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ABSTRACT The triple data encryption standard (3DES) has played a key role in the field of data encryption
over the past few decades. However, the ciphertext’s security is decreased by the meet-in-the-middle attack.
Accordingly, we propose a systematic design methodology combining chaotic synchronization with 3DES
to conduct double encryption. The encryption method not only increases the strength of the communications
system but also effectively protects the encrypted message (ciphertext). The conventional genetic algorithm
(GA) has flaws in premature convergence and local search. While the methods of improving the GA
performance have been explored, we adopted an improved genetic algorithm (IGA) in this work due to
its better performance in the light of globalization and convergence rate. The IGA-based observer not
only realizes the exponential synchronization but also minimizes the disturbance attenuation level to get
optimal H∞ performance simultaneously. In the end, an example with numerical simulations is provided to
demonstrate the effectiveness of this study.

INDEX TERMS Double encryption, chaotic synchronization, exponential synchronization, improved
genetic algorithm, triple data encryption algorithm.

I. INTRODUCTION
In time-delay systems, stability and stabilization are particu-
larly important factors and have drawn significant attention
recently [1]. Engineering systems, such as electronic net-
works and hydraulic frequently include time delays. In par-
ticular, a time-delay factor tends to complicate the analysis.
Numerous studies have hence concentrated on developing
suitable methods of stability. Stability criteria for time-delay
systems have traditionally been treated as delay-dependent
or delay-independent conditions. Therefore, related studies
have widely investigated the problem of stability analysis in
time-delay systems. Time delays have acquired increasing
attention with respect to chaotic systems since Mackey and
Glass [2] first demonstrated the chaotic phenomena in time-
delay systems. Chaos is an apparently random behavior in a
deterministic system characterized by sensitive dependence
on initial conditions, and chaotic phenomena can result in
irregular performance [3]. Owing to these properties, scien-
tists have interests in chaos in different research domains [4].
Since two decades, researchers have established a strong
relationship between chaos and cryptography [5], [6].
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Furthermore, chaotic synchronization has been applied in
the area of engineering science, physics, and particularly in
communication security.

Pecora andCarroll [7] proposed the purpose of chaotic syn-
chronization in 1990 to control one chaotic system to follow
another. According to this notion, multiple synchronization
methods have progressed over the past three decades. Chaotic
synchronization has applications in numerous research fields,
especially in secure communication [8]–[11]. Lately, many
different theoretical and experimental control methods (such
as fuzzy control, observer-based control, and adaptive
control) have been attempted to synchronize the chaotic
systems [12]–[14].

The problem of noise is unavoidable when the chaotic
properties in observational time series are analyzed [15]. The
disturbance or noise may lead to instability and negatively
affect the performance of chaotic systems. Hence, research
on reducing the effects of exterior disturbances in the syn-
chronization process is needed [16]–[18]. For example, in the
past few years, the H∞ control has been applied in the
synchronization of chaotic systems [17]–[21], and the prob-
lem relating to H∞ synchronization for time-delay chaotic
systems has been widely explored [18], [22]–[24]. There-
fore, this work carried out the exponential synchronization of
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multiple time-delay chaotic (MTDC) systems, and decayed
the influence of exterior disturbances on the performance of
control to a minimum.

Genetic algorithm (GA), introduced by Holland in
1975 [25], is an interesting field for computer scientists.
Owing to its flexibility and robustness, GA has attracted
significant attention. By working with a population of solu-
tions, it can search for many local minima, and thereby raise
the probability of finding the global minimum [26]. Some
modern studies have successfully reported applications of GA
in control systems [27]–[29]. GA has the capability of random
searches for near-optimal solutions, therefore, the upper and
lower bounds of the search region can be set (in view of
the feedback gains by means of LMI approach) so that the
GA will hence search for better feedback gains to accelerate
the synchronization process. Nevertheless, the conventional
GA has shortcomings of premature convergence and local
search. Many studies have explored methods of the improv-
ing GA performance [30]–[33]. In this work, we adopted
the improved genetic algorithm (IGA) due to its bet-
ter performance considering globalization and convergence
rate.

The National Institute of Standards and Technol-
ogy (NIST) adopted a data encryption standard (DES) in
1977 [34], [35], which is a grouped 64-bit data decryption
and encryption with the same structure but uses differ-
ent order keys. However, each 8-bit is employed as parity
check and it can be neglected, and the keys are generally
expressed as 64-bit. Accordingly, the length of the keys
is 56-bit [36]. Currently, DES decryption can be broken
by the brute-force attack within a short time at a reason-
able cost [37], [38]. Hence, DES has been replaced by
3DES [39], [40] with three independent keys (three 56-bit
DES keys). Nevertheless, owing to the ‘‘meet in the mid-
dle’’ attack [41], the effective security of 3DES has only
112 bits.

This study hence combines chaotic synchronization with
3DES to implement double encryption to enhance the over-
all security and effectively protect the encrypted message.
First, three keys are used via the 3DES encryption function
to obtain the encrypted message (ciphertext) and employed
to accomplish double encryption by chaotic synchroniza-
tion. Then, we propose an effective way via the IGA-based
fuzzy observer method to achieve the exponential optimal
H∞ synchronization of two MTDC systems. Subsequently,
we derived a delay-dependent exponential stability crite-
rion according to the Lyapunov approach to warrant the
exponential stability of the error system between the slave
and the master systems. After this, we reformulated the
stability conditions into LMIs. Based on LMIs, we could
synthesize a model-based fuzzy observer to exponentially
stabilize the error system. Moreover, the trajectories of the
slave systems can more quickly approach those of the mas-
ter systems through IGA, and the effect of exterior dis-
turbances on the control performance can be decayed to a
minimum.

II. PROBLEM FORMULATION
We considered a master-slave configuration with two mul-
tiple time-delay chaotic (MTDC) systems in this study. The
dynamics of themaster system (Nm) and the slave system (Ns)
are depicted below:

Nm : Ẋ (t) = f (X (t))+
g∑

k=1

Hk (X (t − τk )) (2.1)

Ns :
˙̂X (t) = f̂ (X̂ (t))+

g∑
k=1

Ĥk (X̂ (t − τk ))+ D(t) (2.2)

where τk (k = 1, 2, · · · , g) denotes the time delays,
f (·),Hk (·), f̂ (·) and Ĥk (·) denote the nonlinear vector-valued
functions, and D(t) denotes the exterior disturbance.
This section demonstrates that at first, three keys and the

3DES encryption function are utilized to encrypt the plaintext
(original message) to generate the ciphertext (encrypted mes-
sage), and then it is re-encrypted by chaotic synchronization
to carry out the double encryption. Afterward, a T-S fuzzy
model is constructed to approximate the MTDC system.

