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ABSTRACT Since its inception, the Internet of Things (IoT) has witnessed mushroom growth as a
breakthrough technology. In a nutshell, IoT is the integration of devices and data such that processes
are automated and centralized to a certain extent. IoT is revolutionizing the way business is done and is
transforming society as a whole. As this technology advances further, the need to exploit detection and
weakness awareness increases to prevent unauthorized access to critical resources and business functions,
thereby rendering the system unavailable. Denial of Service (DoS) and Distributed DoS attacks are all too
common. In this paper, we propose a Protocol Based Deep Intrusion Detection (PB-DID) architecture,
in which we created a data-set of packets from IoT traffic by comparing features from the UNSWNB15
and Bot-IoT data-sets based on flow and Transmission Control Protocol (TCP). We classify non-anomalous,
DoS, and DDoS traffic uniquely by taking care of the problems like imbalanced and over-fitting. We have
achieved a classification accuracy of 96.3% by using deep learning (DL) technique.

INDEX TERMS Intrusion detection in IoT, deep learning for intrusion detection, DoS detection, DDoS
detection.

I. INTRODUCTION
Home automation systems provide several ingress points
– like smart meters, wireless lamps/bulbs, surveillance
equipment, and smart thermostats, to name a few. Such
connected devices with attached sensors provide hackers with
a tremendous opportunity to exploit the system. While IoT
has made the management of various daily tasks simple, it is
essential to guarantee that criminals do not enter our homes
using a loophole [1]. As systems evolve and become security
smart, hackers become smarter. IoT devices gather a huge
amount of data during their lifespan. With the rapid growth
of 5G implementation, data communication between devices
and networks is projected to increase many folds [2]. It is
pertinent to note that if the data captured/generated by these
devices is not secured, it remains available for stealing for
financial gain or worst, it may put the lives of people at risk
across the globe.

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

FIGURE 1. Smart devices with the information a hacker can retrieve.

The physical phenomenon, when captured into the digital
domain (i.e., IoT), presents a broader range of potential
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FIGURE 2. No. of cyber-attacks against IoT devices in each 6 months (one
half) of the year [4].

loopholes that can be exploited. Ever growing need to
properly equip IoT systems with adequate security is
evidenced by the fact that about 50% of the world’s leading
exploits targeted IoT devices during 2018, and most of these
were related to the exploitation of IP cameras [3]. Cyber
criminalsmight snuff out private communications, participate
in disruptive on-site operations, or obtain a vantage point to
trigger DDoS or ransomware attacks. Protective devices such
as cameras are not immune to such attacks either. In the first
half of 2019, cyber-attacks increased bymore than three times
the second half of 2018 and 2.98 billion cyber-attacks were
recorded for IoT devices (Fig. 2). This dramatic increase in
attacks is due to an increase in the adoption of IoT devices.
Approximately 30 billion IoT devices are connected to the
internet in 2020, which will increase to 75 billion by the year
2025 (Fig. 3).

FIGURE 3. No. of IoT devices connected to the internet for each year [6].

FIGURE 4. IoT security spending worldwide from 2016-2021 [7].

IoT security spending has reached 2.5 Billion US Dollars
in 2020, almost 25% more than in 2019 (Fig. 4). According
to Palo Alto Networks 2020 IoT threat report, 98% of
IoT devices traffic is in plain and goes in the network
unencrypted. Moreover, 51% of IoT threats involve medical
care devices that disrupt healthcare quality and put patient’s
data at risk. The healthcare VLAN network consists of both
IoT and IT devices. This allows attackers to spread malware
from computers to vulnerable IoT devices [5].

Above in view, a lot of research is focused on securing
IoT devices against intrusion. Because great economic burden
prevails in which huge revenue is spent on security of IoT
devices. Many researchers have employed techniques for
threat detection using supervised machine learning (ML) but
few have employed solutions using deep learning. In these
solutions, a major predicament comes when trying to acquire
data related to IoT devices. Whichever data we acquire today
will be insufficient tomorrow, as new, sophisticated and more
complex attacks are created and implanted. The best solution
to this problem is to acquire the data which is realistic and
latest one in order to cover maximum portion of attacks
happening today.

The UNSW-NB15 (2015) [8] and the Bot-IoT (2018) [9]
are the most prominent and up-to-date date-sets in the
domain. The Bot-IoT data-set is more sophisticated as it
covers IoT devices which span over simulated as well as
real data. Both data-sets have a common drawback which
is the imbalance nature of data, which makes the prediction
biased. These data-sets have been explored in detail in
a number of previous works [10]–[16]. The researchers
have applied both conventional machine learning techniques
such as Decision Trees (DT), Naive Bayes (NB), Random
Forest (RF), Support Vector Machine (SVM) etc. as well
as deep learning algorithms such as CNN, RNN, LSTM
etc. to analyze the effects of an intrusion in a large scale
IoT network. However, there exist several challenging areas
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such as finding common features between the UNSW-
NB15 and the Bot-IoT data-sets so that both data-sets can
simultaneously be used for training, handling the imbalance
nature of the data-sets which results into biased classification,
and training a deep learning model over both data-sets to
detect DoS and DDoS attacks.

