuous monitoring of patient’s
health which may threaten the patient’s life. Furthermore,
the communication also fails to support CPHS, as they are
personalized in a way that supports traffic-free transmission
channels for dedicated services that are not stateful, i.e.,
the channels are not aware of the significance/semantics of
the transmitted data generated through monitoring different
medical conditions of the patients.

C. APPLICATION LAYER
The application layer communicates the users with the
IoT/Internet of Medical Things (IoMT) platform directly
and focuses on providing high-quality services in healthcare.
IoMT is a connected infrastructure of devices, software,
hardware, and services. With the advancements in connec-
tivity, their use is exponentially increasing. These are used
by healthcare professionals for processing and analyzing data
for decision-making and patient treatment. In hospitals, the
IoMT is typically about increasing patient safety and/or opti-
mizing processes. It enables practitioners to work together
across disciplinary boundaries to carry out individualized
patient care. The goal of the application layer is two-fold,
it provides:
• Monitoring Applications: that process the data and
supports decision making on one hand, and

• Support Applications: that are mare interfaces to
operate various health monitoring devices on the other
hand.

Different approaches have been developed to support person-
alized healthcare services. Most of the approaches support
personalized healthcare services by using various healthcare
modeling and monitoring techniques as shown in Figure 13.

1) HEALTHCARE MODELING
There have been various efforts where personalization is
addressed in the frame of healthcare modeling and monitor-
ing. For instance in [45] the authors studied and investigated
the modeling method for a cloud healthcare system. In this
system, the authors used the telemedicine platform to share
high-quality medical resources among big tertiary hospitals
and small community hospitals. Their presented Petri net
model used the colored Petri nets (CPN) tools for verifying

and analyzing the simulation process. The model describes
the state of patients and the relationship between the medical
process and resources in this cloud healthcare system.

In [35], the authors focus on the formal model Petri net
where public-key encryption controls the security model. The
authors successfully used Petri net mathematical modeling
for solving graphical notations and minimizing the risks
and overcoming the security risks in the healthcare industry.
In [121] the authors focus on cloud-based healthcare systems.
The authors presented Petri net for describing the relationship
among medical processes and resources in their integrated
healthcare system. The model solves the patient assignment
scheduling problem using a greedy-based heuristic algorithm.
In [122] the author employed machine-learning techniques to
extract features from electrocardiogram (ECG) and informed
hypertensive patients about their heart status during various
activities. The experimental data were collected from a
network of conscientious volunteers through a mobile crowd-
sensing (MCS) application. However, the experimental data
did not include the main diagnostic feature for hypertension
that is blood pressure. In [123] the authors used an IoT
sensor with artificial intelligence (AI) to predict the exact
patient details such as fitness tracker, medical reports, health
activity, body mass, temperature, and other health conditions.
The collected patient details are processed according to
the iterative golden section optimized deep belief neural
network (IGDBN) which helps to choose the effective patient
assistance system. In [124] the authors integrated Machine
learning (ML) and blockchain technologies to solve the basic
challenges of securely exchanging the big data that supports
the analytics. The authors used ML algorithms like Naive
Bayesian, k-nearest neighbor, and decision tree on the trained
data to achieve higher accuracy in identifying the disease.
In [125] the authors analyzed health data classification by
tracking and identifying vital signs using state-of-the-art deep
learning techniques and highlights the challenges (limited
computational power, data redundancy) posed by edge
intelligence. In [126] the authors surveyed the practicality of
AI services for healthcare by healthcare professionals. The
authors provide an analysis of the healthcare services that are
using AI technology. According to the survey results majority
of the health professionals are willing to use AI technology
for supporting decisions.

2) HEALTHCARE MONITORING
In [127] authors explored and applied the IoT paradigm in
the context of assisted living facilities (ALFs). They have
designed and implemented a system capable of supporting
the healthcare assistants in their daily livings while operating
in ALFs with physical or cognitive disabilities. The system
used wearables andmobile technologies to attain its goal. The
system supports both inhabitants with cognitive disabilities
with instant assistance through their wearable devices when
required. The caregivers in potentially hazardous situations
are alerted automatically. However, their focus is on one
specific group with physical and cognitive disabilities.
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FIGURE 13. Classification of personalized healthcare modeling and monitoring techniques.