FIGURE 1. Chaotic synchronization cryptosystem.

Fig. 1 shows a chaotic synchronization cryptosystem
which consists of a decrypter and an encrypter. First, the
ciphertext (encrypted message) is acquired by three keys
(key 1, key 2, and key 3) and the plaintext via the 3DES
encryption function. It is then forwarded to the master system
and transformed into the encrypted signal by chaotic mask-
ing. Next, the encrypted signal is transmitted to the slave
system via the public channel and is filtered by the chaotic
system to get the ciphertext. Finally, after decrypting the
ciphertext by three keys, it is then transformed to the plaintext
by means of the 3DES decryption function.

A. 3DES CRYPTOSYSTEM
DES is a symmetric encryption algorithm that requires a key
and a plaintext as two inputs. The key length of DES is
generally expressed as 64 bits, but each 8-bit can be ignored
which is used as a parity check [36]. Fig. 2 shows a block
diagram of DES and parts A∼D give the details [42]–[44].

1) INITIAL PERMUTATION
The encryption begins by shuffling the plaintext via the initial
permutation (IP) according to the scheme below (Figure 2).
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FIGURE 2. The structure of the data encryption standard (DES).

TABLE 1. Initial permutation of the plaintext.

Based on the permutation mentioned in Table 1, the plain-
text was divided into left side L0 (32 bits) and right side R0
(32 bits).

2) DATA ENCRYPTION STANDARD ENCRYPTION SCHEME
DES encryption process mathematical formula is described
as:

Lb = Rb−1 (2.3)

Rb = Lb−1 ⊕ f (Rb−1,Kb) (2.4)

where b = 1, 2 . . . , 16; the notation ⊕ is the XOR oper-
ation; the length of Kb is 48-bit, which is calculated by
the private key and each round is updated according to key
schedule (shown in the next partC). f (·) is the cipher function
(described in part D), the input for 32-bit (Rb−1) and 48-bit
(Kb), then yields a block of 32-bit as the output.

At the end of 16 rounds of calculation, it creates a 64-bit
data set. The left 32-bit is considered as R16 and the right
32-bit is L16. After the two sides merge, the 64-bit ciphertext
R16L16 is achieved by rearranging the data through inverse
initial permutation, the obtained permutation (Table 2) is the
inverse permutation.

TABLE 2. Inverse permutation.

3) KEY SCHEDULE
(a) Permutated Choice 1 (PC1): Permute a 64-bit input to two
28-bit outputs.

(b) Permutated Choice 2 (PC2): Permute a 56-bit input to
48-bit output.

(c) Left Shifts: Performs a bit-wise operation on the input,
shifting it to the left.

First, the 64-bit private key is permuted with PC1, leading
to two 28-bit results denoted as T0 and U0, respectively. The
permutation is mentioned in Table 3.

Next, we use the following formula to calculate Kb in each
round:

Tb = LSb(Tb−1)

Ub = LSb(Ub−1)

Kb = PC2(TbUb) (2.5)

where LSb is the left circular shift operation, and the specific
number of bits per shift from the following table is determined
by Table 4.

After splicing Tb and Ub, the 56-bit block is obtained, and
by using PC2 it is then permuted into 48-bit as the Kb of this
round. The PC2 is shown in Table 5.

From the above, the process of key schedule is demon-
strated in Fig. 3.
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TABLE 3. PC1 to T0 and U0.

TABLE 4. Left circular shift operation 1∼16.

TABLE 5. PC2.

4) CIPHER FUNCTION
(a) Expand permutation: the input is 32-bit and the output is

48-bit.
(b)Substitution-box(Sb): the input is 6-bit and the output
is 4-bit.
Fig. 4 shows the process of cipher function. First, from

(2.3), a 48-bit Rb−1 is obtained through the expand permu-
tation, which is determined as below (Table 6):

Next, from (2.4), we set 6-bit as a group, defined as:

B1B2 · · ·B8

for each Bb, the corresponding S-box shown in [44] was used
to permute and splice the results together. The 32-bit result is

FIGURE 3. Key schedule of the data encryption standard (DES).

FIGURE 4. The process of cipher function.

demonstrated as:

S1(B1)S2(B2) · · · S8(B8)

The cipher function permutation yields a 32-bit output from
a 32-bit input by permuting the bits of the input block. Such
a function is defined in Table 7.
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TABLE 6. Expand permutation.

TABLE 7. Cipher function permutation.

Therefore, the result of the encryption function f (·) is as
below:

P(S1(B1)S2(B2) · · · S8(B8))

However, the key length of DES is too short. Accordingly,
3DES is designed to raise the key length and enhance the
strength of encryption. Here, 3DES is utilized to decrypt and
encrypt the three DESs with three different keys. This work
presents the cipher block chaining (CBC) mode which uses
three 64 bits private keys (κ1, κ2, κ3) and a non-secret 64
bits IV (initializing vector) to encrypt n64 bits blocks plain-
text (P,P2, . . . ,Pn) to produce n64 bits blocks ciphertext
(ϒ1, ϒ2, . . . , ϒn) [34]. The encryption scheme of 3DES is
given as below:

ϒ = Eκ3(Dκ2(Eκ1(P))) (2.6)

where ϒ is ciphertext, Dκ is conducted by DES decryption
with κ , Eκ is conducted by DES encryption with κ , and P is
the plaintext.

The corresponding scheme of decryption is shown below:

P = Dκ1(Eκ2(Dκ3(ϒ))) (2.7)

Fig. 5 shows the CBC mode of 3DES.

B. THE T-S (TAKAGI-SUGENO) FUZZY MODEL
A little more than three decades ago, Takagi and Sugeno [45]
pioneered a fuzzy dynamical model to express the relations
of a local linear input/output nonlinear system and employed
IF-THEN rules to describe this dynamic model. To deal with

FIGURE 5. Cipher block chaining mode of the three data encryption
standard (3DES).

the problem of synchronization of MTDC systems, the rules
are used in this study.

The i th rule of the T-S fuzzy model for the master system
is given below:

Rule i: IF x1(t) is Mi1 and · · · and xδ(t) is Miδ

THEN Ẋ (t) = AiX (t)+
g∑

k=1
ĀikX (t − τk )

where Miη(η = 1, 2, · · · , δ) are the fuzzy sets, and
x1(t) ∼ xδ(t) are the premise variables; Ai and Āik are con-
stant matrices with appropriate dimensions; i = 1, 2, · · · , φ
and φ denotes the number of IF-THEN rules.