Researchers like Shafiq et al., [14], employed several
ML techniques of Decision Trees (DT), Naive Bayes (NB),
Random Forest (RF) and Support Vector Machine (SVM) on
the Bot-IoT data-set and used Pearson Moment Correlation
andAreaUnder the Curve (AUC)metrics for feature selection
and selected top 5 features while achieving promising results.
Guizani et al., [15] employed long short-term memory
networks (LSTM) on the UNSW-NB15 data-set to analyze
the effects of an intrusion in a large scale IoT network.
Alkadi et al., [16], used Bidirectional LSTM, where the
data flows in both backward and forward directions, on the
UNSW-NB15 and the Bot-IoT data-sets separately. In both
of the aforementioned works, a relatively smaller subset of
both data-sets is used for training which reduces accuracy
of prediction due to weak learning and may lead to
biased classification. Moreover, none of the existing works
compared the two data-sets in order to find same or similar
features so that the data from both of the data-sets can used to
train supervised ML or deep learning models for meaningful,
sophisticated and efficient intrusion detection.

In our previous work [17], we have trained twowell-known
supervised learning algorithms namely Random Forest and
Support Vector Machine using the application and transport
layer features from the UNSW-NB15 data-set. The binary
andmulti-class classification shows that intrusion detection is
possible with higher precision using application and transport
layer features. The work at hand is an extended work where
we have used the Long Short Term Memory (LSTM) based
un-supervised deep prediction model to classify IoT network
traffic using two benchmark data-sets in the category of NIDS
i.e., the UNSW-NB15 and BotIoT. These data-sets cover
major attack scenarios based on the most realistic traffic.
Since DoS attacks are a common threat to IoT devices,
so we merged both data-sets to cover most of the DoS and
DDoS scenarios. We have used flow and TCP features for
classification because they are most relevant to IoT devices
and require fewer features for training and classification,
which significantly reduces the processing time. The major
contributions of the work at hand are as follows:
• Comparison of the UNSW-NB15 and the Bot-IoT data-
sets to identify common features between them.

• Union of both data-sets using common features which
fall in flow and TCP categories.

• Removal of issues pertaining to the imbalance nature of
data-sets and biased classification.

• Employing LSTM based un-supervised deep learning
model for the detection of DoS and DDoS attacks.
The model is trained on all of the data available in
the UNSW-NB15 and BotIoT data-sets to cover the
maximum possible types of packets.

• The employed deep model has been cross validated
using different performance metrics.

The remainder of the paper includes Section II covering
related work, Section III discussing the proposed PB-DID
architecture. Section IV covers the experiments conducted
using the solution given in section III and their results.
The discussion on results is presented in section IV, and
their comparison with other related solutions is covered in
sectionV, which is followed by a conclusion and future works
in section VI.

II. RELATED LITERATURE
In the cybersecurity domain, towards cyber antagonists,
an Intrusion Detection System (IDS) serves as a clear defense
line, which is very critical for a system. Due to mobile
device penetration and the popularity of apps that quickly
accomplish various user tasks, we have become dependent
on this parallel universe defined by electronic devices. Users
need to be made aware of the implication of negligence
towards secure practices to protect network infrastructure
against intrusion threats. A device is considered protected
if it successfully achieves data protection, confidentiality,
Integrity and availability (CIA) [18].

Attacks are designed to undermine the security systems
in place. An intruder, by definition, is unwanted and must
be kept outside the network in order to maintain a reliable
authentication and authorization process. Denial of Service
DoS attack, for instance, floods computing resources with
information, which destroys the concept of availability,
while malware disrupts the implementation of a program
that infringes the concept of integrity [19]. An IDS is a
surveillance and review tool for operations in a computerized
system or infrastructure to identify perceived threats by their
observations of offences related to the principles of CIA
in computer security policy [18], [20], [21]. According to
Nexusguard the DDoS attacks in first quarter of 2020 has
increased by 500% as compared to last quarter of 2019 [22].

To track network dependent system an IDS can be
employed in host mode or network mode. A host dependent
IDS (HIDS) tracks host affairs by gathering data of computer
system activities [23]. In this kind of device, a monitor
must be mounted to track hosts and record their actions on
the operating system for an investigation trail [23], [24].
It is therefore important that HIDS should be compliant
with its devices to track various operating systems. Since
investigation trails are used, the process is resource hungry
and results in increased load on the host server which is a
costly proposition [24], [25].

Furthermore, HIDS can still be compromised once an
intruder exploits the host server. This implies, that the
credibility of a host dependent detector can be compromised
by internal security loopholes of a hosting server [23], [25].
Once an intruder exploits one such flaw, a security loophole
might be challenging to identify. Also, through filling the
system’s audit files, a DoS attack could uncover a host and
obstruct the operations of such HIDS [25], [26].
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Network-based IDS (NIDS) tracks network traffic to detect
mobile threats occurring via a network connection [26].
This seems to be an effective security approach since, when
entering a host infrastructure and documenting itself on
operating systems audits, it offers a strong layer of protection
towards a malicious activity. While a HIDS might identify
breaches within hosts, this happens typically after accessing a
host’s system assets, including its data and services. To follow
‘‘prevention is better than cure,’’ the best safety approach is
to avoid proven and zero-day assaults over networks before
reaching the hosts. Since there can be no assurance that the
device assets are not compromised, even if a HIDS senses
a threat, the architecture of a smart NIDS allows means of
preventing these attacks, but it is indeed quite challenging
to implement this consistently. Hence, a HIDS and NIDS
compound was constructed to create a hybrid IDS to track
network activity and control host operations [27].