In [128], the authors exploited IoT technologies for enhanc-
ing healthcare in smart homes through patient identification
and emotion recognition. They have automatically used
images and emotions by using IoT infrastructure for helping
healthcare in the smart home environment. Images were used
for the detection of the right person to ensure to provide the
right treatment while emotions are used as they play a very
crucial role in the recovery process. They have used facial
angles, gestures, and postures for emotion recognition. Smart
watches and clothes with wearable sensors can be included
in the smart home environment as a means of collecting
physiological information which is then used for decision
making.

In [129] the authors used AI-based predictive and pre-
scriptive analysis by using open source technologies like
Apache beam, Apache Flink Apache Spark, Apache NiFi,
Kafka, Tachyon, Gluster FS, NoSQL- Elasticsearch, and
Cassandra for data processing and used it for extracting
useful knowledge that helps in decision making and patient’s
monitoring. In [130] the authors presented an architecture
for continuous monitoring, ubiquitous connectivity, extended
device integration reliability, security, and privacy support.
The continuous monitoring is made feasible with the use
of a proposed protocol called YOAPY. The efficiency and
security are scalable integration of sensors that are deployed
in the patient’s personal environment. The focused group
of patients is the patients with breathing problems. As the
HIoT are continuously providing information about the health
conditions of the patients, a large amount of data is collected

relating to the patient’s health conditions which enable
the use of advanced machine learning techniques. These
techniques can be used to identify the information about
user data, the effect of the treatment on patient’s health,
and monitor the progress [131]. In [132] the authors used
machine learning (an AI technique) for the classification
of skin lesions using a single convolutional neural network
(CNN), trained end-to-end from images directly, using only
pixels and disease labels as inputs. The classification was
able to successfully diagnose skin cancer as efficiently
as dermatologists. In [133] the authors proposed a smart
healthcare system for heart disease prediction using ensemble
deep learning and feature fusion approaches. The feature
fusion method generates valuable healthcare data (excluding
irrelevant and redundant features) from sensors and medical
healthcare records. According to [134] AI-based systems
can significantly reduce delays while incorporating new best
practices and tools, for new significant periodic revision of
scientific and medical knowledge in healthcare systems and
help to optimize output more quickly.

In [36] authors proposed a personalized self-served health-
monitoring system for the elderly in the home environment
by combining general rules with case-based reasoning (CBR)
approach. The system uses health parameters such as blood
pressure, blood glucose, weight, activity, pulse, etc., and
applies general rules to classify individual parameters. Case-
based reasoning is used to combine different health param-
eters which ultimately generates the overall classification
of health conditions. The system successfully generates
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feedback, recommendations, and alarms in a personalized
manner. However, the system works only in the specific
elderly home environment and for a specific age group.
Moreover, the system uses rule-based reasoning (RBR) and
case-based reasoning (CBR) for the classification of health
conditions. Facts and rules are strictly categorized in RBR
and require a strict Boolean match on the conclusions and
suppositions while the real-world problems like healthcare
problems are often fuzzy and do not match exactly with
rule-based conclusions and suppositions while case-based
reasoning has its limitations w.r.t, the representational
scheme used for the cases in the case library, structure of
case library,need-based,retrieval and similarity metrics, and
adaptation.

In [37] the authors propose a multi-modal hybrid reasoning
methodology (HRM) that integrates the rule-based reason-
ing, case-based reasoning, and preference-based reasoning
approaches sequentially by exploiting guideline rules, past
successful experience cases and personal preferences to
generate personalized physical activity recommendations
according to the user’s needs and preferences. The authors
had successfully facilitated the users with different wellness
services. However, the used approaches are not exhaustive
and are dealing only the wellness services at a personalized
level but not the personalized health of the users.

