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ABSTRACT This work presents a technique for dielectric property retrieval through Debye parameter
reconstruction from open-ended coaxial probe (OECP) response. Debye parameters were obtained with
the application of a deep learning (DL) model to the reflection coefficient response of the OECP when
terminated with a material under test. The OECP was modelled with the well-known admittance technique
from 0.5 to 6 GHz with 20 MHz resolution. A dataset was generated using the admittance technique and
obtained data was utilized to design the DL model. As part of the standard procedure, the dataset was
separated to train, validate, and test parts by allocating the 80%, 10%, and 10% of the dataset to each
section, respectively. Obtained percent relative error for Debye parameters were 1.86±3.01%, 3.33±9.52%,
and 2.07±7.42% for εs, ε∞ and τ , respectively. To further test the constructed DL model, OECP responses
were measured at the same frequency band when it was terminated with five different standard liquids, four
mixtures, and a gel-like material. Reconstructed Debye parameters from the DL model were used to retrieve
the complex dielectric properties and obtained results were compared with the literature data. Obtained mean
percent relative error was ranging from 1.21±0.06 to 10.89±0.08 within the frequency band of interest.

INDEX TERMS Admittance model, complex permittivity, deep learning, Debye parameters, open-ended
coaxial probe.

I. INTRODUCTION
Microwave dielectric properties (DP), also referred to as
complex permittivity, are critical system design parameters
for the development of microwave diagnostic, imaging,
treatment devices, and RF/microwave circuits. Therefore,
inaccurate determination of the complex permittivity can
render information resulting in poor system reliability. Based
on the nature of the sample and frequency of interest
different techniques can be employed to measure the DP.
One such widely utilized technique is open-ended coaxial
probe (OECP) method. The technique is used for the complex
permittivity characterization of many different materials
including but not limited to liquids, biological tissues, ice, and
concrete [1]–[6]. Provided that the full contact between the
material under test (MUT) and the probe aperture is ensured,
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the method does not require strict sample preparation
procedures. Additionally, the OECP technique is capable of
performing wideband measurements of the MUTs complex
permittivity. While these advantages make the method a
widely preferred tool for complex permittivity characteri-
zation, the OECP method is known to suffer from large
measurement error. Commercially available probes report
±5% accuracy under ideal conditions [7]. It is reported that
the measurement error can increase up to 30% [8]. Sources
of error include but not limited to the mathematical approach,
calibration degradation, sample heterogeneity. Since the DP
are not measurable quantities, complex permittivities are
derived from the other measurable quantities. Thus, the
mathematical approach can be a major contributor to the
measurement error. Addressing the mathematical approach
can aid in the improvement of the measurement accuracy of
the OECP technique.
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In the OECP technique, reflected signals from the MUT
are measured and converted to the complex permittivity.
Different mathematical approaches have been implemented
to retrieve the complex permittivity from measured reflection
coefficients including the full-wave method and the equiv-
alent circuit model [9], [10]. Full-wave analysis provides
higher accuracy results for wideband but suffers from
poor convergence and slow computing performances when
processing large quantities of data. The equivalent circuit
model provides faster computing; however, suffers from low
accuracy and limited bandwidth [11]–[13].

In [14], an admittance model is proposed to mathemati-
cally represent the relationship between the MUT complex
permittivity and the measured reflection coefficients at
the probe aperture. Different solution approaches including
the quasi-static approximation, Taylor Series approach,
stochastic approach, and particle swarm optimization (PSO)
were proposed in the literature to retrieve the complex
permittivity from the admittance model [5], [11], [15]–[18].
While iterative solution techniques can converge under
certain constraints, such as being valid until a certain
probe diameter, heuristic approaches are likely to be stuck
in a local minima. Moreover, these methods have high
computational complexity; for non-linear inverse estimation
problems, they reach the solution either (i) in an iterative
manner by means of linear or quadratic approximations
of the problem at each step or (ii) solving the forward
problem many times for each estimation. In contrast to these
approaches, the deep neural network model proposed in this
work offers a non-iterative and nonlinear solution of the
inverse estimation problem by directly learning the non-
linearity of the problem from the data generated with the
admittance model [19]. Moreover, after the training phase,
it needs only simple operations (summations, multiplications
and activation function evaluations) and it does not require a
solution of forward problem, which makes it easily adoptable
in hardware. To this end, deep neural networks have been
successfully employed in the literature for high dimensional
microwave modelling, such as extracting the parameters
of microwave filters [20]. Therefore, we believe that the
deep neural networks can be utilized in similar nonlinear
inverse problems in electromagnetic, to potentially improve
the computation time and to reduce complexity of solution
while enhancing the ease of implementation.