We infer the final state of this fuzzy dynamicmodel accord-
ing to Eq. (2.8):

Ẋ (t) =

φ∑
i=1

wi(t)
[
AiX (t)+

g∑
k=1

ĀikX (t − τk )
]

φ∑
i=1

wi(t)

=

φ∑
i=1

hi(t){AiX (t)+
g∑

k=1

ĀikX (t − τk )} (2.8)

where wi(t) ≡
δ∏
η=1

Miη(xη(t)) and Miη(xη(t)) is the grade of

membership of xη(t) in Miη. Moreover, hi(t) ≡
wi(t)
u∑
i=1

wi(t)
and

φ∑
i=1

hi(t) = 1 for all t .

Similarly, the `th rule of the T-S fuzzy model for the slave
system is given below:
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Rule `: IF x̂1(t) is M̂`1 and · · · and x̂δ(t) is M̂`δ

THEN ˙̂X (t) = Â `X̂ (t)+
g∑

k=1

ˆ̄A `k X̂ (t − τk )+ D(t)

where M̂`η(η = 1, 2, · · · , δ) are the fuzzy sets, x̂1(t) ∼

x̂δ(t) are the premise variables, Â ` and ˆ̄A `k are constant
matrices with appropriate dimensions, ` = 1, 2, · · · , σ and
σ is the number of IF-THEN rules.
We infer the final state of this fuzzy dynamicmodel accord-

ing to Eq. (2.9):

˙̂X (t) =

σ∑̀
=1
ŵ`(t)

[
Â `X̂ (t)+

g∑
k=1

ˆ̄A `k X̂ (t − τk )+ D(t)
]

σ∑̀
=1
ŵ`(t)

=

σ∑
`=1

ĥ `(t){Â `X̂ (t)+ ˆ̄A `k X̂ (t − τk )} + D(t) (2.9)

where ŵ`(t) ≡
δ∏
η=1

M̂`η(x̂η(t)), and M̂`η(x̂η(t)) is the grade

of membership of x̂η(t) in M̂`η. In addition, ĥ `(t) ≡
ŵ`(t)
σ∑̀
=1
ŵ`(t)

,

and
σ∑̀
=1
ĥ `(t) = 1 for all t .

C. FUZZY OBSERVER
Weassumed that the dynamic fuzzymodel of the slave system
is observable for the fuzzy observer design. First, the fuzzy
observer is designed on the basis of the doublets (Â `,C)
below:

Observer Rule `: IF x̂1(t) is M̄`1 and · · · and x̂δ(t) is M̄`δ

THEN

˙̂X (t) = Â `X̂ (t)+
g∑

k=1

ˆ̄A ` k X̂ (t−τk )+Z`(Y (t)−Ŷ (t))+D(t)

Ŷ (t) = CX̂ (t)

where M̄`η(η = 1, 2, · · · , δ) are the fuzzy sets, and Z` is the
observer gain, ` = 1, 2, · · · ,m;m is the number of IF-THEN
fuzzy observer rules; Y (t) and Ŷ (t) denote the final outputs
of the master system and the slave system, respectively.

Therefore, we infer the overall fuzzy observer below:

˙̂X (t) =
m∑
`=1

ĥ`(t){Â`X̂ (t)+
g∑

k=1

ˆ̄A`k X̂ (t − τk )}

+Z`(Y (t)− Ŷ (t))+ D(t)

Ŷ (t) = CX̂ (t) (2.10)

Formerly, solving the observer gains, Z` (` = 1, 2, · · · ,m)
was based on trial-and-error and experience. It would hence
be helpful to develop an effective tool for solving proper
observer gains. This study applies the IGA mentioned in the
next subsection to create a new algorithm for solving observer
gains.

D. IMPROVED GENETIC ALGORITHM
GA works with a population of solutions to seek many local
minima, thus raising the probability of finding the global min-
imum [25]. Nevertheless, the conventional GA has shortcom-
ings of premature convergence and local search. This study
adopts IGA, whose superiority over the standard GA was
demonstrated by Leung et al. [30] for the GA-based observer
gain design to ameliorate the performance of the proposed
method. The key point of IGA is that the chromosomes after
crossover are placed in the boundary and central areas of
the search domain in most cases. This leads to that the next
generation will be more likely to seek a globally optimal
solution. The improved crossover is presented in Eqs. (2.11)
to (2.16) as [30], [46]:

os1c = [os11os
1
2 · · · os

1
no_vars] =

P1 + P2
2

(2.11)

os2c = [os21os
2
2 · · · os

2
no_vars]=Pmax(1− w)+max(P1,P2)w

(2.12)

os3c = [os31os
3
2 · · · os

3
no_vars] = Pmin(1− w)+min(P1,P2)w

(2.13)

os4c = [os41os
4
2 · · · os

4
no_vars]

=
(Pmax + Pmin)(1− w)+ (P1 + P2)w

2
(2.14)

where

Pmax = [para1max para
2
max · · · para

no_vars
max ] (2.15)

Pmin = [para1min para
2
min · · · para

no_vars
min ] (2.16)

where P1 and P2 are the two chromosomes selected from the
parent, os1c ∼ os4c denote the chromosomes of the next gen-
eration, min(P1,P2) and max(P1,P2) are the new chromo-
somes where the genes are the minimum andmaximum of the
genes in the two chromosome P1 and P2. paraϑmin, para

ϑ
max

are the lower and upper bounds of the ϑ th genes in the search
domain. Parameter w ∈ [0, 1] is arbitrarily chosen. These
two new chromosomes scattered in the central region of the
search area are shown in equations (2.11) and (2.14), while
(2.12) and (2.13) create two new chromosomes scattered in
the boundary area.

We define the fitness function as follows:

Fit(3) =
1

1+
tf∑
t=0

δ∑
η=1

∣∣∣e3η (t)∣∣∣ (2.17)

where Fit(3) and e3η (t) are the fitness value and the error,
respectively, of the 3th chromosome in a population.

III. STABILITY ANALYSIS AND CHAOTIC
SYNCHRONIZATION VIA FUZZY OBSERVER
This work inspects the synchronization of multiple time-
delay chaotic (MTDC) systems under the influence of a
modeling error in this section. In the following subsections,
we depict the scheme of exponential synchronization for the
MTDC systems.
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A. THE MASTER-SLAVE SYSTEM
According to Section II, we depict the T-S fuzzy models of
the master system with the encrypted message (ciphertext)
ı(·) and the slave system under fuzzy observer as:

Master: Ẋ (t) =
u∑
i=1

h i(t){AiX (t)+
g∑

k=1

Ā ikX (t − τk )} + ı(·)

Y (t) = CX (t)

Slave: ˙̂X (t) =
m∑
`=1

ĥ`(t)[Â`X̂ (t)+
g∑

k=1

ˆ̄A`k X̂ (t − τk )]

+Z`(Y (t)− Ŷ (t))+ D(t)

Y (t) = CX (t)

where X (t) and X̂ (t) are the state vectors; Y (t) and Ŷ (t) are
the output vectors. D(t) denotes the exterior disturbance, Z`
denotes the observer gain.