In [34] the authors proposed a personalized healthcare
monitoring system for diabetic patients by utilizing Bluetooth
Low Energy (BLE) based sensors and real-time data pro-
cessing. Real-time data processing utilizes Apache Kafka for
handling incoming sensor data whereas MongoDB is utilized
to store the unstructured sensor data. The authors successfully
handled continuous data (e.g., Blood Glucose (BG), heart
rate, blood pressure, weight, and other personal data) from
the BLE-based sensor devices by real-time data processing.
The authors used multi-layer perceptron (MLP) to classify
diabetes patients. In [38] authors proposed a smart application
that monitors the health status by an easy user interac-
tion for the users with limited technological experience.
To implement the system, authors combined the Wearable
sensors such as the Angel Sensor (for data collection) with
voice interactive devices, and the Amazon Echo (for voice
interfacing). In [122] the author employed machine-learning
techniques to extract features from electrocardiogram (ECG)
and informed hypertensive patients about their heart status
during various activities. The experimental data were col-
lected from a network of conscientious volunteers through
a mobile crowdsensing (MCS) application. However, the
experimental data did not include the main diagnostic feature
for hypertension that is blood pressure. In [123] the authors
used an IoT sensor with artificial intelligence (AI) to predict
the exact patient details such as fitness tracker, medical
reports, health activity, body mass, temperature, and other
health conditions. The collected patient details are processed
according to the iterative golden section optimized deep
belief neural network (IGDBN) which helps to choose the
effective patient assistance system. In [132] the authors used

machine learning (an AI technique) for the classification
of skin lesions using a single convolutional neural network
(CNN), trained end-to-end from images directly, using only
pixels and disease labels as inputs. The classification was
able to successfully diagnose skin cancer as efficiently as
dermatologists.

The afore-mentioned approaches lack in one or many of
the followings:
• They establish personalized healthcare service through
visualizing personalized data that is focused on moni-
toring a selective health condition (like for patients with
breathing problems, diabetes mellitus). The systems
provide security and privacy support but fail to monitor
the comprehensive personalized health condition of the
patient.

• They applied IoT environment in a specific context
(like assisted living facilities, smart homes, cognitive
disabilities). The system only assists the caregivers
and inhabitants in hazardous situations but is unable
to monitor the comprehensive health condition of
inhabitants.

• They developed a system that is working for people with
less technological experience by using voice interactive
devices in combination with smart sensors like Angel
sensors. The system works for specific health conditions
like diabetes mellitus and is not able to monitor the
comprehensive personalized health condition of the
patient.

In the following, we have highlighted key challenges
of the application layer that hinders key requirements
of HIoT as identified in the Sub-section III-B, analyzed
current approaches to address the above challenges, and
identified the challenges as research gaps that have not
been addressed adequately. We discussed these challenges
for each requirement, namely reliability, resilience, and
personalization, in order below:

1) Reliability: The main goal of healthcare applications
is to derive various facts about a patient’s health based
on monitoring through collecting data about a patient’s
health conditions from respective medical devices. The
derivations are later used by the practitioner, patient,
or caretakers to control the patient’s health. Therefore,
the reliability of these applications strictly depends on
the reliability of such derivations.
Analogous to the Things and communication layer,
the reliability of the application layer can be defined
considering the following three requirements:
• Perform a required function.
• Perform the function under stated conditions.
• Operation for a specific time.

In the following different approaches have been
established/ developed which address one or more
reliability requirements of the applications layer.
In [11] the authors developed the reliability of the
healthcare system, investigated and quantified their
influence of the component states (functioning levels
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and failure) based on unified methodology. In [135]
the authors investigated the long-range wide-area
network (LoRaWAN) frames loss due to the channel
effects. They designed a novel coding scheme that
combines techniques from convolutional and fountain
codes called DaRe that works on the application layer
for data recovery and provides better resilience.
According to [136] reliably helps to deliver effective
interventions in healthcare organizations.They pro-
posed a model to improve reliability which includes
interventions to improve by focusing on valid rate-
based measures. They used the following interventions
for improving the reliability of the healthcare system:
• Identifying evidence-based interventions,
• selecting interventions with the most impact,
• developing measures to evaluate reliability,
• measuring baseline performance, and
• ensuring that patients receive the evidence-based
interventions.