There are numerous benefits of using a NIDS [28].
As compared to HIDS. NIDS does not affect network
application’s efficiency by performing surveillance of the
network because from any incoming packet only a few
details are required to be extracted. Whereas, in HIDS,
operating system’s assets are inspected [23]. Moreover, NIDS
is compact since it tracks a specific portion of the network and
is independent of the target’s operating system.

Nonetheless, scalability is one of the key inconveniences
in implementing a NIDS. As network gain higher data-
rates, hackers may characterize them by employing spy and
stealth assaults in low-footprint threats that can leverage
loopholes [29], [30]. Network encryption makes it difficult
in developing NIDS to gather cipher knowledge, while
tunneling in IPsec protocols creates a new danger which
allows IPv6 traffic to be encapsulated in the IPv4 and stream
the data through non-cooperative devices raising threats of
DoS and DDoS which can be alarming [31]. A sophisticated
NIDS will cope with encryption throughout the connection
by extricating general and empirical details on packets,
as in it’s length and size which are features related to
flow [23], [32], however the payload of packet and extraction
of attributes related to packets are still concealed. Through
Deep Packet Inspection (DPI) such packets are analyzed
for finding patterns, action or synthetic learning hypotheses
and methodological approaches of such packets becomes the
basis of their designation [32].

A. IDS TECHNIQUES BASED ON SUPERVISED
ML IN IoT SCENARIO
In recent times, IDSs have drawn attention of several analysts
and developers with increasingly deployed IoT devices in the
IoTworld. In certain works [33], [34] unique risks against IoT
products are discussed. Cervantes et al., [33] gave a solution
for routing systems to detect sinkhole threats. In static and
portable conditions, the classification accuracy reached 92%
and 72% respectively. In their study [34], Guo et al., proposed
to deter threats to the Bluetooth Low Energy (BLE) platform
on three separate rates of power drainage.

In comparison to ML techniques and rules-based systems,
a new IDS for the IoT setting has been proposed by
Anthi et al., [35]. Their goal is to anticipate malicious activ-
ities as well as to track their compromised IoT nodes from
the DDoS threats within the network.Weka tool (open-source
platform) [36] is used for evaluating the performance of
classification through NB classifier. Nobakht et al., [37] have
also used Weka to investigate the precision of the forensic
system for IoT botnets based on Logistic Regression (LR) and
SVM.

In recent work, ML based techniques have out performing
the classical approach of IDS through signature based
detection especially in IoT environment. The reason is that in
signature based detection the hackers can thwart the normal
behaviour of traffic and also they cannot detect zero day
attacks.

B. IDS TECHNIQUES BASED ON DEEP LEARNING
MODELS IN IoT SCENARIO
Tang et al., [38] suggested a method for intrusion detection
in Software Defined Networks (SDN) using Deep Neural
Network. The proposed DL technique for IDS can assess all
switches in OpenFlow and is deployed in the SDN controller.
Binary classification (non-anomalous and malicious) is done
using NSL-KDD data-set [39] in which they only kept six
features which can easily be obtained in SDN out of fourty
one features of the data-set. Authors show that 0.001 as
learning rate was most successful with maximum receiver
operating characteristic curve when compared with other
learners. The DLmethodwas adopted by Potluri et al., [40] as
the classification technique for the network information. The
data-set they used for evaluation is NSL-KDD that comprises
of 39 forms of attacks divided in four threat classes. Their
analysis indicates that the binary classification rate is high.

Zhou et al., [41] suggested Deep Learning (DL) based
intrusion detection to better identify cyber threats. Their
framework employs stages of data collection, pre-processing
and classification. Proposed model with a learning rate
of 0.01 achieves highest accuracy of 96.3% on simulated
data and outperforms linear regression, RF and k-nearest
neighbours. Feng et al., [42] define an plug and play ad-hoc
network that uses captures packets and a DL technique to
identify DoS and privacy threats. The algorithm suggests two
fundamental classification methods in DL i.e. convolutional
neural network (CNN) as well as LSTM to track threats by
XSS and SQL. The analysts utilized the KDD CUP 99 data-
set [43], that is divided into 30% testing and 70% training.
In addition, 57% and 78% accuracy is achieved when XSS
attacks with the DNN and CNN were detected, respectively.

Similarly, presented in [44] is a great illustration of
DL and predictive learning to recognize intrusions into
the network. By using sophisticated data acquisition and
classification techniques, the analysis can classify a range
of Network Intrusion types. Suggested method includes a
discriminator and a generator as two main components.
The discriminator is utilized to prevent accumulated data
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from existing intrusion observations, whereas the generator
produces increased intrusion knowledge. Kim et al., [45]
employed the KDD 1999 data-set to create a Deep Neural
Network (DNN) for constantly shifting network threats.
Two variables are used for the suggested intrusion detection
paradigm: four hidden layers and 100 neurons in each layer.
For training, activation ReLU function and for optimization,
stochastic gradient descent method is utilized. Over 99%
classification accuracy is obtained by the suggested method.