In this paper, we propose an alternative method to find
Debye parameters which are used to represent the complex
permittivity of materials for a wide frequency range. The
Debye parameters are retrieved from the reflection coefficient
of the probe through deep learning (DL) model designed
by utilizing a synthetically generated dataset. The reflection
coefficients were numerically calculated using the admittance
model proposed in [14] and the designed DL model was then
tested with the measurement data. Briefly, 276×17732 input
dataset was generated corresponding to the 3× 17732 output
Debye parameters dataset. The scattering parameters of the
probe were calculated between 0.5 - 6 GHz, with 20 MHz

steps. The dataset was divided into three sections, 80% was
used for training and 10% was used for validation. After
the training procedure had ended, the remaining 10% of the
dataset was used for testing. Obtained percent relative errors
of the proposed model were 1.86 ± 3.01%, 3.33 ± 9.52%,
2.07±7.42% for prediction of the Debye parameters εs (static
dielectric permittivity), ε∞ (dielectric permittivity at high
frequencies), and τ (relaxation time constant), respectively.
Finally, the trained deep learning model was tested with
measurement data and it was found that the retrieved complex
dielectric parameters had a percent mean relative error of
approximately less than 10%.

In the literature, an artificial neural network model is
proposed in [21] to compute the complex permittivity
from the measured reflection coefficients for biomedical
applications. In the proposed study [21], 102 experiment
samples including standard liquids and biological tissues
were measured in order to train, validate and test the
neural network model. Prediction accuracy of ±5% was
obtained for the complex permittivity. The study in [21] was
limited with collected data from the experiments; therefore,
the predictions of the trained neural network model was
restricted. Composing a large dataset through measurements
that include different materials, frequencies, and probes is
labor intensive and costly. To the best of authors’ knowledge,
this work presents the first large scale study performed
by designing a deep learning model using numerically
generated data. Also, this work proposes to retrieve the
Debye parameters from the reflection coefficient response
of the OECP. The contributions of the paper and the added
advantages are as follows:

1) One main contribution of this work is generation
of dataset for training the deep neural network,
which estimates the Debye parameters. In particular,
unlike to [21], the input and output dataset was not
measured but synthetically generated by means of a
calibration procedure. Designing such procedures is an
important topic for inverse electromagnetic estimation
problems [22], since it produces large amount of data
required to train the deep learning model. Therefore,
a more robust model is built in this work since a wide
range of Debye parameters and reflection coefficients
can be conveniently generated.

2) Since the probe is theoretically modelled, the proposed
method provides design flexibility and ability to
generate dataset for any desired probe with different
dimensions.

3) Generating synthetic data shortens the time required
for the collection of training data. For example,
276 × 17732 input dataset mentioned above was
generated approximately in 50 mins on a computer
with 192 GB RAM, 2× Intel(R) Xeon(R) X5690
3.47 GHz CPU. Furthermore, due to the features of
deep neural networks, very large datasets can be easily
trained using high-performance computing platforms
such as GPUs.
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4) Synthetic training approach proposed here is also
flexible in data type and data production method.
For instance, the dielectric permittivity model can be
changed (Cole-Cole, Debye or multipole Debye) sim-
ply by using the target model for complex permittivity
calculation or the simulation method can be different
(instead of using the admittance model [14], numerical
electromagnetic software such as HFSS or CST can be
employed).

5) Different from the verification of previously pro-
posed dielectric retrieval methods, which is usually
performed by measuring few standard liquids, this
work presents a statistical verification of the DL-
based dielectric property retrieval technique both with
synthetically generated and measured data.

The remainder of this paper is organized as follows:
Section II-A presents the admittance model. Process for
synthetic dataset generation is explained in section II-B.
Measurement procedure and the experimental setup are given
in section II-C. The design of the deep learning model is
presented in section II-D. Results are given in section III and
conclusions are drawn in section IV.

II. MATERIAL AND METHODS
In the following section, we first present the theoretical
background for retrieving the Debye parameters from the
reflection coefficient using the OECP and admittance model.
Second, based on the theoretical model, the dataset was
generated to train, validate, and test the deep learning
model. Furthermore, to test the deep learning model with
measurement data, experiments were conducted to acquire
the reflection coefficients of standard liquids, mixtures, and
a gel-like material. Finally, the design process for the deep
learning model to retrieve the Debye parameters from the
reflection coefficient is given in detail.