In [137] the author examined an innovative approach
that uses the combination of specific work practices
and behavioral processes for detecting unexpected
events and then operates in a nearly error-free manner.
Furthermore, they explored that reliability-enhancing
work practices (RewPs) help to improve the perfor-
mance of the system by reducing errors. Also, the
RewPs are directly and indirectly associated with fewer
medication errors and patient falls. In [10] the authors
used the features of decentralization of database and
consensus in Blockchain technology to get highly
accurate results in terms of machine learning with the
security and reliability of Blockchain Technology.
In [11] the authors presented fingerprinting healthcare
applications architecture based on network slicing that
can provide reliability for s-health applications and
services. The developed system obtains 90 percent
accuracy assisting in network customization. In the
article [138] authors include purpose, process, people,
and management system as the important constructs
which are required for highly reliable healthcare. The
article also explores the reasons for the failures in
improvements in healthcare and suggests rigorous
training and continuous attention for updating the
standards. In [124] the authors integrated Machine
learning (ML) and blockchain technologies for solving
the challenges of securely exchanging the big data that
supports the analytics. The authors used some ML
algorithms like Naive Bayesian, k-nearest neighbor,
and decision tree on the trained data to achieve higher
accuracy in identifying the disease. In [139] the authors
emphasized the great significance of the convergence
of IoT and AI. they elaborated the knowledge-enabled
AI and data-driven AI, comparing its advantages and
disadvantages throughout the IoT architecture, from
the things layer through the communication layer to
the application layer. The authors highlighted that

reliability in data transmission, security and pri-
vacy are open issues during the convergence
between IoT and AI. In [140] the authors presented
blockchain-based electronic healthcare record (EHR)
using javascript-based smart contracts for the patient-
centric design of a decentralized healthcare manage-
ment system. The authors developed and implemented
a prototype based on hyper ledger fabric that provided
performance such as latency, throughput, resource
utilization for varied scenarios, and control parameters.

2) Resilience: Analogous to things and the communica-
tion layer, the resilience of the application layer can be
realized as the capability of applications (e.g., health-
care service monitors and controllers) to continue their
normal operations and vigorous response in case of any
unexpected or unpredicted situations. To support real-
time resilience of IoT based healthcare applications is
very challenging mainly because applications may fail
due to:

• Inadequate and vulnerable design of applications
(e.g., techniques that application employ (for
instance, machine learning and AI), program-
ming languages used to develop applications (for
instance, Python and Java), to name a few), and

• inadequate and vulnerable applications’ execution
(e.g., data, network, and run-time libraries).

Former (aka design) failures are key threats to the
resilience of healthcare applications being unrecov-
erable in real-time due to the time required to
localize the failure and then fix it. Furthermore,
design limitations (e.g., false alarms, bias, complex
processing) of techniques (e.g., machine learning and
AI) that are used in healthcare applications may lead
to severe consequences resulting in life threats to
patients [141]. Different approaches [142]–[145] have
sketched various limitations of application techniques
in healthcare and have devised ways to address them
in a way that requires developers to handle various
resilience concernswhile developing such applications,
e.g., dataset shift, accidental fitting of confounders,
unintended discriminatory bias, generalization to new
populations, and the unintended negative consequences
of new algorithms on the health condition outcomes.
However, these approaches are error-prone being
manual, and do not ensure application resilience. More
recently, model-driven approaches have been used to
significantly improve the design of such applications
to support resilience. For instance, in [146]–[149]
various models have been proposed to design such
applications that do not include different vulnerabilities
and inadequacies supporting resilience by design.
However, these approaches only support resilience in
the known (via models) scenarios, and fail to recover
from failures that are either variants of the modeled
ones or different from them.
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Latter (aka execution) failures are harder to recover
mainly because they involve unseen incidents that
take a lot of time to identify the incidents’ cause
and then to fix them. Furthermore, identification here
is challenging because the execution environment
involves very complex infrastructure most of which is
a black box (e.g., communication infrastructure and
IoT devices from differentmanufacturers and platforms
and services from different providers). To this end,
various monitoring techniques have been developed
to detect such incidents at run-time and mitigation
techniques that recover the application’s failures in a
way to minimize the impact of the incident. Current
approaches [150]–[152] introduce different risk-based
maintenance methodologies that enable recovery of
healthcare applications making them resilient aware in
certain scenarios against known threats. In [153] the
authors presented a novel and resilient approach for
improving the operational efficiency of computational
cost by using approximate computing (AxC) that can
significantly boost the efficiency for adopting AI-based
applications and services. They presented a multi-tera
operation per second (TOPS) AI hardware accelerator
core that they built from the ground-up using approx-
imate computing (AxC) techniques across the stack
including algorithms, architecture, programmability,
and hardware.