Ahmad et. al., [17] applied supervised ML techniques on
the UNSW-NB15 data-set by identifying and using only the
application and transport layer features from the UNSW-
NB15 data-set. The authors applied RF, SVM and ANN on
full features, flow & MQTT features, TCP features and top
features from flow and TCP features for doing binary and
multiclass classification. By applying RF they achieved best
accuracy of above 98% in binary and above 97% inmulticlass
classification.

C. IMBALANCED DATA-SETS
There are two main methods to solve the issues of the
imbalanced nature of data-sets, i.e., oversampling and
undersampling. In under-sampling, a subset equivalent to
other class(es) from the class with the majority of samples
is gathered. For the under-sampling of the majority class,
Japkowicz [46] provides two simple ways. The first one is to
consider a random sample that produces only a majority class
subset by randomly selecting primary class samples from
the data-set. Japkowicz refers to the other form as a focused
sample. This implies that a subset is generated by removing
outliers of the dominant class.

Over-sampling might be utilized for the production of
a larger data-set for a small or minor class. The most
uncomplicated oversampling technique is random over-
sampling [47]. To increase the minor class size, data from
the data-set is selected in a random pattern, which is then
duplicated to make the minor class size bigger. Another
method frequently used for over-sampling is the synthetic
minority over-sampling technique (SMOTE) [48]. Synthetic
results using SMOTE are generated using an algorithm of the
k-nearest neighbors’ samples among the minor class and one
of its neighbors [49]. The feature vector for each feature’s
difference of feature’s value and its neighboring feature’s
value is taken.

D. STATE OF THE ART USING THE UNSW-NB15 AND THE
BOT-IoT DATA-SETS
Larriva et al., [10] proposed pre-processing techniques on
the UNSW-NB15, UGR16 and NSL-KDD data-sets. They
applied different pre-processing techniques such as z-score,
min–max, and no pre-processing on different data-sets of
predefined categories. For classification, MLP was used and
any accuracy of 99.7%, 99.3%, and 99.2% was reported for
NSL-KDD, UGR16, and the UNSW-NB15 data-sets respec-
tively. However, no comparison between the data-sets was
presented by the authors. Synthetic Minority Oversampling

Technique (SMOTE) is proposed on the Bot-IoT data-set
in [11], which caters for data imbalance in order to avoid
over/under fitting issues. The authors created a balanced data-
set by using SMOTE, which generates synthetic examples
using techniques such as rotation and skew in order to achieve
class balance. They applied normalization on feature set
and using Deep RNN (DRNN) achieved an accuracy of
100%. However, the normalization was applied on derived
data points and hence undermined the realistic nature of the
data-set. Such normalization of features compromises the
underlying variance phenomenon present in the data-sets.

Churcher et al., [12] compared various ML techniques
such as KNN, SVM, DT, NB, RF, ANN and LR on the Bot-
IoT data-set. They extracted only those features which either
had no missing values or which were relevant. To create
balanced data-set authors used 1.5 Million packets. Best clas-
sification accuracy of 99% was achieved by applying KNN.
Improved Conditional Variational AutoEncoder (ICAVE)
technique [13] was used to create balance in the data-set. Two
data-sets were used for this purposewhich includeNSL-KDD
(two variants) and the UNSW-NB15. They also applied DNN
algorithm on the balanced data-sets and achieved accuracy
score of 85.97% on NSL-KDD (KDDTest+), 75.43% on
NSL-KDD (KDDTest-21) and 89.08% on the UNSW-NB15
data-set. Shafiq et al., [14], employed several ML techniques
of DT, NB, RF and SVM on the Bot-IoT data-set. They
used Pearson Moment Correlation for features correlation
with the class label and AUC metric to measure each
feature’s importance. By employing these techniques for
feature selection, they used top 5 features only and achieved
promising results of 99.99%, 97.5%, 99.98% and 97.8% by
using DT, NB, RF and SVM respectively. Guizani et al., [15]
and Alkadi et al., [16], deployed LSTM technique on the
UNSW-NB15 and the Bot-IoT data-set. In [15], the authors
achieved 70% accuracy by using LSTM on the UNSW-
NB15 data-set. They took IDS to the next level by using
it in countering the effects of an intrusion. In a large IoT
network they created surveillance zones and locked the
zone which is compromised. Only the compromised zone is
then deployed with counters to recover from an intrusion.
In this manner they reduced the resources utilization. In [16],
BiLSTM is used on the UNSW-NB15 and the Bot-IoT data-
sets separately. In BiLSTM, data flows in both backward
and forward directions. They achieved 99.41% and 98.91%
accuracy on the UNSW-NB15 and the Bot-IoT data-sets
respectively.

It is a common practice to use feature importance or
information gain to select the most contributing features, but
there is a possibility that some other features might take
the place of previous features if some more data is added.
To address this problem, we need a few features that play
the role of deciding features even when more data is added.
Various studies have created a model based on a single data-
set and used the same model to test/validate it on some other
data-set, but there are almost none who compared features of
two ormore data-sets and combined them to create an entirely
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FIGURE 5. Proposed structure of PB-DID for attack classification using DL.

new data-set. In most studies, a small portion of the data-set is
used for training and testing, which results in weak learning
for some classes, whereas by using a full data-set, the model
can learn better and will not miss out on any detail.