B. THE ERROR SYSTEMS
According to Eqs (2.1) and (2.2), the synchronization error is
defined as:

E(t) ≡ X̂ (t)− X (t) = [e1(t), e2(t), · · · , eδ(t)] .T

The dynamics of the error system with the fuzzy observer
(2.10) can be depicted as:

Ė(t) = 9̂ + D(t)−9

=

u∑
i=1

m∑
`=1

hi(t)

{
(A i − Z`C)E(t)+

g∑
k=1

ĀikE(t − τk )

}
+D(t)+8(t)

where

9̂ ≡ f̂ (X̂ (t))+
g∑

k=1

Ĥk (X̂ (t − τk ))+ Z`(Y (t)− Ŷ (t)),

9 ≡ f (X (t))+
g∑

k=1

Hk (X (t − τk ))+ ı(·) and

8(t) ≡ 9̂ −9 −

{
u∑
i=1

m∑
`=1

hi(t)[(A i − Z`C)E(t)

+

g∑
k=1

ĀikE(t − τk )]

}
.

Assuming that there exists a bounding matrix εqi
q
l R such that:

‖8(t)‖ ≤

∥∥∥∥∥
u∑
i=1

m∑
`=1

hi(t)ε
qq
i l RE(t)

∥∥∥∥∥ (3.2)

where ‖ε i l‖ ≤ 1, for i = 1, 2, · · ·, u; l = 1, 2, · · · ,m and R
denotes the specified structured bounding matrix. From (3.2),
we have

8T (t)8(t) ≤
u∑
i=1

m∑
`=1

hi(t) ‖RE(t)‖

×
∥∥ε qqi`∥∥ u∑

i=1

m∑
`=1

hi(t)
∥∥ε qqi` ∥∥ ‖RE(t)‖

≤ [RE(t)]T [RE(t)] (3.3)

That is to say, 8(t) is bounded by the specified structured
bounding matrix R.

C. DELAY-DEPENDENT STABILITY CRITERION FOR
EXPONENTIAL H∞ SYNCHRONIZATION
We propose a delay-dependent criterion in this subsection to
ensure the exponential stability of the error system depicted
in (3.1). Prior to inspecting the stability of the error system,
some lemma and definitions are provided.
Lemma 1 [47]: For the real matrices A and B with appro-

priate dimension:

ATB+ BTA ≤ λ−ATA+ λ−−1BTB

where λ− is a positive constant.
Definition 1 [48], [49]: If there exist two positive numbers

α and β, the slave system (2.2) can exponentially synchronize
with the master system (2.1) (that is to say the error system
(3.1) is exponentially stabilized) so that the synchronization
error satisfies:

‖E(t)‖ ≤ αexp(−β(t − t0)), ∀t ≥ 0

where the positive number β is the exponential convergence
rate.
Definition 2 [17]: If the following conditions are satisfied,

the master system (2.1) and slave system (2.2) are said to be
in exponential H∞ synchronization:

(i). With zero disturbance (that is, D(t) = 0), the error
system (3.1) under the fuzzy observer (2.10) is exponentially
stable.

(ii). Setting the initial conditions to zero (that is, E(t) =
0 for t ∈ [−τmax, 0], in which τmax denotes themaximal value
of τk ) and a given constant ρ> 0, the following condition
holds:

2(E(t),D(t))=
∫
∞

0
ET (t)E(t)dt− ρ2

∫
∞

0
DT (t)D(t)dt ≤0

(3.4)

in which the parameter ρ denotes the disturbance attenuation
level or the H∞-norm bound. If the minimum ρ is found to
meet the aforementioned conditions (that is, the error system
can exclude the exterior disturbance as strongly as possible),
the fuzzy observer (2.10) is an optimal H∞ synchronizer.
Theorem 1: For given positive constants a, b, ξ , and n,

if there exist two symmetric positive definite matricesψk and
P, so that the following inequalities hold, then the exponential
H∞ synchronization with the disturbance attenuation ρ is
ensured via the fuzzy observer (2.10):

1i` ≡ b(A i − Z` C)T (A i − Z` C)+
g∑

k=1

ψk + ngR TR+ I
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+

g∑
k=1

τ 2
k P

2(b−1 + ξ −1 + n−1 + ga−1) < 0 (3.5a)

∇ik ≡ gaĀTik Āik − ψk < 0 (3.5b)

ρ >
√
ξg (3.5c)

whereGil ≡ A i−Z` C , for i = 1, 2, · · ·, u; k = 1, 2, · · · , g
and ` = 1, 2, · · · ,m.

Proof: The Lyapunov function for the error system (3.1)
is defined as:

V (t) =
g∑

k=1

ET (t)τkPE(t)+
g∑

k=1

∫ t

t−τk
ET (π )ψkE(π )dπ

(3.6)

where the weighting matrices P = PT > 0 and ψk =
ψT
k > 0. This study then evaluates the time derivative of V (t)

on the trajectories of (3.1) to obtain:

V̇ (t) =
g∑

k=1

τk

[
ĖT (t)PE(t)+ ET (t)PĖ(t)

]
+

g∑
k=1

[
ET (t)ψkE(t)− ET (t − τk )ψkE(t − τk )

]
=

g∑
k=1

τk

{
u∑
i=1

m∑
`=1

hi(t) [(Ai − Z`C)E(t)

+

g∑
d=1

ĀidE(t − τd )

]
+ D(t)+8(t)

}T
PE(t)

+

g∑
k=1

τkET (t)P

{
u∑
i=1

m∑
`=1

hi(t) [(Ai − Z`C)E(t)

+

g∑
d=1

Ā idE(t − τd )+ D(t)+8(t)

]}

+

g∑
k=1

[
ET (t)ψkE(t)− ET (t − τk )ψkE(t − τk )

]
=

g∑
k=1

u∑
i=1

m∑
`=1

hi(t)ET (t)
[
τk (Ai − Z`C)TP

+ τkP(Ai − Z`C)+ ψk ]E(t)