A. ADMITTANCE MODEL FOR THE OPEN-ENDED
COAXIAL PROBE
The configuration of the OECP consists of two concentric
cylindrical conductors with a dielectric material placed
between the conductors. When the OECP is utilized to obtain
the dielectric properties of a MUT, the relation between the
complex permittivity ofMUT and the admittance of the probe
is given by the classical admittance model as shown below in
(1) [14]:

Y (ε)
Y0
=

ik20εc
kd ln(b/a)

∫
∞

0

[J0(ζa)− J0(ζb)]2

ζ

√
ζ 2 − k20εc

dζ (1)

where Y (ε) represents admittance of the probe when termi-
nated with MUT, Y0 is the probe characteristic admittance, a
and b represent the inner and outer radius of the conductors,
respectively. J0(·) is the first order Bessel function, kd
denotes the wave number of the dielectric material (between
conductors) and k0 represents the free space wave number. εc
is the complex dielectric permittivity of the MUT which can

be expressed in terms of Debye parameters:

εc(ω) = ε∞ +
εs − ε∞

1+ iωτ
(2)

where ω represents the angular frequency, εs is the static
constant, ε∞ is the infinite frequency dielectric constant and τ
is the characteristic relaxation time. Debye equation (2) can
be used for generating the complex dielectric constant. The
admittance of the probe can then be derived from admittance
model (1). As result of the impedance difference between the
reference medium and the MUT, the reflection coefficient
0 at the probe’s aperture can be expressed in terms of the
ratio between the admittance of the MUT Y (ε) and the probe
characteristic admittance Y0:

Y (ε)
Y0
=

1+ 0
1− 0

(3)

From (3) corresponding reflection coefficient can be
derived. However, it should be noted that this represents the
calculated reflection coefficient and does not correspond to
a measured reflection coefficient. For a measured reflection
coefficient, there is a need to adjust the reference plane
of measurement through calibration in order to utilize (3)
for measurements. Therefore, a calibration procedure is
required to acquire the reflection coefficient (0c) at the
probe’s aperture. Please note that 0c will be used to denote
the calibrated reflection coefficient throughout this paper.
Suppose, ρ represents the reflection coefficient obtained
from the MUT and ρ1, ρ2, ρ3 are the reflection coefficients
corresponding to three known material terminations. The
reflection coefficient at probe’s aperture (0c) can be obtained
from the measured reflection coefficients ρ, ρi, (i = 1, 2, 3)
with the following expression:

0c =
ρ − S11

ρS22 + S12S21 − S11S22
(4)

where S11, S12, S21 and S22 represent the unknown scattering
parameters of the network [8], which can be evaluated with
the subsequent equations:

S11

=
0102ρ3(ρ1−ρ2)+0103ρ2(ρ3 − ρ1)+ 0203ρ1(ρ2 − ρ3)
0102(ρ1 − ρ2)+ 0103(ρ3 − ρ1)+ 0203(ρ2 − ρ3)

(5)

S12S21

=
(ρ1 − S11)(1− S2201)

01
(6)

S22

=
01(ρ2 − S11)+ 02(S11 − ρ1)

0102(ρ2 − ρ1)
(7)

where01,02, and03 are the calculated reflection coefficients
of the known materials using (1) and (3). For a measurement
from a MUT, once the scattering parameters are calculated
from the given expressions above, (4) is used to calculate the
reflection coefficient at the aperture.
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B. PROCEDURE FOR OBTAINING THE DEEP
LEARNING DATASET
In this section, the expected reflection coefficient (0) due to
material’s complex permittivities (εc) is calculated using the
admittancemodel. To do so, Debye parameters corresponding
to a wide range of complex permittivity values were
systematically generated. Note that the Debye parameters
are frequently used for mathematical modelling of frequency
dispersive complex permittivity. The theoretical relation
between the Debye parameters and reflection coefficient at
the probe’s aperture can be expressed using (1), (2) and
(3). Using any given set of Debye parameters (εs, ε∞, τ ),
the corresponding reflection coefficient (0) at the probe’s
aperture can be directly calculated. The following steps
were implemented to generate the required dataset. First,
Debye parameters were generated by varying εs from 5 -
120 units, ε∞ from 1 - 10 units, τ from 20 - 180 ps with
constant step size of 5