III. PROPOSED METHODOLOGY
In this section, we discuss the proposed Protocol Based
Deep Intrusion Detection (PB-DID) architecture as shown
in Fig. 5. The process involves features comparison to find
similar features in the UNSW-NB15 and the Bot-IoT data-
sets, features selection, data pre-processing and selection
and model training using un-supervised LSTM deep learning
model.

A. DATA-SETS
We used two well-known raw network packets data-sets
namely the UNSW-NB15 and the Bot-IoT for training and
validation. Unlike many other studies which used a smaller
part of these data-sets, we have used complete data for model
training. Brief description of both data-sets is given below.

1) UNSW-NB15
The data-set was published by Moustafa et al., [8] in 2015.
This data-set is simulated with over 2.5 million network
packets. This data-set consists of nine types of attacks
(Exploits, Recconaisance, DoS, Generic, Shellcode, Fuzzers,
Backdoors, Worms and Analysis)) with non-anomalous
packets as well. More than 87% packets are of non-
anomalous type which makes the data-set highly imbalanced.
Packets distribution is given in Table 1. More details about
this data-set can be found in [8].

2) BOT-IoT DATA-SET
This data-set is the latest in the field. Koroniotis et al., [9]
published the data-set in 2018. It consists of more than
72million records with the mixture of simulated and real time
scenarios. It has four categories of attacks but major portion

TABLE 1. Class distribution of UNSW-NB15 data-set.

TABLE 2. Class distribution in the Bot-IoT data-set.

of data-set has DoS and DDoS type of packets. This data-set
is imbalanced just like the UNSW-NB15 data-set. Records
distribution of the Bot-IoT data-set is given in Table 2. More
details about the data-set can be found in [9].

B. FEATURES COMPARISON
In the UNSW-NB15, there are 49 features including 48th as
a multi-class label and 49th as a binary label. In the Bot-
IoT data-set, there are 46 features and the last three are label
features. In proposed PB-DID, the features in both data-set
are compared and we found that 29 features in the Bot-IoT
are similar or can be evaluated in the UNSW-NB15 data-set
as well. The list of features is given in Table 3.

C. FEATURES SELECTION
In the proposed PB-DID architecture, clusters of features
in both data-sets are created according to flow, Domain
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TABLE 3. Common features in the Bot-IoT [9] and the UNSW-NB15 [8]
data-sets. Features from 18-29 are used for training and validation in the
work at hand.

TABLE 4. Features categorization according to clusters taken from the
Bot-IoT [9] and the UNSW-NB15 [8].

Name System (DNS)/File Transfer Protocol (FTP)/Hypertext
Transfer Protocol (HTTP), Message Queuing Telemetry
Transport (MQTT) and TCP. The major portion of features
falls into two clusters i.e. flow and TCP. The clusters are
given in Table 4. Here the clusters are created by analyzing
each feature’s description reported by the authors. We kept a
minimum number of features while covering the application
and transport layer. Major contributions from the application
layer are the flow features whereas from the transport layer
are of TCP protocol. Therefore, both of these clusters are
chosen to create optimized scenarios by keeping maximum
information of a packet. This approach significantly reduces
the computational time required during the learning phase.

D. DATA PRE-PROCESSING
In this section we explain different data pre-processing steps.

1) DATA TYPE RESOLUTION
Some of the features used in PB-DID such as ‘saddr’, ‘daddr’,
and ‘proto’ (see Table 4) are of the categorical type that
needs to be converted into algorithm executable form. The
‘saddr’ and ‘daddr’ are source and destination IP addresses
respectively, whereas ‘proto’ is the protocol type being used

in the flow. We have assigned numerical values to all source
and destination IP addresses. In the UNSW-NB15 data-set,
a total of 49 IP addresses are used, whereas in the Bot-IoT
data-set, a total of 301 IP addresses are used. In the process
of merging both data-sets, we replaced the IP addresses
with 350 randomly generated unique integer numbers. This
anonymization of the IP addresses greatly helps to rule out
over-fitting. Furthermore, it also helps in keeping the IP
addresses in the training and validation data-sets as there
exist a few features which are evaluated based upon the
IP addresses e.g., NINConnPSrcIP, NINConnPDstIP. These
features will be meaningless if the IP addresses are entirely
removed. Similarly, we have converted the ‘proto’ feature
into an integer type.

2) MISSING PORT NUMBERS
In the Bot-IoT full data-set, the packets using ARP protocol
have missing source and destination port numbers, which is
understandable. Koroniotis et al., in [9] mentioned that they
have given -1 as port numbers where ARP protocol is used
in the 5% extracted the Bot-IoT data-set. We used the same
value in PB-DID and assigned it to port numbers in full data-
set where ARP protocol is used.

3) RESOLVING THE DATA IMBALANCE ISSUE
Imbalance data is a well-known problem in machine learning
which occurs when the distribution of different classes is
biased. In an imbalanced data-set, the distribution of different
classes can be slightly imbalanced or severely imbalanced.
Any learning model trained over a severely imbalanced data-
set will result in poor predictive performance against minor
classes. The UNSW-NB15 and BoT-IoT data-sets are good
examples of imbalance data as 87.35% data in UNSW-NB15
is non-anomalous (Table. 1), whereas, only 0.013% data in
BoT-IoT is non-anomalous data (Table. 2). Moreover, in the
BoT-IoT data-set, around 52.5% of the data is of type DDoS
and around 45% of the data is of type DoS. Hence, none of
the two data-sets can be solely used to train and predict non-
anomalous (normal), DDoS, or DoS packets. For this reason,
a merger of both data-sets is essential to achieve meaningful
predictions.