+

g∑
k=1

u∑
i=1

g∑
d=1

hi(t)
[
ET (t − τd )τk ĀTidPE(t)

+ET (t)τkPĀidE(t − τd )
]

+

g∑
k=1

[
DT (t)τkPE(t)+ ET (t)τkPD(t)

+8T (t)τkPE(t)+ ET (t)τkP8(t)
]

−

g∑
k=1

[
ET (t − τk )ψkE(t − τk )

]
(3.7)

According to Lemma 1 and Eq. (3.7):

V̇ (t) ≤
g∑

k=1

u∑
i=1

m∑
`

hiET (t)[b(Ai−Z`C)T b(Ai−Z`C)

+b−1τ 2k P
2
+ ψk ]ET

+

g∑
k=1

u∑
i=1

g∑
d=1

hi(t)
[
aET (t−τd )ĀTid ĀidE(t−τd )

+a−1ET (t)τ 2k P
2E(t)

]
+

g∑
k=1

[
ξDT (t)D(t)+ ξ −1ET (t)τ 2k P

2E(t)

+ n8T (t)8(t)+ n−1ET (t)τ 2k P
2E(t)

]
−

g∑
k=1

[
ET (t − τk )ψkE(t − τk )

]
(3.8)

≤

g∑
k=1

u∑
i=1

m∑
`

hiET (t)[b(Ai − Z`C)T b(Ai − Z`C)

+ b−1τ 2k P
2
+ ψk ]ET

+

g∑
k=1

u∑
i=1

g∑
d=1

hi(t)
[
aET (t − τd )ĀTid ĀidE(t − τd )

+ a−1ET (t)τ 2k P
2E(t)

]
+

g∑
k=1

[
ξDT (t)D(t)+ ξ −1ET (t)τ 2k P

2E(t)

+ nET (t)RTRE(t)

(byEq(3.3))

+ n−1ET (t)τ 2k P
2E(t)

]
−

g∑
k=1

[
ET (t − τk )ψkE(t − τk )

]
(3.9)

=

u∑
i=1

m∑
`=1

hi(t)ET (t)
[
b(Ai − Z` C)T (Ai − Z`C)

+ b−1
g∑

k=1

τ 2k P
2
+

g∑
k=1

ψk + ngRTR

+

g∑
k=1

τ 2
k P

2(ξ −1 + n−1 + ga−1)

]
E(t)

+

g∑
k=1

u∑
i=1

hi(t)ET (t−τk )
[
gaĀTik Āik−ψk

]
E(t−τk )

+ ξgDT (t)D(t) (3.10)

From (3.10):

V̇ (t)+ ET (t)E(t)− ρ2DT (t)D(t)

≤

u∑
i=1

m∑
`=1

hi(t) ET (t)
[
b(A i − Z` C)T (A i − Z` C)
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+ b−1
g∑

k=1

τ 2k P
2
+

g∑
k=1

ψk

+ ngRTR+
g∑

k=1

τ 2
k P

2(ξ −1 + n−1 + ga−1)

]
E(t)

+ET (t)E(t)

+

g∑
k=1

u∑
i=1

hi(t)ET (t − τk )
[
gaĀTik Āik

−ψk ]E(t − τk )+ ξgDT (t)D(t)− ρ2DT (t)D(t)

=

u∑
i=1

m∑
`=1

hi(t)ET (t)
[
b(Ai − Z`C)T (A i − Z`C)

+ b−1
g∑

k=1

τ 2k P
2
+

g∑
k=1

ψk + I

+ ngRTR+
g∑

k=1

τ 2
k P

2(ξ −1 + n−1 + ga−1)

]
E(t)

+

g∑
k=1

u∑
i=1

hi(t)ET (t − τk )
[
gaĀTik Āik − ψk

]
E(t − τk )

+ (ξg− ρ2)DT (t)D(t)

=

u∑
i=1

m∑
`=1

hi(t)ET (t)1i`E(t)

+

u∑
i=1

g∑
k=1

hi(t)ET (t−τk )∇ikE(t−τk )+(ξg−ρ2)DT (t)D(t)

+ (ξg− ρ2)DT (t)D(t) < 0 (3.11)

where

1i` ≡ b(A i − Z` C)T (A i−Z` C)+
g∑

k=1

ψk+ngRTR

+I +
g∑

k=1

τ 2
k P

2(b−1 + ξ −1 + n−1 + ga−1)

(see(3.5a))

∇ik ≡ gaĀTik Āik − ψk . (see(3.5b))

The following inequality can be obtained by integrating Eq.
(3.11) from t = 0 to t = ∞:

V (∞)−V (0)+
∫
∞

0
ET (t)E(t)dt−ρ2

∫
∞

0
DT (t)D(t)dt≤0.

Setting the initial conditions to be zero (i.e., E(t) ≡ 0 for
t ∈ [−τmax, 0]):∫

∞

0
ET (t)E(t)dt ≤ ρ2

∫
∞

0
DT (t)D(t)dt.

Thus, Eq. (3.4) and the H∞ control performance is realized
with a prescribed attenuation ρ.
The following inequality can be obtained from (3.11):

V̇ (t)+ ET (t)E(t)− ρ2DT (t)D(t)

<

u∑
i=1

m∑
`=1

hi(t)

 λmax(1i`)
g∑

k=1
τkλmin(P)

 <0. (3.12)

Then, the following is obtained:

V (t)
∣∣D(t)=0 ≤ V (t0)expβ̄(t − t0) (3.13)

where

β̄ =

u∑
i=1

m∑
`=1

hi(t)

 λmax(1i`)
g∑

k=1
τkλmin(P)

 .
Eqs. (3.6) and (3.13) show that:

g∑
k=1

τkλmin(P)ET (t)E(t) ≤
g∑

k=1

ET (t)τkPE(t)

< V (t0)expβ̄(t − t0)

−

g∑
k=1

∫ t

t−τk
ET (π )ψkE(π )dπ

< V (t0)expβ̄(t − t0).

That is,

‖E(t)‖2 <
V (t0)

g∑
k=1

τkλmin(P)
expβ̄(t − t0).

Accordingly, it is concluded that:

‖E(t)‖ ≤ αexp(−β(t − t0))

with

α ≡

√√√√√ V (t0)
g∑

k=1
τkλmin(P)

> 0 and β ≡ −
1
2
β̄ > 0.