3√2
, 1

3√2
and 4

3√2
, respectively. The

step sizes were determined by trial and error. Note that
the step size is a critical parameter for training the model.
We ran several simulations by training and testing the initial
network with multiple datasets generated by using different
step sizes. If the Debye parameters are generated with
smaller step sizes, the difference between the corresponding
calculated reflection coefficients becomes minimal. The
initial network cannot interpret these differences. Conversely,
if the Debye parameters are generated with larger step sizes,
the discrepancy between the calculated reflection coefficients
becomes too large and the number of generated data will not
be adequate for training the network. Therefore, the step size
is an important part of the dataset generation and it must be
optimized using an initial network, when using the proposed
approach. It should also be noted that in this trial and error
process the point that we noticed is to divide the output space
(the space spanned by εs - ε∞ - τ ) into equal pieces as much
as possible in all three parameters. Lastly, the limits of the
Debye parameters were selected based on the widely used
pure standard liquids presented in the literature and based
on the frequency of interest in this work. Next, generated
Debye parameters were combined and a total of 17748 Debye
parameter sets were obtained. Then, the complex dielectric
properties were produced using Debye parameter sets. The
frequency range was selected from 0.5 to 6 GHzwith 20MHz
resolution (a total of 276 frequency points). Synthetically
generated complex permittivity values were then placed in
(1) to obtain the corresponding admittance. It should be noted
that the dimensions of the probe (a and b in (1)) were chosen
based on the commercially available Dielectric Assessment
Kit (DAK). The outer radius of the probe (a) is 1.75 mm
and inner radius (b) is 0.465 mm [23]. Finally, (3) was used
to obtain the reflection coefficient. Through the application
of this process, a dataset composed of reflection coefficients
and corresponding Debye parameters was obtained. The
dimensions of the dataset were 276×17748 (0) matrix (input
of the deep learning model) corresponding to 3 × 17748
Debye parameters (output of the deep learning model).

FIGURE 1. Experimental setup and its components. (a) Experiment setup
1. N5230A PNA Series Network Analyzer, 2. RF cable, 3. sample: standard
liquid and 4. EXTECH thermometer, (b) DAK 3.5 probe, and (c) mechanical
calibration kit.

C. EXPERIMENTAL SETUP AND PROTOCOL FOR
REFLECTION COEFFICIENT MEASUREMENTS
Since the deep learning algorithm is modelled based on
the generated theoretical data, it is critical to evaluate the
model’s performance with real measurements. Therefore,
an experiment setup shown in Fig. 1 (a) was used to
collect the reflection coefficient responses of the probe with
standard pure liquids. The experiment setup consisted of
N5230A PNA Series Network Analyzer (Santa Clara, CA,
USA) and the commercial Speag DAK 3.5 mm-diameter
open-ended coaxial probe (Zurich, Switzerland), shown in
Fig. 1(a) and (b). The frequency range of the analyzer
was set from 0.5 to 6 GHz with 20 MHz increments; that
is, 276 frequency points consistent with the synthetically
generated data. An IF bandwidth of 10 Hz was selected
to reduce the error due to noise. The analyzer and probe
were connected via an RF cable. Before connecting cable to
the probe, the Agilent 85033E 3.5 mm standard mechanical
calibration kit (Santa Clara, CA, USA), as seen in Fig. 1(c),
was used for RF calibration with the aim to transfer the
measurement reference plane to the end of the cable.

Obtaining the reflection coefficient for any MUT requires
the calibration of the probe. The standard protocol for
calibrating the OECP is a three-step process (open circuit,
short circuit and distilled water). Probe calibration procedure
for obtaining the reflection coefficient 0c is given in
section II-A. To apply the given procedure in the section,
measured reflection coefficients for the MUT (ρ) and the
reflection coefficients of three known materials (ρ1, ρ2, ρ3)
were collected. The ρ1, ρ2, ρ3 were measured by allowing the
probe to radiate in free space (Open), terminating the probe’s
aperture with a copper strip (Short) and with a reference
material (distilled water) respectively. The measured pure
materials were DMSO, ethanol, ethylene glycol, formamide
and methanol. The temperatures of the materials were
17.8±0.2◦C at the time of the measurement. The mixtures
were prepared via volume fractions: formamide (90%)-
1-buthanol (10%), formamide (70%)-1-buthanol (30%),
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FIGURE 2. Comparison of theoretically calculated reflection coefficients,
the reflection coefficients obtained from commercial software (CST and
ADS) and the measured calibrated reflection coefficients of formamide.
The Debye parameters of formamide given in [24] were used for the
simulations and theoretical data.

DMSO (23%)-ethanol (77%) and DMSO (54%)-1-butanol
(%46) at temperatures of 24.5±0.9 ◦C. Apart from the
liquids/solutions, a gel-like material was prepared by mixing
deionized water (15 ml) and triton X-100 (15 ml) at
23.5◦C. Each measurement, (3 reflection coefficients for
calibration step and the measurement of the samples) were
repeated five times for statistical verification purposes.
As an example of the consistency between the theoretical
calculation and calibration, Fig. 2 depicts the comparison of
the theoretically calculated 0 and the 0c obtained from the
calibrated reflection coefficient of formamide. Additionally,
comparison of the real and imaginary parts of the reflection
coefficients obtained from the full-wave simulation software
(CST Microwave Studio) and from the equivalent circuit
model [25] via Advanced Design System (ADS) are given in
Fig.2 in order to verify our results with benchmark simulation
approaches. From this figure, it can be concluded that the
theoretically generated reflection coefficients, the obtained
reflection coefficients from commercial software tools, and
the measured reflection coefficient of formamide are in good
agreement.