3) Personalization: Contemporary healthcare applica-
tions support personalization [154], [155] in one or
more of the following different ways:
• Patient’s self-organization of various health
conditions,

• health condition and/or patient-specific gadgets
and automated guidance.

The patient’s self-organization is supported by devel-
oping applications [156], [157] that can be customized
as per patient’s requirements, e.g., goal setting, cele-
bration, discovery, reflection, and coordination among
others. However, these approaches do not support clin-
ical personalization that requires clinical optimization
of various health conditions to reduce health risk and to
improve the quality of health/life of the patients.
Various gadgets (and associated applications)
[158]–[161] have been developed to support the
customized organization of various health conditions.
These gadgets provide health condition-specific moni-
toring and control patiently. These approaches provide
very restricted customization of gadgets for a specific
health condition of the patient.
Recently, various ML and AI-based applications
[162]–[166] have been developed that provide per-
sonalization of a specific health condition to the
patient based on data collected from personal medical
devices of the patient over long periods. However, the
above-mentioned approaches are limited in realizing
the personalization that is data-driven which suffers

from false predictions resulting in a severe loss.
In [163] the authors addressed the major issues such
as explainability, liability, and privacy to mainstream
AI in healthcare. Explainable AI, a new emerging
discipline seems to be the solution for making machine
decisions transparent, interpretable, traceable, and
reproducible.

Consequently, the application layer supports either techno-
logical personalization or health condition-specific person-
alization to patients. This support is limited and does not
provide clinical personalization of various health conditions
of a patient in a way that reduces the health risk on one
hand and improves the quality of life and health on the other
hand. AI/ML-based approaches can be partially used at the
application layer. These techniques can be used for health
condition monitoring or for dealing with the patient data
e.g., patient’s history, treatment record, security of patient
data, and progress about recovery. But for critical matters
like diagnosis, treatment AI/ML-based techniques can not
be implemented due to the explainability and trust of these
applications. A lot of work is still in progress regarding the
explainability and trustworthiness of AI.

V. RESEARCH GAPS
The research gaps in the IoT layers in the frame of com-
prehensive personalized healthcare services requirements are
shown in Table 6. These derived gaps determine research
challenges that are associated with different layers of
the architecture and corresponding key requirements of
healthcare. The identified gaps conclude that the current
HIoT devices and applications monitor a specific health
condition of patients [167] (e.g., insulin level, ECG level,
and oxygen saturation monitoring devices) and thus are
not reliable for a patient with multiple health conditions
as they fail to provide reliable, resilient, personalized,
and application-specific healthcare mainly because these
applications,
• do not coordinate with other similar applications that
monitor different health conditions of the same patient
and as a result, fail to understand the health context of
the patient, and,

• do not exchange information securely due to unreliable
and heterogeneous underlying software and hardware.

• does not understand the effect and relation among
different health conditions of a person.

The comparison of various smart healthcare approaches like
AI-based, Machine learning-based, and deep learning-based
is shown in Table 8. The comparison clearly shows that
only few among the above mentioned approaches either
partially support (i.e., indicated by half filled circle) or do
not support (i.e., indicated by empty circle) personalization
of healthcare services considering multiple health conditions
of a patient. The above mentioned analysis of the CPHS
requirements (i.e., reliability, resilience, and personalization)
at different layers has been performed under the assumption
that operations of the respective layers exhibit normal
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TABLE 6. Research gaps for CPHS requirements.

behavior, which is not true in practice due to emerging
security threats to different layers. Therefore, we consider
security as integral to the CPHS requirements that enable us
to identify the security threats that affect the normal behavior
of the layers. In the following section, we discuss various
security threats to different IoT layers.

VI. SECURITY THREATS AT IoT LAYERS
Security threats at different IoT layers and their possible
mitigation are shown in Table 7.