Therefore, based on Definition 1, the error system (3.1) under
the fuzzy observer (2.10) is exponentially stable forD(t) = 0.
Corollary 1:We can reformulate Eqs. (3.5a) and (3.5b) into

LMIs using the following procedure:
The new variables are introduced: Q = P−1, ψ̄k =

QψkQT and Fl = Z`Q. Moreover, on the basis of Schur’s
complement [50], it is easy to show that the inequalities in
Eqs. (3.5a) and (3.5b) are equivalent to the following LMIs
in Eqs. (3.14a) and (3.14b): 4 QRT (A i − Z` C )QT

RQT −(ng)−1I 0
Q(A i − Z` C )T 0 −(b−1)I

 < 0

(3.14a)[
−ψ̄k QĀTik
ĀikQ −(ga)−1I

]
< 0

(3.14b)
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where

4 ≡

g∑
k=1

ψ̄k +

g∑
k=1

τ 2k (b
−1
+ ξ−1 + n−1 + ga−1)I + QIQT

Accordingly, we can transform Theorem 1 into an LMI prob-
lem. Efficient interior-point algorithms are now obtainable in
the Matlab LMI Solver to solve this problem.
Corollary 2 [51]: To certify whether solving the inequal-

ities in Eqs. (3.14a) and (3.14b) by Matlab LMI Solver is
feasible, we use interior-point optimization techniques to
compute feasible solutions. These techniques need that the
LMI systems are strictly feasible with a nonempty interior.
For feasibility problems, the LMI Solver by the feasp is
shown as follows:

Find x such that the LMI L(x) < 0 (3.15a)

as

Minimize t subject to L(x) < t × I (3.15b)

where I denotes an identity matrix and L(x) denotes a sym-
metric matrix.

Based on Corollary 2, the LMI constraint is always strictly
feasible in x, t , and the original LMI (3.15a) is feasible if and
only if the global minimum tmin of (3.15b) meets tmin < 0.
Namely, if tmin < 0 meets Eqs. (3.14a) and (3.14b), then
the stability conditions (3.5a) and (3.5b) in Theorem 1 can
be satisfied. The error system can then be exponentially
stabilized by the fuzzy observer (2.10), and the H∞ control
performance is simultaneously achieved.
Corollary 3: To accomplish exponential optimal H∞ syn-

chronization, the following constrained optimization problem
formulates the fuzzy observer design:

minimize ρ >
√
ξg (3.16)

subject to ψ̄k = ψ̄T
k > 0,Q = QT > 0, (3.14a) and (3.14b).

The positive constant ξ is minimized by the mincx func-
tion of the Matlab LMI Toolbox. Therefore, we can get the
minimum disturbance attenuation level ρmin >

√
ξming.

IV. ALGORITHM
The complete design procedure can be summarized as fol-
lows.
Problem: Considering two multiple time-delay chaotic

(MTDC) systems with different initial conditions and 3DES
encryption/decryption schemes, the problem is focused on
designing a fuzzy observer to accomplish exponential optimal
H∞ synchronization and to carry out double encryption by
means of 3DES and chaotic synchronization.

On the basis of the illustration of Fig. 1 (which is shown
in Section II), this problem could be solved through several
steps. Tomake the encryption stepsmore comprehensible, the
encryption process is divided into 9 steps as follows:
Step 1: The T-S fuzzymodels of the master system (2.8) and

the slave system (2.9) are constructed, respectively.

Step 2: The encrypted message (ciphertext) is got by three
keys and the plaintext via the 3DES encryption func-
tion.

Step 3: The ciphertext is dispatched to the master system
and transformed into the encrypted signal by chaotic
masking. The encrypted signal is then forwarded to
the slave system via the public channel.

Step 4: Based on the observer scheme, the gains of the
model-based fuzzy observer (2.10) can be synthe-
sized to exponentially stabilize the error system by
the Matlab LMI Toolbox.

Step 5: According to the IGA process shown in subsec-
tion 2.4, the better observer gains are obtained to
stabilize the MTDC systems.

Step 6: The synchronization error is then defined as:
E(t) = X̂ (t)−X (t), and we can get the dynamics of
the error system (3.1).

Step 7: On the basis of Corollary 3, the positive constant ξ
is minimized by the mincx function of the Matlab
LMI Toolbox. The minimum disturbance attenua-
tion level is then obtained.

Step 8: We can get matrices Q, Fl , and ψ̄k with the mini-
mum disturbance attenuation ρmin.

Step 9: The encrypted signal (chaotic masking signal) is
filtered to get the ciphertext. Finally, the ciphertext
is decrypted by three keys and it is converted into the
plaintext bymeans of the 3DES decryption function.

V. NUMERICAL EXAMPLE
The following example demonstrates the effectiveness of the
aforementioned algorithm.
Problem: This example aims to design a fuzzy observer to

realize optimal H∞ exponential synchronization, to combine
the concepts of chaotic synchronization, and the cryptogra-
phy of the 3DES algorithm to get a more secure communi-
cation chaotic synchronization cryptosystem. Consider a pair
of modified multiple time-delay Liu’s chaotic systems in a
master-slave configuration, as depicted below:

ẋ1(t) = 0.5 (x2(t)− x1(t))
ẋ2(t) = −7.5x1(t)− 0.15x1(t)x3(t)
ẋ3(t) = −5.5x3(t)+ 2x21 (t)+ 0.4x1(t − 0.15)
+ 0.4x2(t − 0.09)+ 0.4x3(t − 0.08)

(5.1)

and
˙̂x1(t) = 0.5

(
x̂2(t)− x̂1(t)

)
+ d(t)

˙̂x2(t) = −7.5x̂1(t)− 0.15x̂1(t)x̂3(t)+ d(t)
˙̂x3(t) = −5.5x̂3(t)+ 2x̂21 + 0.4x̂1(t − 0.15)

+ 0.4x̂2(t − 0.09)+ 0.4x̂3(t − 0.08)+ d(t)

(5.2)

in which
[
x1(t) x2(t) x3(t)

]T is the state vector of the master
system and

[
x1(t) x2(t) x3(t)

]T denotes the state vector of
the slave system. Setting the initial conditions of master and
slave systems as:

[x1(0) = 1.55, x2(0) =−1.66, x3(0)=1.38] and
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[x̂1(0) = 0.95 x̂2(0) =−1.3 x̂3(0)=1.2], and let the external

disturbance d(t) be:

d(t) = 0.2 sin(2t), 0 ≤ t ≤ 6 (5.3)

Solution: The solution to the above problem is described as:
Step 1: The T-S fuzzy models are constructed for the mas-

ter and slave systems, respectively. To minimize the design
effort and complexity, this study uses as few rules as possible.
The chaotic systems (5.1-5.2) are therefore approximated
with the following fuzzy models:

A. THE FUZZY MODEL OF THE MASTER SYSTEM
Rule 1: IF x1(t) is M11,
THEN

Ẋ (t) = A1X (t)+
3∑

k=1

Ā1kX (t − τk ),

Y (t) = CX (t) (5.4a)

Rule 2: IF x1(t) is M21,
THEN

Ẋ (t) = A2X (t)+
3∑

k=1

Ā2kX (t − τk ),

Y (t) = CX (t) (5.4b)

where X (t) = [x1(t)x2(t)x3(t)]T , τ1 = 0.15, τ2 = 0.09, τ3 =
0.08

A1 =

 −0.5 0.5 1
−7.5 0 0
3.55 0 −5.5

, A2=
 −0.5 0.5 1
−7.5 0 0
0.593 0 −5.5

,
Ā11 =

 0 0 0
0 0 0
0.4 0 0

 , Ā21 =
 0 0 0

0 0 0
0.4 0 0

 ,
Ā12 =

 0 0 0
0 0 0
0 0.4 0

 , Ā22 =
 0 0 0

0 0 0
0 0.4 0

 ,
Ā13 =

 0 0 0.4
0 0 0
0 0 0

 , Ā23 =
 0 0 0.4

0 0 0
0 0 0

 . (5.5)

and the membership functions for Rule 1 and Rule 2 are:

M11(x1(t)) =


1, x1(t) > 3.5
x1(t)− 0.593
3.5− 0.593

, 3.5 > x1(t) > 0.593

0, x1(t) < 0.593
(5.6a)

M21(x1(t)) = 1−M11(x1(t)). (5.6b)

B. THE FUZZY MODEL OF THE SLAVE SYSTEM IS
Rule 1: IF x̂1(t) is M̂11,
THEN

˙̂X (t) = Â1X̂ (t)+
3∑

k=1

ˆ̄A1k X̂ (t − τk )+ D(t)

Ŷ (t) = CX̂ (t) (5.7a)

Rule 2: IF x̂1(t) is M̂21,
THEN

˙̂X (t) = Â2X̂ (t)+
3∑

k=1

ˆ̄A2k X̂ (t − τk )+ D(t),

Ŷ (t) = CX̂ (t) (5.7b)

where
[
x1(t) x2(t) x3(t)

]T
, τ1=0.15, τ2 = 0.09, τ3 = 0.08.

Â1 =

 −0.5 0.5 1
−7.5 0 0
2.9503 0 −5.5

 Â2=
 −0.5 0.5 1
−7.5 0 0
1.11 0 −5.5

 ,
ˆ̄A11 =

 0 0 0
0 0 0
0.4 0 0

 , ˆ̄A21 =
 0 0 0

0 0 0
0.4 0 0

 ,
ˆ̄A12 =

 0 0 0
0 0 0
0 0.4 0

 , ˆ̄A22 =
 0 0 0

0 0 0
0 0.4 0

 ,
ˆ̄A13 =

 0 0 0
0 0 0
0 0 0.4

 , ˆ̄A23 =
 0 0 0

0 0 0
0 0 0.4

 . (5.8)

and the membership functions for Rules 1 and 2 are:

M̂11(x̂1(t)) =


1, x̂1(t) > 2.9503
x̂1(t)− 1.11
2.9503− 1.11

, 2.9503 > x̂1(t) > 1.11

0, x̂1(t) < 1.11
(5.9a)

M̂21(x̂1(t)) = 1− M̂11(x̂1(t)). (5.9b)

Step 2: Assuming the plaintext is ‘‘Tainan University’’. Set
key as ‘‘1234567890123456ABCDEFGH’’. Set initialization
vector: 20170707.

Then, the 3DES algorithm can be started in CBC mode
which is shown in subsection 2.1 (Fig. 5). The plaintext is
then encrypted as below (Fig. 6):

FIGURE 6. The encrypted message.

The encrypted message (ciphertext) is obtained as follows:
‘‘8EB6B63F189FD21DF9750A0F6FA6FEF977A158F85E0
D950B’’

To deliver the encrypted message to the master system, it is
converted into decimal as follows:
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‘‘349933019212411854599579773778528429733440911
3357823874315’’

The value is too large, therefore, it is multiplied by 10−58,
and the encrypted message (ciphertext)ı(·) is obtained as
follows:

‘‘0.34993301921241185459957977377852842973344091
13357823874315’’

Step 3: The encrypted message ı(·) is then dispatched to
the master system (5.1), which is converted into the encrypted
signal by chaotic masking. The encrypted signal shown in
(5.10) is then forwarded to the slave system via the public
channel.

X (t) :


ẋ1(t) = 0.5(x2(t)− x1(t))+ ı(·)
ẋ2(t) = −7.5x1(t)− 0.15x1(t)x3(t)
ẋ3(t) = −5.5x3(t)+ 2x21 (t)+ 0.4x1(t − 0.15)

+ 0.4x2(t − 0.09)+ 0.4x3(t − 0.08).
(5.10)

Step 4: To synchronize the master and slave systems, a fuzzy
observer is synthesized as:

Observer Rule 1: IF x̂1(t) is M̄11,
THEN

˙̂X (t) = A1X̂ (t)+
3∑

k=1

ˆ̄A1k X̂ (t−τk )+D(t)+ Z1(Y (t)−Ŷ (t)),

Ŷ (t) = CX̂ (t). (5.11a)

Observer Rule 2: IF x̂1(t) is M̄21,
THEN

˙̂X (t) = A2X̂ (t)+
3∑

k=1

ˆ̄A2k X̂ (t−τk )+D(t)+Z2(Y (t)−Ŷ (t)),

Ŷ (t) = CX̂ (t). (5.11b)

M̄11 and M̄21 are the membership functions for each x̂1 (see
Fig. 7):

M̄11(x̂1(t)) =
1
2
(1+

x̂1(t)
30

) (5.12a)

M̄21(x̂1(t)) =
1
2
(1−

x̂1(t)
30

) (5.12b)

FIGURE 7. Membership functions of the fuzzy observer.

Based on Eq. (3.1), the dynamics of the error system is
obtained as:

Ė(t) =
2∑
i=1

3∑
k=1

2∑
`

hi(t)
{
(Ai − Z`C)E(t)+ ĀikE(t − τk )

}
+D(t)+8(t) (5.13)

where

9̂ ≡ f (X̂ (t))+
3∑

k=1

Hk (X̂ (t − τk ))+ Z`(Y (t)− Ŷ (t)),

9 ≡ f (X (t))+
3∑

k=1

Hk (X (t − τk ))+ ı(·)

with

8(t) ≡ ψ̂ − ψ

−

{
2∑
i=1

3∑
k=1

2∑
`=1

hi(t)
[
(Ai−Z`C)E(t)+ĀikE(t−τk )

]}
.