D. DEEP LEARNING MODEL DESIGN
Recently, many different studies have adopted deep learning
to model nonlinear input-output relationships. This work
presents the design of a deep neural network with 5 hidden
layers as seen in Fig. 4. The inputs of the network were
the real and imaginary parts of the reflection coefficients.
As described in section II−B, the input dataset was generated
through the admittance model [14]. Before training the
network, as a constraint, generated data with εs < ε∞ were
omitted from the data set since it is known that most materials
possess εs > ε∞ property. This approach shrank the dataset to
276×17732 reflection coefficients as input data and 3×17732
Debye parameters as the corresponding output data. Next, the
dataset was divided into three sections, 80% was used for
training and 10% was used for validation. After the training

TABLE 1. The mean and standard deviation of the percent relative errors
for Debye parameters (εs, ε∞ and τ ) of the test set (10% of the synthetic
dataset).

procedure was ended, the remaining 10% of the synthetically
generated dataset was used for testing the designed network.
Further, validation of the designed network was performed
with the measured reflection coefficient data collected from
a number of well-known liquids. As explained in section II-C,
in order to collect a measurement dataset compatible with
the synthetically generated data, reflection coefficients of
the commercially available DAK probe were measured
between 0.5 to 6 GHz, with steps of 20 MHz. Thus, the
obtained number of input parameters and the frequencies
were consistent with the synthetic dataset.

The strategy of setting the neural network can be summa-
rized as follows:
1) Normalize the output parameters with respect to its

maximum value. For this study, εs, ε∞ and τ were
normalized by 120, 10, and 180 ps, respectively. This
approach was applied in order to increase the numerical
stability of training.

2) Number of inputs is determined by the number of
frequencies for which the measurements are performed.
(For this study, the number of inputs was 2× 276 since
the input parameters are complex numbers.) The number
of outputs is the number of parameters that is to
be extracted. Note that in this work, the dielectric
properties (DP) is mathematically represented with the
Debye equation and the number of Debye parameters is
three; thus, the number of outputs were three. The design
can be started with a single hidden layer, whose size is
determined as Bpi ,B, pi ∈ N (i.e. integer powers of an
integer) where i is the order of the related layer. In this
study, B = 2 and we started with p1 = 7.

3) Assume that there are L many hidden layers, let the
training error for this case is Et,L and validation error for
this case is Ev,L . If Et,L ≈ Ev,L then increase the number
of free parameters of neural network either by choosing
pL := pL + 1 or by setting pL+1 > 0, pL+1 ∈ N .

4) If Et,L+1 ≈ Ev,L+1 < Et,L ≈ Ev,L , then go step 3.
If Et,L+1 < Et,L but Ev,L+1 ≈ Ev,L then the neural
networks start to overfit the data; thus, go to the previous
state and choose the final design with L layers. Fig. 3
shows a flowchart of the algorithm for designing DL
model used in this work along with dataset production
for training and testing steps.

Following the guidelines given above, the deep neural
network model shown in Fig. 4 was designed. Please note
that using batch normalization (BN) and Relu layer (ReLu)
after each dense layer (DN), improves the model. Thus, after
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FIGURE 3. Flowchart of the Deep Learnıng (DL) model along with the training and testing approach charts.

FIGURE 4. Designed deep learning model with dense layer (DN), batch
normalization (BN), Relu layer (ReLu) and regression layer (RL) for
predicting Debye parameters from reflection coefficients.

each dense layer, these two blocks were applied to the data
subsequently. Finally, a regression layer (RL) was applied.
The given model was trained on GPU using Matlab’s Deep
Neural Network Toolbox on a computer with 32 GB RAM,
16 GB Intel(R) UHD Graphics 630 GPU, 2.6 GHz CPU.
In the training, maximum of 200 epochs were applied to
the model and Adam optimizer was used with least mean
square error cost function. The training lasted approximately
10 mins and at the end of training the model had a loss of

FIGURE 5. Histograms of percent relative errors for each output
parameter (εs, ε∞ and τ ) obtained for 1700 samples in the test set (10%
of the synthetic dataset).