The process of merging the data from UNSW-NB15 and
BoT-IoT data-sets is presented in Figure 6. There are around
2.218 million non-anomalous packets in UNSW-NB15 data-
set whereas, in BoT-IoT data-set, 38.5 million packets are
of type DDOS and 33 million packets are of type DoS.
In the proposed PB-DID, we consider 2.218 non-anomalous
packets as a complete data unit and create 14 equal data
chunks for DDoS and DOS packets. Each of the 14 chunks
contain 2.218 million unique packets of type DDos and DoS
i.e., for each chunk, there are 2.218 million non-anomalous
packets, 2.218 million DDoS packets, and 2.218 million DoS
packets. Hence, each of the 14 chunks contains a total of
6.654 million packets (see Figure 6). This strategy assures
equal distribution of the data for the three classes in all
chunks and mitigates the problem of over-fitting. As shown
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FIGURE 6. The process of merging the data from UNSW-NB15 and BoT-IoT data-sets is presented here. To mitigate over-fitting, the same number of
samples for all three classes are kept in each data chunk. The proposed PB-DID model is trained separately on each data chunk and an averaged
prediction (in % accuracy) overall 14 data chunks is computed.

FIGURE 7. Basic structure of a DL algorithm.

in Figure 6, in each data chunk, the non-anomalous samples
are repeated, whereas, the DDoS and DoS samples are
always unique. The proposed PB-DID model is trained and
validated with each data chunk separately and an averaged
prediction (in % accuracy) overall 14 chunks is computed.
The proposed data merging strategy utilizes 100% of the
non-anomalous samples (2.218 million from UNSW-NB15),
80.65% of the DDoS samples (31.052 out of 38.5 million
DDoS samples from BoT-IoT), 94.1% of the DoS samples
(31.052 out of 33 million DoS samples from BoT-IoT), and a
total of 64.322 million samples in all 14 data chunks are used
for training and validation. The proposed strategy not only
resolves the data imbalance issue, hence minimizing over-
fitting, but also allows utilization of maximum number of
samples from both UNSW-NB15 and BoT-IoT data-sets for
training and validation of the PB-DID model.

We created batches of 128 packets of one category and give
them one label. To fulfill this requirement, we kept the closest
multiple of 128 which came out to be 2,218,240. In the final
configuration, PB-DID has 17330 packets of batch size 128 of
all three categories.

E. DEEP INTRUSION DETECTION
Deep Learning is a subclass of ML which mainly uses
hierarchical stages in Artificial Neural Networks (ANN). Just
like human brain, ANN’s are built as a web linking neuron

nodes. Although standard algorithms linearly build insights
of data, the hierarchy of DL systems allows computers to
interpret the data in a nonlinear way [50]. The basic structure
of a DL algorithm is shown in Fig. 7.

1) MODEL SELECTION
The deep model used in PB-DID architecture is an LSTM
model with an input layer, two hidden layers and an output
layer. The input layer is embedding layer which takes the
input of batches (26 x 128) created in section 3.4.3 and gives
an output of 16 dimensions which is given as input to first
of two hidden LSTM layers. The embedding layer creates
a vector of each training example. It works similarly as the
one-hot encoding function in Keras works. One hot encoding
function is used for one feature at a time, but all the features
are used simultaneously in the embedding layer. Each entry
of a vector is initialized with random weights, and the
embedding layer automatically learns the weights with each
iteration. Both LSTM layers have 20 nodes, which give an
output of 20 dimensions. In LSTM layers, we use activation,
recurrent activation functions and dropout, recurrent dropout
functions. We have used two types of output layers, one
for the binary classification and the other for multi-class
classification. In binary classification, the last layer of the
model is a dense layer with two neurons. There are three
types of outputs, one for non-anomalous and DDoS, second
for non-anomalous and DoS, and third for DDoS and DoS
packets making it a binary classification. Here it is pertinent
to mention that in this classification, we give the input of
only those packets to the model for which we are doing the
classification. In multi-class, the last layer of the model is a
dense layer with three neurons, which outputs each class’s
probabilities, as shown in Fig. 8.

F. PERFORMANCE METRICS
We used two metrics for measuring the performance of
the proposed PB-DID model namely confusion matrices
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FIGURE 8. Structure of LSTM model showing input, hidden and output layers. In output layer Ci
j, i = 0, 1 or 2 is the label and j = non-anomalous

(N) when i = 0, DDOS (DD) when i = 1 and DOS (D) when i = 2 is the class.

FIGURE 9. Confusion matrices of all 14 data chunks, Ci
j, i = 0 or 1 is the

label and j = non-anomalous (N) when i = 0 and DDOS (DD) when i = 1 is
the class.