A. SECURITY OF IoT DEVICES
The increase in the number of modern IoT devices and
their exponential use in healthcare systems has increased
the risk of security-related issues and other vulnerabilities.
As per [168] till 2025 number of IoT devices per second will
rise to 152K. The emergence of Wi-Fi 6 and 5G networks
provides higher data rates to support new applications and
increases network capacity. They are exponentially scalable
and will bring much better performance for organizations
with the improvement in speed, latency, and scalability and
will be ideal for indoor enterprise networks. Themain reasons
associated with security issues are as follows:
• The nature and sensitivity of the data which is commu-
nicated by medical devices.

• Complexity and data compatibility issues.
• Lack of attention towards security issues by manufactur-
ers of medical devices.

Due to the above-mentioned reasons, security-related issues
related to confidentiality, integrity, and availability (CIA) are
increasing [43] for IoT devices.

These devices are not fully secure and face different types
of physical attacks. Some examples of these attacks are as
under [79], [169]:
• Node tampering.
• RF interference on RFID’s.
• Node jamming in Wireless Sensor Networks.
• Malicious node injection.
• Physical damage.

• Social engineering.
• Sleep deprivation attack.
• Malicious code injection.

According to [170], following security issues exist in the IoT
Things layer:
• strength of wireless signals,
• node interception by owner/attackers, and
• nature of network topology.

In addition to this, Replay Attack can easily exploit the
confidentiality of this layer by spoofing, altering, or by
Timing Attack. Another attack is the Node capture attack
which can be made by the attacker by taking over the node
and capturing all the information on the node. According
to [171] another attack called DoS attack is also possible
where the attacker adds another node in the network and
threatens the integration of the data. This attack deprives the
system of the sleep mode that the nodes normally use to save
energy. Cellular networks have started to support new user
categories tailored for IoT applications, e.g., narrow band-IoT
(NB-IoT). Several challenges arise with the increase in the
density of IoT devices. Re-transmission gets more frequent
as collision among the IoT devices also increases due to
several access requests for IoT devices which affects the
energy efficiency. Several approaches are used to aggregate
IoT traffic. For instance, in [172] the authors proposed a
transmission protocol to aggregate IoT traffic by using drones
along with the surety of fair shared spectrum access with the
existing cellular users.

B. SECURITY OF IoT-BASED COMMUNICATION
The communication of IoT devices is the target for harmful
attacks in the following three classical aspects [173].
• Confidentiality: specifies to the communication to be
accessed only by authorized persons.

• Integrity: refers to the complete trustworthiness trans-
mission and receivable of data without any accidental
and intentional modifications.

• Availability: is about making sure about the usability of
the service upon the authorized request only.
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The communication layer is not fully secure and can suffer
from the following network attacks (attacks over the network
or an attack on the network) [79], [169].
• Man in theMiddle (MITM): In this attack, the attacker
capture, read, and modify data between two objects on
the IoT platform [171]. The major goal of the attacker
is to change data on the IoT platform by sabotaging the
traffic.

• Spoofing: In spoofing the attackers imitate or modify
the node information to poison the network traffic
by generating new nodes, extending or shortening the
network paths, or by sending false messages [174],
[175]. Spoofing affects the integrity of the IoT system.

• Desynchronization: In desynchronization, the attackers
interfere with the communication parameters and disturb
the normal synchronous network traffic [176], [177].

• Selective Forwarding: In selective forwarding, the
attacker steals and corrupts the data by seizing
the nodes, reducing the number of data packets,
and redirecting the packets to different directions in
IoT networks.

• Unfairness: In unfairness, the attackers distract the
equal load sharing of the network, and as a result system
gets down.

• Flooding: In flooding, the attacker disables a part of the
whole IoT network and results in reducing the speed or
the complete shut down of the service.

Moreover, the other attacks include wormhole, Sybil, RFID
cloning, unauthorized access, sinkhole attacks, denial of
service, and routing information attacks, etc.