0.02 for both training and validation data, indicates that the
model did not overfit. Finally, to further show that the model
can represent the nonlinear relationship between reflection
coefficients and Debye parameters, test data (10% of the
synthetic dataset) was processed by the trained network. For
each case, the predicted Debye parameters were compared
with the actual values and the percent relative error for each
parameter was computed ( |Predicted−Exact|

|Exact| × 100%). There
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TABLE 2. Complex permittivity comparison of formamide retrieved using the Deep Learning (DL) model from the reflection coefficients obtained via the
theoretical model, full-wave software (CST), equivalent circuit model (ADS) [25] and from the measured reflection coefficients. The results are compared
with Debye parameters of formamide [24].

TABLE 3. Comparison of Debye parameters given in literature and mean of the retrieved Debye parameters from the designed neural network (NN) for
standard liquids. MPE±SPE for the calculated complex permittivity (εc ) from retrieved Debye parameters with respect to literature values from
0.5 to 6 GHz.

were approximately 1700 sample in the test data and the
histograms of percent relative error for each parameter are
given in Fig. 5. Additionally, the mean and standard deviation
of the percent relative errors of the test data are given in
Table 1. As can be seen from these results, the designedmodel
can accurately determine the Debye parameters.

III. RESULTS AND DISCUSSION
In this section, first, the DL method is verified by comparing
the complex permittivity (ε′ and ε′′) of formamide retrieved
by using reflection coefficients obtained through different
approaches; that is, the theoretical model, full-wave solution
(CST), equivalent circuit model (ADS) [25], and the mea-
sured reflection coefficient. The complex permittivity results
retrieved from DL model are also compared with the Debye
parameters of formamide from [24]. The results are given in
Table 2 and a good agreement is obtained with the literature
as well as the different approaches.

To further test the optimized deep learning model
with measured data, a dataset was generated by using
5 standard liquids; namely, dimethyl sulfoxide (DMSO),
ethanol, ethylene glycol, formamide, and methanol; and
4 mixtures. To compose the dataset, 5 reflection coefficient
measurements with the commercially available DAK probe
were collected from each of the liquids/mixtures, and
the calibration standards; that is, open, short and distilled
water. Then, 5 measurements for each material were com-
bined with the calibration (open+short+water+material)
to obtain a total of 625 different measurement. Thus, the
obtained test datasets generated from experiments were
composed of 5× 625 measurements for standard liquids and
4 × 625 measurements for mixtures. Apart from these two
dataset, the deep learning model was tested with a gel-like
material with the same data collection process.

The first dataset (5 × 625) was fed to the optimized deep
neural network and themean of the obtained network outputs;

that is, mean Debye parameters corresponding to the dataset
and literature values for five standard liquids are listed in
Table 3. Furthermore, the complex permittivitywas computed
from the retrieved Debye parameters using equation (2). The
mean of percent relative error (MPE) and standard deviation
of percent relative error (SPE) for the calculated complex
permittivity from the retrieved Debye parameters are also
given in Table 3. The MPE was calculated from 0.5-6 GHz
using the equation of:

Esingle =

∑
Freq

|Predicted−Exact|
|Exact|

276
× 100 (8)

MPE =

∑
Measurements Esingle

625
(9)

where ‘Predicted’ is the complex permittivity calculated from
the Debye parameters acquired from the deep learning neural
network model and ‘Exact’ is the complex permittivity com-
puted using Debye parameters obtained from the literature.
Similarly, the SPE is calculated as:

SPE =

∑
Measurements(Esingle −MPE)

2

625
(10)

As seen in Table 3, all MPEs are below 11%. Moreover, the
SPEs for complex permittivity is below 0.08 units, which
demonstrates that the deep learning model is robust enough
to predict Debye parameters from reflection coefficients.
In Fig. 6, a comparison of real (ε′) and imaginary (ε′′) parts of
the complex permittivity calculated from the retrieved neural
networkDebye parameters and literature values are shown for
five standard liquids from 0.5 to 6 GHz. To further investigate
the accuracy of the deep learning model, the histograms for
Esingle of eq.(8) is given in Fig. 7. The maximum Esingle was
11.1% for ethanol and the minimum Esingle was 1.1%DMSO.

The second test dataset (4 × 625) includes the prepared
mixtures. The mean of the estimated Debye parameters from
neural network (NN) corresponding to the dataset and the
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FIGURE 6. Comparisons of calculated complex permittivities from the retrieved mean of Debye parameters and literature
values of complex permittivities for five standard liquids: dymethyl sulfoxide, ethanol, ethylene glycol, formamide and
methanol.