FIGURE 10. Confusion matrix calculated by averaging all 14 data chunk
confusion matrices involving non-anomalous and DDoS packets.

and accuracy score. In a confusion matrix, there are four
possible options, true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). The first part in every
option shows whether the prediction is true or false and
second part shows that prediction is positive or negative. The
accuracy score shows the accuracy score of the predictions by
the underlying deep model.

IV. EXPERIMENTS AND RESULTS
In this section we discuss the results of experiments
performed using the proposed PB-DID architecture. All
experiments are performed on google colab [51] using
tensorflow as back-end and the language used is Python3.

FIGURE 11. Confusion matrices of all 14 data chunks, Ci
j, i = 0 or 1 is the

label and j = non-anomalous (N) when i = 0 and DOS (D) when i = 1 is
the class.

FIGURE 12. Confusion matrix calculated by averaging all 14 data chunk
confusion matrices involving non-anomalous and DoS packets.

A. CLASSIFICATION RESULTS
1) BINARY CLASSIFICATION
We performed binary classification by taking two classes at
a time from a total of three classes which gives us three
different configurations of experiments. Fig. 9 shows the heat
map of fourteen confusion matrices for each chunk of DDoS
as discussed in section 3.4.3 and Fig. 10 shows the overall
confusion matrix after averaging the results of all chunks
of DDoS packets. The classification accuracies for non-
anomalous vs. DDOS (anomolus) packets remain above 99%.
Similarly, Fig. 11 shows the heat map of fourteen confusion
matrices for each chunk of DoS and Fig. 12 shows the overall
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FIGURE 13. Confusion matrices of all 14 data chunks, Ci
j, i = 0 or 1 is the

label and j = DDOS (DD) when i = 0 and DOS (D) when i = 1 is the class.

FIGURE 14. Confusion matrix calculated by averaging all 14 data chunk
confusion matrices involving DDOS and DoS packets.

confusion matrix after averaging the results of all chunks of
DoS packets. Again, the classification accuracies for non-
anomalous vs. DOS (anamolus) packets remain above 99%.
Likewise, Fig. 13 shows the heat map of fourteen confusion
matrices for each chunk of DDoS and DoS and Fig. 14
shows the overall confusion matrix after averaging the results
of all chunks of DoS packets. The classification accuracies
for DDOS (anomalous) vs. DOS (anamolus) packets remain
above 97%. The accuracy scores of all three configurations
of all fourteen chunks and the overall accuracy achieved is
given in Table 5.

TABLE 5. Accuracy score of all chunks of DDOS / DoS packets and overall
accuracy achieved.

2) MULTI-CLASS CLASSIFICATION
Fig. 15 shows heat map of fourteen confusion matrices
for each chunk of non-anomalous, DoS and DDoS cases
as discussed in section 3.4.3 and Fig. 16 shows overall
confusion matrix after averaging the results from all the

FIGURE 15. Confusion matrices of all 14 data chunks, Ci
j, i = 0, 1 or 2 is

the label and j = non-anomalous (N) when i = 0, DDOS when i = 1 and
DOS when i = 2 is the class.

FIGURE 16. Confusion matrix calculated by averaging all 14 data chunk
confusion matrices.

chunks. The average classification accuracy remains above
96% where 99.7% are correctly classified as non-anomalous.
It is observable in the confusion matrix that around 6%
of the DOS packets are misclassified as DDOS packets
whereas around 4% of the DDOS packets are misclassified
as DOS packets. The accuracy score of all fourteen chunks
and overall accuracy achieved is given in the last column
of Table 5.

B. PARAMETERS TUNING
We performed parameter tuning by taking a bracket of values
and performing the experiments. The optimal values are
chosen, wherewe achieved the best accuracy. Five parameters
are involved in parameter tuning: dropout, recurrent dropout,
activation function, recurrent activation function, and number
of epochs. Dropout and recurrent dropout are tested over
a range of 0 to 1 (Figs. 17, 18,); activation and recurrent
activation are tested over RELU, sigmoid, and tanh functions
(Fig. 20, 21). The epochs are tested over a range 1 to 10
(Fig. 19). The model summary of our methodology with
optimal parameters is given in Table 6.
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FIGURE 17. Optimal dropout graph over values of [0,1] where best
accuracy of 99.79% is achieved at 0.1.

FIGURE 18. Optimal recurrent dropout graph over [0,1] and best accuracy
99.885% at 0.3 is achieved.

TABLE 6. LSTM model summary. * in output layer and total shows the
parameters involved in binary/multi-class classification.

V. DISCUSSION AND COMPARISON
In binary classification, our proposed LSTM based
un-supervised deep learning model (PB-DID) achieves
classification accuracies of above 99% for non-anomalous
vs. anomalous packets (non-anomalous vs. DDOS and non-
anomalous vs. DOS). For binary classification between
DDOS and DOS i.e. correct classification of attack type,

FIGURE 19. Optimal epochs = 6 after which the graph becomes smooth
in accuracy.

FIGURE 20. Optimal activation function where tanh gives best accuracy
of 99.885%.

the classification accuracies remain above 96%. In case of
ternary classification (non-anomalous vs. DDOS vs. DOS
packets), the overall classification accuracies remain above
96% where 99.7% of the packets are correctly classified as
non-anomalous. Most of the confusions are seen between
DOS and DDOS packets where 6% of the DOS packets are
misclassified as DDOS packets. Major reason for this is the
minute difference between DDoS and DoS attack, which
comes from their origin. If we observe the packet parameters
in the data-set, the difference between both categories is the
source IP address. This is because of the inherited natures of
DOS and DDOS attacks where in DoS a single machine is
sending huge traffic to the destination and in case of DDOS,
multiple sources with different IP addresses send massive
traffic to a single destination.