C. SECURITY OF IoT APPLICATIONS
On the application layer users and machines communicate
directly to the IoT platforms. Application layers are not fully
secure and face different types of attacks are listed under.
• Software Attacks: IoT applications face security vul-
nerabilities like,
– Phishing attacks,
– Virus, worms,
– Trojan horse,
– spyware,
– Malicious scripts and
– Denial of Service

• Encryption Attacks: Along with the software attacks
there are encryption attacks that break the system
encryption. Some examples are as under:
– Side channel attacks
– Crypt-analysis attacks
– Man in the Middle attack

D. AI-BASED SECURITY APPROACHES
In [178] the authors demonstrated vulnerabilities to dif-
ferent cyberattacks on personal medical device commu-
nication. Specifically, how an external attacker can hook
into the personal medical device’s communication and

eavesdrop on the sensitive health data traffic, and implement
man-in-the-middle, replay, false data injection, and denial-
of-service attacks. The authors proposed an intrusion
detection system (IDS), HEKA, for monitoring device
traffic and attacks. The proposed system detects irregular
traffic-flow patterns using an n-gram based approach and
different machine learning techniques for intrusion detection.
Undoubtedly, Artificial intelligence (AI) is revolutionizing
patient healthcare with its seemingly limitless power. How-
ever, the new issues arising from the applications of AI
in healthcare can not be ignored. In [179] the authors
highlighted the new issues of AI-based applications in
healthcare. Big patient data brings big risks about data
liability and challenges about patient privacy concerns.
In [180], [181] the authors highlighted concerns about
cybersecurity, the question of responsibility, and consid-
eration of ethics while integrating AI tools into current
practice. In authors [181] addresses four major areas like
transparency, informed consent, privacy, and accountability,
where guidelines and best practices will be helpful to avoid
harmful effects or unwanted consequences. In [182] the
authors discussed the uncertain future of AI considering
its advantages and disadvantages. AI-based techniques can
be used in different fields to achieve excellent results. For
instance, according to [183] AI-based robots and machines
are replacing laborious and monotonous tasks. AI-based
health reports have made doctors work faster and help in
providing earlier diagnoses by reducing costs. In [184] the
authors highlighted current security solutions with AI i.e.,
Intrusion Detection and Prevention Systems (IDPS) as well
as their limitations and considerations in a power utility
network. In [185] the authors presented artificial intelligence
analysis benefits in medicine. The authors examined the
effect of artificial intelligence assistance in the medical
field, the effect of AI-based diagnosis on a patient, patient’s
treatment (i.e., Precision Medicine), error reduction (i.e.,
human andmachine-based errors), and virtually being present
with the patients(i.e., robot nurses, medicine reminders,
etc.). In [186] the authors investigated the attack model for
IoT systems and IoT security solutions based on machine
learning (ML) techniques including supervised learning,
unsupervised learning, and reinforcement learning (RL). The
main focus was IoT authentication, access control, secure
offloading, and malware detection schemes to protect data
privacy. In [187] the authors’ surveys about the use of
AI-based tools for healthcare purposes from consumers’
perspectives. According to the author acceptance of AI tech-
nology in the healthcare sector requires a deep understanding
of the technology and related factors (ethical, regulatory
concerns) before its implementation in clinical decision
support (CDS).

Based on the identified gaps and the security threats on the
three layers of IoT, we aim to develop a system that ensures
operational reliability and resilience of personalized and
application-specific healthcare services to patients through a
coordinated network of IoT applications and devices. In the
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TABLE 7. Security threats at different IoT layers [42].

following section, we discussed various components and
workflow of our proposed solution.

VII. PROPOSED SOLUTION
To ensure the operational reliability of coordinated healthcare
IoT devices and applications to deliver personalized health-
care services, we plan to develop a methodology that includes
the following three components:

• Modeling: To investigate various modeling techniques
that help to develop an abstract but practical model of
operational characteristics of IoT devices, applications,
healthcare conditions, and standards.

• Reliability Analysis: Based on the developed model,
investigate various techniques to analyze the following
questions:

– How to establish reliable coordination among
applications and devices?

– How to diagnose the right cause of the health
condition?

– How to identify the right treatment that minimizes
its side-effects on other health conditions?

• Resilience Analysis: To investigate techniques that
ensure fail-safe operations of the devices and applica-
tions through continuous health monitoring.