FIGURE 7. The calculated Esingle of eq.(8) of deep learning model by testing over 625 measurements for each standard liquid.

literature values are listed in Table 4. Also, in the last
column of Table 4, the MPE and SPE for the calculated
complex permittivity from the retrieved Debye parameters
is given. The results from Table 4 indicate that the obtained
MPEs for all the mixtures are below 8.9%. Furthermore,
the SPEs for complex permittivity is below 0.18 units.
Comparison of the real (ε′) and the imaginary (ε′′) parts of the
complex permittivity, which are computed from the retrieved
Debye parameters and the literature, are shown in Fig. 8.
The histograms Esingle in complex permittivity for each

mixture are given in Fig. 9. The maximum Esingle for
the calculated complex permittivity was 9.05% for the
DMSO and ethanol mixture (volume ratio 2.3:7.7) and
the minimum Esingle obtained from the formamide and
1-butanol mixture (volume ratio 7:3) is 1.6%. As seen
from the histograms, the error of prediction from the deep
learning model has differed in a small range for each
sample.

The obtained results are an indication that the proposed
approach is robust and can be used to retrieve the dielectric
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TABLE 4. Comparison of Debye parameters given in literature and mean of the retrieved Debye parameters from the designed neural network (NN) liquid
mixtures. MPE±SPE for the calculated complex permittivity (εc ) from retrieved Debye parameters with respect to literature values from 0.5 to 6 GHz.

FIGURE 8. Comparisons of calculated complex permittivities from the retrieved mean of Debye parameters and literature
values of complex permittivities for three liquid mixtures: formamide (90%) & 1-butanol (10%), formamide (70%) & 1-butanol
(30%), DMSO (23%) & ethanol (77%) and DMSO (54%) & 1-butanol (46%).

FIGURE 9. The calculated Esingle of eq.(8) of deep learning model by testing over 625 measurements for each liquid mixture.
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properties of materials with the OECP technique. When this
study is comparedwith the previously reportedwork in the lit-
erature, to the best of authors’ knowledge, only one reported
work carried out a study utilizing NN to retrieve complex
permittivity with OECP response [21]. However, the reported
study only used measurements; therefore, train and test data
were restricted with the measurements and availability of
the materials. Also, in [21], the complex permittivity values
of methanol were calculated from 0.5 to 5 GHz frequency
range from three samples. The obtained real and imaginary
values for methanol at 2.45 GHz were approximately 24 and
15 units, respectively. The computed real and imaginary
values from the Debye parameters of methanol retrieved
from the deep learning algorithm proposed in this work at
2.46 GHz are 23 and 15.9 units, respectively. To further
expand the comparison, a gel-like solution containing 15 ml
Triton X-100 and 15 ml de-ionized water was prepared.
At 2.45 GHz, [21] reported 35 and 8 units for real and
imaginary parts of DP, respectively. In this work, the
retrieved real and imaginary DP values from the trained
NN at 2.46 GHz are 33.4 and 10.4 units, respectively.
It should also be noted that, unlike [21], our work provides
statistical analysis of 625 different combinations of methanol
measurements.

In [26], the traditional approach for dielectric prop-
erty characterization with iterative solution techniques was
implemented. Furthermore, the Debye parameters of DMSO
between 30 MHz and 5 GHz frequency band were reported
with approximately 95% confidence level using linear
interpolation via Monte Carlo modelling. The calculated
MPE between obtained results in this work and [26] is
1.21±0.06 for DMSO. As seen in Table 3, the maximum
error was observed in the complex permittivity of ethanol.
Instead of the single-pole Debye (3 parameters), the Debye-
0 (4 parameters) can potentially offer a more suitable
relaxation equation for ethanol as mentioned in [26]. In [28],
the measurement of ethylene glycol was performed using
the transmission line (TL) approach from 0.3 to 3 GHz.
The Debye parameters were calculated from the complex
permittivity by solving a system of nonlinear equations
using MATLAB’s fsolve function. The calculated Debye
parameters for ethylene glycol differ from the work in [28]
as much as 1.51 units, 0.56 units and 15.52 ps for εs, ε∞
and τ , respectively. These differences can be due to the
different approaches used in obtaining the Debye parameters.
In [24], the complex permittivity of formamide was measured
from 10 MHz to 70 GHz frequency range and the best fit was
represented by a single-Debye type dispersion. As seen in
Table 3, the retrieved Debye parameters difference in [24] and
this work is 2.57 units, 1.64 units and 0.9 ps for εs, ε∞ and τ ,
respectively. In [29], formamide and 1-butanol were mixed
with different volume fractions. The measurements were
taken over the frequency range of 0.2 to 13.5 GHz. In this
work, two different mixtures were prepared in fractions of 9:1
and 7:3. The results in Table 4 indicate that the MPE±SPE
is 5.9±0.18 and 1.75±0.05 for these mixtures. In another

study [30], the dielectric properties of the mixture of DMSO
and monohydric alcohol were analyzed. In this work, DMSO
and ethanol mixture was prepared with a volume fraction of
2.3:7.7, corresponding to a molar fraction of 2:8. The results
show that the MPE±SPE is 8.9±0.05. Similarly, DMSO
and 1-butanol mixture solution was prepared with a volume
fraction of 5.4:4.6, that is molar fraction of 6:4. The obtained
results indicate MPE±SPE of 4.83±0.02. Consequently,
the results obtained from this work match well with
the literature data, which were obtained through different
methods.