Step 5: Based on the LMI approach and the IGA process to
obtain better observer gains. In this study, two demonstrations
of the performance of the observer gains are examined.

C. METHOD 1 (LMI)
Based on Eqs. (5.4a-5.9b and 5.11a-5.13), the LMIs in Eqs.
(3.14a) and (3.14b) can be solved using the Matlab LMI
Toolbox with a = b = ξ = n = 1, and the resulting observer
gains are:

Z1 =

 1244.4304 −0.0009210 0.0005999
−0.0009295 1244.4305 0.0000011
0.0006029 −0.0000011 1244.4291

 ,
(5.14a)

Z2 =

 1244.4302 −0.0009214 0.0002026
−0.0009292 1244.4304 −0.0000005
0.0002044 0.0000005 1244.4289

 .
(5.14b)

D. METHOD 2 (IGA(LMI))
IGA has the ability of random search for near-optimal solu-
tions, therefore, it can search better fuzzy observer gains to
speed up the synchronization. Based on the observer gains
obtained by the Matlab LMI toolbox in Eqs. (5.14a-5.14b),
the lower and upper bounds of the search space are set as
(Z1d ,Z2d )1 ∈ [1200, 1600] and (Z1c,Z2c)2 ∈ [−10, 10] for
d = 1, 5, 9; c = 2, 3, 4, 6, 7, 8. Prior to carrying out
the searching process using the IGA, some specifications are
shown in Table 8.

1The representations of (Z1d ,Z2d ) and (Z1c,Z2c) for d = 1, 5, 9
(diagonal); c = 2, 3, 4, 6, 7, 8 (off-diagonal) are described as Z1 = Z11 Z12 Z13
Z14 Z15 Z16
Z17 Z18 Z19

 andZ2 =

 Z21 Z22 Z23
Z24 Z25 Z26
Z27 Z28 Z29

 .
2To decrease the computational burden, this research sets the off-

diagonal as small as possible (the off-diagonal approaches zero). Finding
the diagonal matrices can possibly simplify our calculations and make them
less time consuming.
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TABLE 8. Specifications for IGA.

FIGURE 8. Fitness values of IGA.

After performing the IGA search process, the resulting
observer gains are obtained and the fitness values of IGA is
shown in Fig. 8:

Z1 =

1597.6283 −7.4836200 8.7621800
9.6944300 1400.9561 9.9014500
9.6277400 −9.7508100 1599.7781

, (5.15a)

Z2 =

1596.4355 −4.3762700 4.4794000
9.1058800 1400.0444 1.0000000
9.6438700 −9.0121800 1599.5235

, (5.15b)

Steps 6-7: According to Eqs. (5.4a-5.9b, 5.11a-5.15b),
LMIs in Eqs. (3.14a) and (3.14b) can be solved using theMat-
lab LMI Toolbox. The specified structured bounding matrix

R and εi can be set as: R =

 5000 0 0
0 5000 0
0 0 5000

, εi =

1 0 0
0 1 0
0 0 1

. On the basis of Corollary 3, the positive constant

ξ is minimized by the mincx function of the Matlab LMI
Toolbox: ξmin = 1.463061×10−6; the minimum disturbance
attenuation level is ρmin = 2.095× 10−3.
Step 8: The common solutions Q,F1,F2, ψ̄1, ψ̄2, and ψ̄3

of stability conditions (3.14a) and (3.14b) can be obtained
with the best value stmin of the LMI Solver (Matlab), which
is −1.293955× 10−4:

Q = 10−3 ×

 0.2765 0.0001 −0.0003
0.0001 0.2795 0.0002
−0.0003 0.0002 0.2764

 , (5.16)

F1 =

 0.4417 −0.0019 0.0019
0.0028 0.3916 0.0030
0.0022 −0.0024 0.4422

 , (5.17a)

F2 =

 0.4414 −0.0010 0.0007
0.0027 0.3913 0.0030
0.0022 −0.0022 0.4421

 , (5.17b)

ψ̄1 = ψ̄2 = ψ̄3 = 107 ×

 5.1638 0.0115 0.0509
0.0115 4.2276 0.0035
0.0509 0.0035 5.1775

 ,
(5.18)

Fig.9 demonstrates that the synchronization errors (e1, e2
and e3) according to the IGA method have better convergent
speed than those of the LMI approach. Fig. 10 shows the state
responses of both the master and slave systems. Furthermore,

the assumption ‖8(t)‖ ≤

∥∥∥∥∥ 2∑
i=1

2∑
l=1

hi(t)ε
qq
i l RE(t)

∥∥∥∥∥ is met from

the illustration given in Fig. 11. In the end, the simulation
results show that the exponential H∞ synchronization of
MTDC secure communication systems can retrieve the trans-
mitted message using the designed fuzzy observer.

FIGURE 9. State responses of LMI e1e2e3 (red line) and IGA e1e2e3 (blue
line).
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FIGURE 10. State responses of both master and slave systems.

FIGURE 11. Plots of
∥∥8(t)

∥∥ (blue line) and∥∥8(t)
∥∥ ≤ ∥∥∥∥∥ 2∑

i=1

2∑
l=1

hi (t)ε qq
i l RE(t)

∥∥∥∥∥ (red line).

FIGURE 12. The decrypted message.

Step 9: When the master system is synchronized with the
slave system, the plaintext can be restored from the decryp-
tion function. The encrypted message ı(·) is thus obtained as:
‘‘0.3499330192124118545995797737785284297334409

113357823874315’’
After obtaining the encrypted message, it is multiplied

by 1058:
‘‘3499330192124118545995797737785284297334409

113357823874315’’
The encrypted message m is then converted to the Hex

code:
‘‘8EB6B63F189FD21DF9750A0F6FA6FEF977A158F8

5E0D950B’’
The 3DES algorithm can then be started in the CBC mode

to decrypt the encrypted message, where the decryption pro-
cedure of 3DES can be performed in the same way as the
encryption procedure by reversing the order of the subkeys,
which is one of the merits of Feistel networks.

Finally, the plaintext is obtained (Fig. 12):

‘‘Tainan University’’

VI. CONCLUSION
In this study, we propose a novel approach to achieve the
exponential optimal H∞ synchronization of MTDC systems.
To prohibit hackers from stealing personal information, the
concept of double encryption is applied to combine chaotic
synchronization with the 3DES algorithm to enhance the
complexity of the cryptosystem. The proposed method not
only establishes a more secure communication system but
adequately protects the ciphertext as well.
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