A. WORKFLOW OF CPHS
The Workflow of the personalized HIoT System for com-
prehensive personalized healthcare is shown in Figure 14.
Patient data from different monitoring devices like an insulin
pump, blood pressuremonitor, blood cholesterol monitor, and
heart rate monitor is collected and transmitted at the IoT
cloud where data is stored. Stored data is processed by using
different AI techniques and disease models. However, several
challenges are involved to develop the personalized HIoT
System for comprehensive personalized healthcare.

To address these challenges, we aim to develop a
solution that enables the modeling of health conditions
based on their clinical/biological characteristics includ-
ing clinical/biological dependencies among the conditions.
Based on the models, we develop a personalized healthcare
monitor that monitors various health conditions of a patient,
and identifies any discrepancies among health conditions.
Furthermore, the monitor provides clinical reasoning to
rigorously identify the exact cause of the discrepancy.
Once identified, the monitor can provide corresponding
treatment to the discrepancy which can be later monitored
to understand the effect of the treatment. Based on clinical
reasoning, the monitor controls various health conditions
of a patient remotely and automatically. Clinical reasoning
makes the monitor self-aware, (i.e., it understands what it
is monitoring), and thus supports healthcare services that
are free of false diagnosis. Modeling health conditions
is a challenging task as it requires identifying different
clinical dependencies among various health conditions of a
patient. However, these dependencies are typically non-trivial
that require understanding of the underlying variable level
biological processes associated with the conditions which are
mostly a black box. To describe different levels of details
about biological processes, we will introduce a modeling
language that will allow modeling health conditions and their
dependencies at an abstract but practical level of description.
The model will be later used for mechanized reasoning about
dependencies among the health conditions.

B. FEATURES OF CPHS
Our proposed methodology will not only realize personalized
healthcare services based on their clinical characteristics
but will also enable autonomous, automatic, and rigorous
diagnosis of stealthy health conditions exploiting biological
dependencies among various health conditions. Of course,
we will address the key challenge to model clinical
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TABLE 8. Comparison of various smart healthcare approaches.

FIGURE 14. Workflow of personalised HIoT.

characteristics of health conditions that are highly declarative
and abstract (e.g., health conditions with no specific clinical
characteristics) on one hand, but are very low level (e.g., DNA
and other details of a health condition) on the other hand.
We aim to demonstrate the effectiveness of our methodology
through its application to observe various health conditions
(e.g., heart rate, diabetes, blood pressure, and cholesterol-
related).

Consequently, we will develop a library of various
health conditions (models) that can be later used in any
healthcare computerized system to reason about health-
care services based on their clinical characteristics. The
library will also help to learn other dependencies among
various health conditions that are otherwise beyond the
capabilities of medical practitioners. Moreover, based on
the models, the newly identified dependencies will be
explainable in a way that is understood by practitioners and
machine.

Based on our results, we aim to integrate our method with
following technologies:

• Blockchain-based techniques to obtain integrity and
reliability for personalized healthcare services.

• AI/ML techniques that will help to better understand
health conditions by comparing data of different patients
for similar health conditions and consequently propos-
ing more personalized diagnosis and treatment, that will
effectively and efficiently improve the health of patients.

As personalized healthcare and AI are evolving continu-
ously, comprehensive biological knowledge, smart diagnostic
techniques, and other factors like patient data from the
medical images, and patient history will help to identify
personalized therapies for individuals. AI is playing a
vital role in different fields of healthcare. So far AI is
used at Things, Communication, and Navigation layers
for data collection, communication, and patient monitoring
respectively. However, AI is not yet completely safe for
diagnosis and treatment purposes due to its explainability and
trust issues. Therefore, AI algorithms are not yet fully trusted
in critical healthcare domains.

VIII. CONCLUSION
We have introduced Healthcare 5.0, personalized healthcare
services, and their key requirements that are classified into
reliability, resilience, and personalized healthcare. Impor-
tantly, we have defined personalized healthcare services as
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a relationship of various health conditions of a patient based
on the characteristics of their underlying biological process
as well as their associated mechanical monitoring system.
Based on the reference architecture of a modern IoT-based
healthcare system, we have investigated the current efforts
to address the defined key requirements. Finally, we have
identified research gaps that need to be addressed to develop
reliable and resilient personalized healthcare systems for the
future.
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