As a final example, the trained NN is compared with
the brute force look up table (LUT) approach. The LUT
has two problems: (i) it requires a data table to be held
in memory and (ii) for each estimation, the points that
are close to the data point has to be determined, which
requires evaluating the distance between the data point
and the points in the LUT. These two problems become
worse with increasing the dimension of the measured
data. In contrast to this, a trained NN consists of simple
computations (multiplications, summations and activation
function evaluations). From another perspective, LUT is
similar to memorization, it tries to separate all instances of
data points by dividing the output space into Voronoi cells
with respect to a metric, while NN is akin to generalization
(or vary much similar to learning with aid of a complicated
formula). The goal of NN is to find a nonlinear function that
can map the input to output. To further explore the difference,
the DMSO example in Table 3 is re-estimated with the LUT
approach. 80% of the dataset (17732 × 0.8 S-parameters
simulations, each of which includes 276 frequencies) are
used to form a LUT. With the perspective defined above,
we can think that there are 17732 × 0.8 many points in
R276×2 in LUT. Then, the Euclidean distance between DMSO
measurement in Table 3 and each data point in LUT is
calculated and the Debye parameters of DMSO are assigned
as the Debye parameters of the closest point in LUT. To assess
the robustness of the LUT based method, it was evaluated
50 times (with different selections of 17732 × 0.8 many
S-parameters simulations from 17732 simulations) and the
average Debye parameters are estimated as εs = 48.7, ε∞ =
7.35 and τ = 24.0 ps with an MPE of 3.37 % (this was
1.21 % for DMSO using NN as seen from Table 3). In terms
of computational speed, NN based method spends 3.8 ms
on average, while LUT spends 24.0 ms on average for one
single dielectric property estimation. From the point-view of
memory consumption, the LUT needs much more resources
than the NN, since it needs a large table (276×17732×0.8+
3× 17732× 0.8 = 3.9× 106 many complex numbers) to be
held in memory to decide the best suitable estimation; while
NN requires to hold the coefficients of designed network
(552× 128+ 128× 128+ 128× 128+ 128× 64+ 64× 3 =
1.2×105 many real number). In conclusion, the cost of using
NN is to train a neural network, yet after training NN is
more efficient than LUT approach both in terms of time and
memory performance.
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IV. CONCLUSION
In this work, an alternative approach is proposed for obtaining
Debye parameters from the reflection coefficient response
of the OECP when terminated with a material by utilizing
a deep learning model. A synthetically generated dataset
was used to design the deep learning model. The synthetic
dataset was produced by modeling the OECP with the
traditional admittance model [14]. Theoretically modeling
the OECP enabled us to effortlessly create a large-scale
dataset utilized for designing the deep learning model.
A combination of 29 εs, 12 ε∞ and 51 τ Debye parameters
were used to compose Debye models representing a wide
range of materials. Among the generated Debye parameters
17732 samples were selected from the generated dataset and
reflection coefficients were calculated from 0.5 to 6GHzwith
267 frequency points using the admittance model. A total
number of 276×17732 input dataset (reflection coefficients)
and 3 × 17732 output dataset (Debye parameters) was
produced. To design the deep neural network, 80, 10, 10 %
of the dataset was used for training, validating and testing
the model, respectively. The model has (mean)±(std.dev)
percent relative errors between 1.86± 3.01, 3.33± 9.52 and
2.07 ± 7.42 for predicting εs, ε∞ and τ of test set (10%
of the generated dataset), respectively. In order to test the
designed deep learning model with experimental results,
625 input dataset (reflection coefficients) was prepared
using measurements collected from five different standard
liquids, four mixtures and a gel-like material. Collected
measurements were performed in the frequency range of
0.5 to 6 GHz with 20MHz resolution. The complex dielectric
constants are obtained from the Debye parameters retrieved
using the optimized deep learning model and the calculated
complex permittivities were compared with reference data
obtained from the literature. Obtained minimum and maxi-
mum (mean)±(std.dev) complex permittivity percent relative
errors are 1.21±0.06 and 10.89±0.08, respectively.
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