As mentioned in the Introduction Section, this work is
an extension of our previous work [17] where we used
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TABLE 7. Comparison of PB-DID technique with other related techniques. Last column shows the no. of classes classified.

FIGURE 21. Optimal recurrent activation function which shows sigmoid
gives best accuracy of 99.885%.

approximately 60% of the UNSW-NB15 data-set for training
and validation using RF and SVM. In this work, we have used
all (2.2 Million) non-anomalous packets from the UNSW-
NB15 data-set and all DoS and DDoS packets from the Bot-
IoT data-set. In order to make both data-sets compatible
for experimentation, we needed to calculate few features
of the UNSW-NB15 which were missing in the Bot-IoT
and vice versa. Through our experiments on these data-sets,
we conclude that these data-sets can be combined, compared,
experimented and analyzed together.

A. COMPARISON WITH EXISTING APPROACHES
We compared our results with other studies which have used
the Bot-IoT and/or the UNSW-NB15 data-sets. All of the
existing studies have used only one of the two data-sets

i.e. either the Bot-IoT or the UNSW-NB15 for training
and validation. In this work, we have compared two data-
sets, created a new custom data-set and proposed an LSTM
based un-supervised PB-DID architecture. Larriva et al., [10]
used various pre-processing techniques and applied them
on NSL-KDD, UGR16, and the UNSW-NB15 data-sets
separately. The data-sets were used to trainMLP and achieved
accuracies of 99.7%, 99.3%, and 99.2% for NSL-KDD,
UGR16, and the UNSW-NB15 respectively. The authors did
not compare/merged the data-sets and the number of classes
used for classification is also unclear. Popoola et al., [11]
applied DRNN on a normalized and balanced data-set (by
using SMOTE) and achieved a 100% accuracy score against
11 classes. However, they only used 5% of the Bot-IoT
data-set. Authors in [12] used various ML algorithms on
approximately 2% of the data-set, with 19 features and
achieved the best accuracy score of 99% by using KNN.
However, since a very small portion of the data was used for
training so the reported results can be considered statistically
insignificant. Yang et al., [13] have balanced the data-set
by using the ICAVE technique and applied DNN on three
data-sets separately but no comparison/merger of data-sets
was involved. Koroniotis et al., [9] used full and ten best
features of the Bot-IoT data-set and applied three ML and
DL algorithms i.e., SVM, recurrent neural network (RNN),
and LSTM. They achieved the best accuracy of 99.9% by
using SVM with full features. Shafiq et al., [14] also used
the Bot-IoT data-set for training and validation. They used
the AUC metric to select the top 5 features and applied
ML techniques and achieved 99.99% accuracy with DT.
Guizani et al., [15] used an advanced form of RNN, LSTM
on the UNSW-NB15 data-set, and achieved 70% accuracy.
Similarly, authors in [16] used the UNSW-NB15 and the
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Bot-IoT data-sets independently and applied the BiLSTM
technique. They classified 16 classes by comparing the
classes of data-sets and identifying sub-categories in both
data-sets.

Khraisat et al., [52] used the technique of hybrid IDS
on the Bot-IoT data-set and kept only the top thirteen
features that have information gain threshold above 0.2.
They achieved an accuracy of 99.97%. Ibitoye et al., [53]
used feed forward ANN (FNN) and self normalized neural
network (SNN) on the Bot-IoT data-set with top ten features
and achieved an accuracy of 95% with FNN and 91%
with SNN. The summary of the comparison between the
existing approaches and the proposed approach is given
in Table 7.
The proposed PB-DID architecture uses all of the data

from the Bot-IoT and the UNSW-NB15 data-sets (bymerging
them to create a single customized data-set) and trains the
LSTM based un-supervised deep model using 26 features.
Data imbalance issue was also resolved during the data-sets
merging. The average classification accuracy remains above
96% for binary and multi-class classifications. The results
show that the proposed solution can be applied in real IoT
scenarios and it can detect intrusions of different types using
flow and TCP features with higher accuracy.

VI. CONCLUSION
In this paper, PB-DID is proposed in which we have
compared the features of the two latest benchmark data-
sets, the UNSW-NB15 and the Bot-IoT. Both data-sets are
created by researchers of the University of New South Wales.
In PB-DID, the standard features of flow and TCP category
among both data-sets are analyzed and combined with those
features. The problems of public data-sets like imbalance
in nature and over-fitting are solved by selecting an equal
number of packets from each category. We classified non-
anomalous, DoS, and DDoS traffic by employing the DL
technique and achieved an accuracy of 96.3% by covering
almost both data-sets in full. This work is unique in the way
that we have reduced (almost half) the number of features
given for the identification of malicious traffic and covered
two latest bench-marked data-sets. We aim to improve the
feature comparison and selection technique by using other
renowned and benchmark data-sets in the future. We will add
more attack types to cover the vast majority of threats to IoT
devices today in classification.
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